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1 Introduction

This thesis examines the problem of approximating the number of matrices of nonnegative
integers with a fixed set of constraints such as fixed row and column sums. The space of such

matrices may also be viewed as the set of lattice points in a polytope, and so is related to

a widely studied approximation problem in theoretical computer science. In particular, this e é
L™~
thesis studies approx1mate countmg of n xn tables with each row, column and the two main A \,y% e

dlagonals summmg to 7, i.e. magic squares. The intent is to apply to this countmg problem

Spt

the techmque of apprommatlon by random generation of elements using Markov chains as
discussed in [14], and also to obtain exact answers to measure the accuracy of approximation
methods. The approach is experimental in that Markov chains were run and the accuracy
of results were examined for varied sample sizes and for varied numbers of steps taken to
generate each sample item.

The focus is not on the more generally studied problem of bounding how quickly Markov
chains converge to a stationary distribution, but instead on algebraic techniques useful in
running Markov chains in this problem and perhaps also relevant to other approximation
problems. Commutative algebra arises both in choosing a set of basic moves for a Markov
chain and in the exact counting problem; combinatorics and homology theory also arise in
this counting problem. A key analytic result about Markov chain convergence is cited and
used, but its proof is well beyond the scope of this thesis.

Chapter two surveys techniques for choosing basic moves for a Markov chain. First nec-
essary ideas from computational algebraic geometry and commutative algebra are developed
including the concept of a Grobner basis. Next is presented an algorithm due to Sturmfels
and Diaconis found in [17] for finding a set of basic moves which was used and made the
approximation work in this thesis possible. An alternative approach developed in [8] is also
described since it is quite possibly more capable of handling large examples.

Another issue that was intentionally emphasized is testing how well some theoretical
ideas work in practice. The third chapter outlines explicitly how results were obtained and
presents these results on sampling by Markov chains for 3 x 3 and 4 x 4 magic squares. The
appendices include a sample Macaulay script to generate a Grobner basis and a list of the

resulting Markov chain basic moves. This is meant to streamline the process for anyone



wishing to run similar Markov chains.

Finally, chapter four examines a theorem of Stanley about exact counting of tables with
equal row and column sums and how it might generalize to magic squares. If the theorem
does generalize, it will provide a reasonable way of counting magic squares and would enable
us to test the accuracy of approximations on magic squares even with very large sums for each
row, column and the main diagonals. Since the approximation techniques used for magic
squares are the same as would be used in the general case of contingency tables with row,
column and additional constraints, any results about the accuracy of approximate counting
of magic squares should be indicative of the effectiveness of approximation for more general
contingency tables. Stanley’s proof does not generalize to magic squares as counterexamples
were found to an important lemma, but quite possibly the result itself does generalize and
much of the argument may also carry over to another proof, and so chapter three surveys
Stanley’s proof in addition to offering a very basic formula for counting magic squares in the
3 x 3 case which is used to test very small approximations.

[ am grateful to Professor Diaconis for suggesting a problem which so beautifully applies
algebra and geometry to a question of interest to statisticians and computer scientists. I
would like to thank him also for making me aware of areas of math I had no idea I would
find so interesting and for all his advice and encouragement. Thanks also go to Professor
Valiant for suggesting last spring I study a topic related to much current research, that of
approximation by Markov chains. I also appreciate several discussions with Brad Mann who
offered clear and relevant advice while Professor Diaconis was in France, and I especially
want to thank Professor Harris for showing how beautiful math could be three years ago and

for his encouragement and very thoughtful advice ever since.

1.1 Approximation by Markov Chains

Monte Carlo methods are often used to approximate the size of large sets which would be
difficult to count exactly. For example, one method of estimating /4 is to randomly choose
ordered pairs of numbers (z,y) between 0 and 1 and then measure what fraction of these
pairs satisfy the inequality z2+y? < 1. A related approximation technique involves randomly

generating elements of the set being approximated to see what fraction of these lie in some



subset whose size can be more easily estimated since it is smaller. If reasonable bounds
on approximations exist, this approach can be used on multiple levels to recur down to a

problem that can be solved exactly.

Definition 1.1.1 A Markov chain is a state space together with a transition matriz in which

entry a; ; 1s the conditional probability of moving from state i to state j at each time interval.

A key property of a Markov chain is that the probability of moving to a particular state
at time t + 1 is based only on the position at time ¢, so the past history is entirely irrelevant.
Markov chains have proven useful in approximations when random generation of elements
is itself a difficult problem. If, for example, one proves that some Markov chain is almost
equally likely to be anywhere in the state space after 1000 moves regardless of starting
position, then one may generate elements approximately uniformly at random by running
a Markov chain and choosing an element for a randomly generated sample once every 1000
steps.

A walk is defined as rapidly mixing if some Markov chain connects the space in such a.
way that the uniform distribution is closely approximated after a small number of moves.
By small we mean there is some polynomial in the log of the size of the state space and in
the inverse of the allowable error size which bounds the number of moves from any starting
point needed to approximate the uniform distribution within the allowable degree of error.
Intuitively, a walk will be rapidly mixing if there are many paths from any state to any other. ,
To prove a walk is rapidly mixing, one would look at the underlying graph constructed by
making a node of each state and an edge between states connected by some basic move of our
Markov chain. One method of showing a Markov chain is rapidly mixing uses estimates of
the second largest eigenvalue of the transition matrix; there is some stationary distribution,
which is an eigenvector with eigenvalue 1, and we do not want other distributions to be
almost as stable.

The intent in doing approximations is to examine only a tiny fraction of the state space
which might be quite large, but for an approximation of what fraction of the whole a subset
occupies to be a good estimate, the subset also needs to occupy a significant portion of the

entire space.



1.2 Approximate Counting of Magic Squares and Contingency Ta-
bles

One problem for which approximation techniques have had some success is the question
of approximating the number of tables of nonnegative integers with fixed row and column
sums, known as contingency tables. One well-known class of contingency tables are magical
squares, 1.e. n X n tables of nonnegative integers with equal row and column sums. More
generally, statisticians study n x m tables of data with fixed row and column sums. General
contingency tables may be used to count people with two traits such as hair color and eye
color, measuring one in the rows and the other in the columns; generating random tables and
approximating the number of tables with specified sums prove useful in measuring whether
an apparent corollation between two traits is random coincidence or significant. Diaconis |
suggested studying magic squares as an example of contingency tables with extra constraints
which might also be reasonably easy to count exactly.

Combinatorialists have developed interesting expressions for the number of n x m tables
of nonnegative integers with a particular set of row and column sums, but actual count-
ing quickly grows into an unwieldy task, so work at approximation by Markov chains is a
promising alternative. Beautiful exact formulas involving such objects as descent sets, in-
duced representations and double cosets may be found in [6]. Stanley proved the number of
n x n magical squares of sums r is a polynomial of degree (n — 1)? in r, a more useful result
for obtaining numerical counts with reasonable efficiency in this special case. Diaconis and
Saloffe-Coste very recently showed that Markov chains on the kernel of a class of matriceg,
known as totally unimodular matrices are rapidly mixing; this applies to contingency ta- -
bles and also magic squares, that is, magical squares with main diagonals also summing to
the same value as the rows and columns, so approximation not only appears effective, but
provably so.

In the case of contingency tables, one may choose basic moves for a Markov chain by
picking two rows and two columns at random and changing the four numbers they specify;

in each of the two rows and the two columns one must increase one of the numbers by 1 and



decrease the other by 1. For example,

+ -0
-+ 0

may be used as a basic move for 2 x 3 tables. If a move makes some entry negative, then
instead of moving to an illegal table, one sits idle for a step. The set of legal moves changing
two rows and two columns not only spans the space of moves preserving row and column
sums viewed as the kernel of a matrix specifying the set of constraints, but it also cesinects
the space of legal moves so that any table may be reached from any other without ever
needing to leave the space of legal tables.

We study the problem of approximating the number of magic squares, tables with ad-
ditional constraints that the two diagonals sum to the same number as all the rows and
columns. This adds the twist that basic moves for contingency tables no longer connect
the space since altering four positions may not alter a diagonal and still preserve its sum.
Grébner bases prove useful in choosing basic moves for magic squares, and other tables
with additional constraints so chapter 2 surveys algorithms using commutative algebra and

algebraic geometry needed for chapter 3.



2 Algebraic Techniques for Computing Basic Moves

The problem of generating a set of basic moves for a Markov chain on magic squares can be
rephrased as a problem of commutative algebra for which a practical algorithm is known and
for which implementations can be found in such software packages as Macaulay and Maple.
Sturmfels and Diaconis translated the problem of finding basic moves for a random walk to
one of computing Grobner bases to which we may apply a useful algorithm of Buchberger.
Section 2.1 introduces the necessary computational algebraic geometry found in [5], and
then section 2.2 explains how to use it to find basic moves for a Markov chain outlining
ideas of [17]. Since this algorithm may sometimes exceed current memory bounds in actual
computation, another less direct approach found in [8] which may be more efficient in large

cases is presented in section 2.3 as an alternative.

2.1 Computational Algebraic Geometry and Grobner Bases

This section serves as an overview of ideas described more thoroughly in [5] which are relevant

to later sections.

Definition 2.1.1 An ideal is a subset I of a ring R such that for anyr € R and s € I,
rs € 1.

Definition 2.1.2 A basis B is a subset of an ideal I contained in a ring R such that every
ideal element may be expressed in terms of basis elements, i.e. such that s € I implies s may

be written as a finite sum Y1, r;b; with r; € R and b; € B for all i.

We will be concerned with constructing finite bases for ideals of polynomial rings, so it
is useful to note that for k a field, every ideal in the polynomial ring k[z1,...,z,] has a
finite basis. This is a well known result called the Hilbert Basis Theorem. A simple proof
may be found in [5] Also necessary is a notion of division of a polynomial by an ideal to
systematically find a common unique remainder for each class of polynomials which differ
from each other by ideal elements, but this will first require some notion of which monomials

are “larger” for the concept of decreasing remainders to make sense. An order known as



lexicographic order proves convenient in studying contingency tables. First let us order the

variables z,,...,z, by requiring z; > x5 > ... > z,.

Definition 2.1.3 Lezicographic order is the monomial order such that z3* ... z% > xfl co.xbn

if aj > B;, and i < j implies o; = ;.

For example, z3z3z; is a higher order monomial than z2z,z} under this monomial order.
Throughout we will use lexicographic order exclusively. Each polynomial in G has a leading
monomial or leading term of highest order which we denote by LT (g). Throughout, we will
let 2 denote z7" ... 2% to simplify notation.

In division of integers, for any a,b € Z, there exists ¢,r € ZZ such that a = bg + r for
|r| < b. This generalizes to division of a polynomial by an ideal. The goal is to express the
polynomial as an ideal element plus a remainder which is as small as possible. If a polynomial
is in the ideal, there should be a systemative way of discovering that the remainder is 0. For
polynomials not in the ideal, we would like to reduce in the same fashion until the remainder
can be reduced no further. To design such an algorithm to produce a unique remainder, we

first introduce what is known as a Grobner basis for an ideal.

Definition 2.1.4 A basis {g1,..., g} for a polynomial ideal I is a Grébner basis if (LT(g,),
L LT(g)) = (LT(D)).

This means that the span of the leading terms of the basis is the set of all the leading

terms of all elements of the ideal.

Example 2.1.5 The set {x1 — x3,x1 — 23} is not a Grobner basis for (z1 — xa, T1 — x3) with
respect to the lericographic order with 1 > x9 > x3 since (1 — x2) — (x1 — z3) is in the
ideal, but 1t has leading term —xo, and this is not in (x,), the span of the leading terms of

the basis elements.

The point of a Grébner basis is to allow a division algorithm by making it unnecessary
to ever express a polynomial as a smaller remainder plus a sum of two ideal elements with

high order leading terms which cancel.



In a Grobner basis, any nonzero element of the generated ideal can be reduced to one
with a smaller order leading term since some combination of Grébner basis elements has the
same leading term as the polynomial being reduced, so subtracting this combination cancels
leading terms leaving only smaller order terms as remainder.

This will allow us to pick a basepoint table such as the table with all entries ”' and move
from any table to any other with the same sums by reducing each to the same remainder
table; the difference between legal tables is a table with sums all 0, and the set of these
leval move tables corresponds to an ideal for which we find a Grobner basis. This will not
only show we can move from any table to any other, but also give an upper bound on the
maximum distance between any two tables.

An algorithm called Buchberger’s algorithm is used to compute a Grobner basis for the
ideal we construct to represent legal moves, i.e. tables with row, column and main diagonal
sums 0 by which two tables with equal sums may differ. Let us first define S-polynomials, a

key construct for the algorithm.

Definition 2.1.6 Given two polynomials f and g in an ideal I where " is the least common

multiple of the leading terms of f and g, let S(f,g) = L;Zf) - f - L:‘ﬁzg) - g.

Note that leading terms cancel since both ﬁZT) . f and f% -g have leading term 7. The
S-polynomials are designed to produce cancellation of leading terms. Buchberger proved
that a basis (gy,...,gn) for an ideal I is a Grobner basis if and only if whenever i # j,
LT(S(9:,9;)) € (LT(g1),--.,LT(gn)). Buchberger’s algorithm simply involves taking an
ideal basis (g1,...,g,) and extending the basis to include any combination S(g;, g;) such
that LT(S(gi,9;)) € (LT(g1), ... LT(gm)) where (g1, ..., gm) is the basis built thus far. The

following results prove this process terminates to generate a Grobner basis.

Theorem 2.1.7 If 2° = 220 LT(g)) = ... = 2*OLT(g,) and deg( t cixa(i)gi) < 6,
then 3oi_; c;x™g; can be written as a sum of terms of the form x4+ S(g;, gx) for xVi+ =
LCM (me(gj)l R ...m{;T(g’c)"). Each term z°~*S(g;, gx) has degree less

than 4.

PROOF. We express the original sum Y%_, ¢;z%g; more conveniently as a sum of terms of the

form z*®g; — 2>+ g, . At the ith stage replace z*(®)g; in the sum by zo®g; — gol+g.
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and then at the (¢ + 1)st stage add extra terms to cancel the extra —z*¢*+g; ., introduced

at the ith stage. Hence, note that

t t—1 t—-2
Z Cima(z)gi — ci (wa(z)gi _ xa(H—l)gH_l) + ci ( a(H—l)g - (1+2)gi+2)
1= i=1 i=1
-t ZCz ( oiFt=2) gz+t—2 - $a(i+t_1)gi+t—1)
+(er + ...+ e)z*Bg(2)
t—1

+
= Y(a+...+aq) (x"‘(i)gi — g+, 1) +(c1+ ... +ec)zoWg,.

Let d; be the coeflicient of the leading term of g; to obtain

t .
Zcz g = Zcidimai (&)
i=1 d;
t

= Z(Cldl —+ ... + C,‘d.,;) (za(i)gi/di — a:a(”l)gi“/di“)

i=1

+(Cld1 + ...+ ctdt)xa(t)gt/dt.

Since deg(32!_; c;z*(g;) < 4, note that (c1dy + ... + cpdy)x*Pg, /dy, = 0, so i cx®g; is
‘,L.a(i)gi xa('H-l)

expressible in terms of differences A Ciadl Since z°®) = L; @) which means
i i+1 gi
a(z) . (5 . ’Yi,iJr—l . a(z) . a(H—l) .
T 9 Y9 e (G0 , these differences — 2 _ % 941 can be written
d; LT(g:) LT (g:) d; dit1

as o %+15(g;, g;11). Note also that each term z¢ 7+ S (95, 9x) has degree less than § since

S(9;, gx) has degree less than -y, by the definition of S(g;, gr). a

Next we show that adding elements of the form S(g;, g;) to a basis until each LT(5(g;, g;))
is in (LT(g1),...,LT(g,)) yields a Grobner basis.

Theorem 2.1.8 A basis g1,. .., g, is a Grébner basis if and only if S(g;, g;) € (LT(q1),- - -,
LT(gy)) for alli and j.

Proor. If G is a Grobner basis, then the leading term of any nonzero polynomial, and in

particular the leading term of S(g;, g;), may be written in terms of the leading terms of basis

11



elements since any positive remainder may be reduced to a lower order one by subtracting
some combination of elements of G to cancel the leading term.

To show the converse, we prove that any f € I may be written as a sum Y 1 hig; with
max(deg(hig;)) = deg(f). Certainly deg(f) < max;deg(h;g;). Consider the expression for
f as a sum 37, h;g; minimizing the maximum degree . Suppose § > deg(f). Then f
may be split into a sum of monomials of degree § together with a sum of all remaining
monomials of lower degree. Now the first sum fits the conditions of theorem 2.1.7 and
so is expressible as 3, ; % S(g;, gj), a sum with maximum degree less than §, and the
second sum is defined to have maximum degree less than 4, so the overall maximum degree
is less than 4, a contradiction. Hence f can be expressed in terms of h;g; of degree at most
deg(f), so LT(f) = X%y LT (hig:) - s; for s; = 1 if deg(LT(h;g;)) = deg(f) and s; = 0 for
deg(LT'(hig;)) < deg(f). This means (LT(f1),...,LT(f,)) = (LT(I)), so G is a Grobner
basis. O

The process of extending a basis g1, . . ., g, by adjoining S(g;, g;) until every LT(S(g;, g;)) €

(LT(91),-..,LT(gn)) terminates, so we can use it to find a Grobner basis.

Theorem 2.1.9 The process of adding S(f;, f;) to a basis (fi,. .., fm) until every LT(S(g;, g;))

is expressible in terms of the LT(f;) terminates after a finite number of steps.

ProOF. Clearly at each stage we are generating elements of our ideal by construction
since we are taking combinations of elements of the ideal. The ideal (LT(g;) ... LT (gm)) is
enlarged each time we add a new basis element S(g;, g;) to G, so by the ascending chain
condition on k[z1,...,z,], that is, the condition that any sequence of ideals each contained
in the next must stabilize, the process of adjoining basis elements S(g;, g;) terminates. Note
that the ascending chain condition holds for polynomial rings by the Hilbert basis theorem

which shows that every ideal of a polynomial ring has a finite basis. O

A Grobner basis with respect to lexicographic order proves useful later because any
element of our ideal which only involves some of the lower order variables will be expressible
in terms of Grobner basis elements which also only use these variables. It sometimes proves

easier to find a basis for a polynomial ideal in k[z1,...,z,] by finding one for a larger, more

12



easily defined ideal in k[z1,...,%n, 41, ..., Ym] using more variables, constructing from this
a Grobner basis giving the extra variables higher order than the ones we are interested in
preserving, and then using the elimination theorem, theorem 2.1.10 to find a Grébner basis

for the subset involving only the original variables.

Theorem 2.1.10 If G is a Grébner basis of I in k[z1,...,z,] with respect to lezicographic

order with 1 > ... > x,, then G Nk[z;,...,x,] is a Grobner basis for I Nk[z;, ..., z,)].

PrOOF. G Nk[z;,...,z,] € I NE[zj,...,2,], so we must show G N k[z;,...,z,] spans
INK][zj,...z,] and that for g, g € k[z;, ..., Zn], S(gk, i) yields remainder 0 upon division
by G N k[z;,...,z,]. Every f € I may be written as a sum of a;g; with deg(g;) < deg(f)
for all 4, so if f € I Nk[z;,...,z,], then each such g; is in k[z;,...,z,], so GNk[z;,...,z,)
spans I Nk[z;, ..., z,]. Likewise, for gy, g € GNEklzj,...,zn), S(gk, q1) € INk[zj, ..., T,), s0
S(gk, gi) is expressible in terms of elements of GNk|z;, ..., ,], and so S(gk, g;) has remainder

0. O

2.2 Using Grobner Bases to Find a Set of Basic Moves for a
Markov Chain

This section outlines results of Diaconis and Sturmfels found in [17]. Let X be a finite set
and T a map from X to Z¢. The set X can be viewed as the n-m variables representing the
positions in n x m tables of nonnegative integers, and d as the number of constraints forced
on the tables. Elements of X are actually tables with all zeroes except in one position, but
it serves equally well to think of them as the actual positions. For our purposes, the map T
takes an element z € X to the d-tuple which is 0 in the coordinates representing equations
in which z plays no role and is 1 in the coordinates representing equations including one
copy of z. For example, if the first constraint were z;; + Ti2 + 13 = 5 then T would
take x1 1,12 and z; 3 to d-tuples beginning with a 1 but the other variables z; ; to d-tuples
beginning with a 0.

A linear combination >ij Cij - @i j of elements of X will be in the kernel of T if and only

if the move adding ¢;; to position z;; of a contingency table for each ¢ and j preserves all

13



our specified constraints. We want a simple set of basic moves that will allow us to move
from any one legal table to any other in such a way that after each basic move we still
possess a legal table. The reason a basis for the kernel of the matrix of constraints does
not suffice is that the basis needs to be a Z-basis, and although every legal move is a linear
combination of basis elements of the kernel, it might be impossible to move from one legal
table to another without somehow along the way allowing a table entry to be negative, i.e.

temporarily leaving the space of legal tables.

Example 2.2.1 In the linear algebra sense of a basis,

+ - 0 0 + —
and
~ + 0 0 — +
span the space of moves preserving row and column sums, but then to move from

0 01 1 00
1 00 0 01

requires an intermediate step to
1 -1 1
0 1 0O

which is not a legal table.

These difficulties may be overcome by finding a Grébner basis for an ideal including all
tables with sums 0. Let g be a function from X to IN which corresponds to the table with
value g(z) at position z for z € X, and let T(g) = Z,cxg(x)T(z) = .ex (value at position
z in table ) - ( vector which is 1 in coordinates whose equations involve z and 0 elsewhere
) =(r1,72,...,Tn,C1, ..., Cm,d1,dz). Legal moves correspond to tables g with T(g) =0, i.e.
they are tables which can be added without changing any of the sums to be preserved. We
extend to the algebra k[X] of polynomials whose variables are elements of X and associate
to each function g on X a monomial X9 = [],.x 29¢®) in the ring k[X | of polynomials in the

variables z; ;. Since T is a map only on X, it must be extended to a map ¢r from k[X]; if

T sends z to (i1,42,...,1q) € Z%, then let ¢7 send z to YL yf;ld. This means
or(X9) = Z yf(w)T(Z)l N 'ySdI(Z)T(w)d
zeX

14



Zg(=)T(z)1 Zg(z)T{x)?

= W - Yq
T T
= o (9 y (@)a

In the language of algebraic geometry, ker(¢r) is a toric ideal we denote by Ir.

Lemma 2.2.2 The toric ideal I is generated by the monomial differences X* — X¥~ for
functions f with ¥ cx f(z)T(z) = 0.

PrOOF. Let I' = ({X*" — X/ | Yoex f(@)T(x) = 0}). If Yocx f(@)T(z) = 0, then
Seex [T(@)T(z) = Shex f (2)T(z), 50 ¢r(X7) = ¢r(X’ ™) which means I' C Ir. Suppose
there exists p such that p € Iy but p ¢ I', and hence Iy /I’ is nontrivial. There exists some
nonzero polynomial p € It /I’ which is not a monomial since ¢ applied to a monomial never
yields 0. In fact, since k[X] is a polynomial ring and ¢r sends monomials to monomials, p
must involve a pair of monomials with images that sum to 0 under the action of 7. Choose
such a p of minimal degree and let z” be the leading term of p, then there is some term z*
of p such that ¢r(2) = ¢r(z®). Rewrite 2 — 2% as 27(z? — z*') for ; = min(c, 8]) so that
2% and z* have no common factors. Since p is of minimal degree in I7/I', 2% — 2* e I,
so we can subtract z7(z% — ) from p to obtain an equivalent element of I /I' of smaller
degree, a contradiction to p being of minimal degree. This implies I /I’ is empty so I = I'.
|

Theorem 2.2.3 A set of functions f1, ..., f, preserves a set of table constraints and con-
nects the space of legal tables if and only if the monomial differences {Xf‘+ — X1} generate
Ir.

PROOF. The condition Y ,cx fi(z)T(z) = 0 is equivalent to {X/ — X%} C I by the
definition of T. Now we must show that fi,..., f, connect the space if and only if the set
{X# — X1} generates the toric ideal I7. Lemma 2.2.2 implies that { X% — X} generates
Ir if it generates the set of X/* — X/7 such that ¥,y f(z)T(z) = 0. Suppose fi,..., fa
connect two tables which differ by f* — f~, so f* — f~ may be written as Zle € fi;- The

15



proof is by induction, so first note that if f* — f~ = ¢; fi; for some j and € = 1, then
fm= fi? and f~ = f;° so that X xf = Xf:zr' — X" which is in the ideal, and for
e = —1 simply switch f[; and f; Assume for m < A that f* — f~ = >ir1 €5 fi; implies
X5 - X7 e ({X5 — X#7}). Note that if f* — f~ can be written as Y4, €fi, then
[~ + eaf;, and f~ differ by a sum of fewer than A of the f; and so X/ *fia — Xf7 isin
the ideal. Likewise, X/' — X/ tefus ¢ ({X%' — X7V since f+ — (f~ +e1fy,) = Y€k,
Hence, X" — X/ is a sum of ideal elements and so is itself in the ideal.

Assume every X9 — X9 € Ip is in ({X% — X/7}) and therefore can be written as
SA X (X — X%:). T Ais1then g =h + f and ¢ = b, + £, 50 g — ¢ = f,
so ¢ is connected to ¢’ completing the base case of the induction. Suppose X9 — X9 =

X he( X7 X ir) for j < A—1 implies g is connected to ¢’. We will show inductively this
is true also for j = A by eliminating one term from the sum to obtain an intermediate legal
table, i.e. taking a step from g toward ¢’ without leaving the space of legal tables. There is
some k such that X9 = X" X% as X9 must appear as a term in the sum ijl X (Xfit —
X%, s0 g’ — fi. = hg. This is nonnegative since X" is the multiple of X T taken in
expressing X9 — X¢ as a linear combination of basis elements; since g+ fi, =9+ i: -
fio = hi + i: which is nonnegative, note also that g’ + f;, is nonnegative. Subtracting
th(Xf"Tc — X’ic) from the sum ya Xh’(Xfit ~ X7i) which equals X9 — X¢, yields a sum
of only A — 1 terms, but (X9 — X9) — Xh’“(Xf"Jl: — X)) = X9 - X9+ and ¢ + fi, 1s

nonnegative, so the induction is complete. O

This reduces the problem of finding basic moves connecting a space to that of finding a
Grobner basis for a toric ideal, and this follows directly from theorem 2.1.10, the elimination
theorem, since ({z;; — Y7%}) Nk[X] = Ir, so if G is a Grébner basis for ({z;; — YTi}),
then G'N k[X] is a Grébner basis for ({z;; — YT4i}) N k[X].

The condition that {X%" — X% } connects Ir is equivalent to {X/ — X%} being a
Grobner basis for Ir. Given the standard definition of a Grobner basis, we can reduce an
ideal element to elements with smaller and smaller leading terms without having to introduce
higher order terms and thus keeping exponents nonnegative at each step, so given any two
ideal elements, we can find sequences of functions reducing these to 0 also yielding equal

sums as in the condition that the f; connect the space. The converse is the same argument
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reversed.

Buchberger’s algorithm will yield a Grobner basis, and we remove superfluous elements to
obtain from this a reduced Grobner basis. The result is a minimal basis such that the leading
terms of the basis elements span the ideal generated by the leading terms of the original set.
From this, we use the elimination theorem to obtain a Grobner basis for I N k[X]. The
reduced Grobner basis is very nice in that it not only connects the space, but the paths
between our functions, i.e. tables, will be of minimal length. These serve as basic moves for

Markov chains.

Corollary 2.2.4 A generating set for the space of legal moves between contingency tables is
{zy; — YT}

PROOF. Simply note that 28 ... zon — g . . gPr = p®1c2t | pancen — Pt oBrin K[X|Y
Py 1 1 n 1% n “n 1 n

n

{z;; — YT} and this equals 0 if and only if (X*) = ®(X5). 0

Example 2.2.5 The kernel of the space of legal moves on 3 x 3 tables with row and column
constraints is generated b’y {CL‘H —rlcldl, T12—T1C2,T13 —-T'lcgdg, To1 —T2C1, T22 _r202d1d2, Tog —
racs, T3y — r3cidy, T3z — T3C2, T3z — T3csdy}. Hence, the r; represent row constraints, the c;

represent column constraints and the d; diagonal constraints.

2.3 Computing Grobner Bases Without Introducing Extra Vari-

ables

DiBiase and Urbanke introduce another algorithm in [8] for computing a Grébner basis for
the kernel of a homomorphism, but by avoiding introducing extra variables to represent
constraints, this algorithm may handle larger examples. Grobner basis computations grow
exponentially in work required as the number of variables increases, so minimizing variables
is an important concern.

The method relies on a few observations we will prove following [8] after outlining the
algorithm to compute a Grobner basis for the kernel of a map m between polynomials in

Elz(,...,z,] and polynomials in k[yi,...,¥m]- The polynomials in k[zi,...,z,] represent
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tables while those in k[y1, . . . , Y] denote constraints. Let ® map elements of Z™ to monomial

+ u—
- . « + e =
differences by sending (ay,...,a,) € Z" to z7* ... 2% — zy? ...xzdr where (ay,...,a,) =
(ar,...,ay)—(a7,...,a,) for of = max(a;,0) and o; = max(0, —;). The map 7 induces

a map m, from exponents of monomials in k[X] to exponents of monomials in kY] by letting

Tl . an) = log(m(ay" ... 22%)) = (B1 ... Bm) for m(a$ ... 28n) = ¢ . yfm.

Theorem 2.3.1 ker(7) = (®(ker(m.))).

PROOF. This is a restatement of lemma 2.2.2 from the previous section. 0

The approach of [8] hence seeks a Grobner basis for (®(ker(m,))) since the result is also
a Grobner basis for ker(r). The first step is to find a Z-basis K for ker(r,) and apply ® to
it; this alone is not a basis for (®(ker(m,))) since (®(K)) often does not equal (®(span(K)))
for a finite set K, but the set ®(K) can be modified into a basis in a later step. If A is
the matrix representation for m, with respect to the natural choice of basis, the next step is
to find a matrix U such that AU = B, the first n — m columns of B are 0 and the last m
columns form an m by m upper triangular submatrix of integer entries; the initial columns
of U form a Z-basis for ker(A) as is proved quite simply in [4]. U is obtained by converting
A to B by elementary row operations and echoing the operations applied to the identity just
as one would find the inverse of a matrix in Gaussian elimation.

The following pseudocode generates U. We modify the algorithm published in [4] and
given below slightly to make sure we do not assume elements which could be 0 are nonzero.
Before starting, reorder the rows so that the bottom row has nonzero entry in final position if

possible, and before each step reorder remaining columns to make pivot nonzero if possible.

k := n (pivot on last column)
for i = m to 1 (i denotes row)
for j = n —1to 1 (j denotes column)
d :=gcd(as;, aix) (will divide by d later to make entries smaller)
(z,y) :=sol'n to eq’n a;; - = + a;x - y = d (use Euclid’s algorithm, found in [4])

column j := ZZcol k — %£col j (puts 0 at a;; and integers in column j)

column k := z-old col j + y- old col k (puts d in position a; )
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k := j (move pivot to column with only 0’s below it)
do same column operations to U which is initialized to ID matrix

output columns of U corresponding to 0 columns of A as Z-basis for ker(,).

The Z-basis for ker(w,) formed in the initial columns of U can be thought of as the
rows of a new matrix. In algorithm 2.3.2 elementary row operations will yield a new Z-
basis for ker(,) such that each column of this new matrix is strictly nonnegative or strictly

nonpositive. This corresponds to every basis element belonging to the same quadrant.

Algorithm 2.3.2 First note that 0 is both nonnegative and nonpositive, so we need only be
concerned with columns with some nonzero entries. The first row is made to have 0’s only in
columns which are strictly 0 by adding enough copies of some other row i with nonzero entry
a;,; to make a1 ; nonzero also; enough copies are chosen so that no first row entry already
made nonzero becomes 0. Once the first row has 0 entries only in columns of all 0’s, we may
add such a large multiple of the first row to every row that every column has only entries of

the same sign as in that position in the first row.
The next step requires the notion of a reduced Grobner basis.

Definition 2.3.3 A reduced Grébner basis is a Grébner basis in which no element may be

reduced by any other

Theorem 2.3.7 will show that if K’ € IN"™*" then (®(K)) = (®(span(K))) which means
if the Z-basis for ker(r,) were an IN-basis, then the set (®(basis(ker(m.,)))) already formed
would equal (®(ker(7,))) which is what we seek. We construct from the matrix with each
column strictly nonnegative or strictly nonpositive a matrix in IN"*" by multiplying nonposi-
tive columns by —1, find a reduced Grobner basis for the resulting matrix and then construct
from this a reduced Grobner basis for the original matrix.

We iterate the process of converting a column in the IN-matrix back to its original form
by multiplying by —1 and deriving from the reduced Grébner basis associated to the old

matrix a reduced Grobner basis associated to the matrix with this new nonpositive column.
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Theorem 2.3.9 shows that if T} is the action which multiplies column j by —1, then applying
T; to the elements of a reduced Grobner basis for span(K) by acting on the associated
row vectors yields a basis for span(T; K). Buchberger’s algorithm [5] will convert this to a
reduced Grobner basis so the process of acting by each needed T; may be iterated until all
nonpositive columns of A have been restored to nonpositive.

We now verify the assertions needed in this method. To preserve notation from [8], let
my, be the monomial that can be factored out of the monomial difference associated to p by
®. Let u, denote log(p™) —log(p~) for p the difference of monomials p* —p~ and let u} and

u, denote logp™ and log p~ respectively.

Lemma 2.3.4 For p = m,®(u,) and ¢ = m,;®(u,) there is some monomial m,, € k[z, ..

LCM(p . g+ LOMo ot
,] such that ¢ (p’q)p+ C (zj,q)
- q

)

g = my  P(up, + uy).

PROOF. Note that

LCM(p~,q") LCM(p~,q* LCM(p~,q" _
(p )er (p q)q ( ‘Z)(p+_p)

P qt D~
LCM(p~,q* _
D ()
LCM(p~,q")

= ——————p" —(LCM(p~,q")) (i—:)

D
B q" LCM(p~,q") _
+(LCM(p~,q")) (q—+> - —é;—)q
_ LCM(p~,q*) . LCM(p~,q") _
= — P — + q
p q
N _
— (LCM(p ,q" p——q—>
( (p,q")) <p_ p

Let my = LCM(p~,q") and let m; = mg - 2% ~% ~(@+u)* g5 m, is a monomial in
klz1, ... z,]. Note that (up + ug)™ — (up + 1)~ = (v} — u;) + (u] — u;), and hence

observe that

(LCM(p g ))(@% % — o) = mg (o~ — a0 =+0)
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- (mowuz—u;—<up+uq>+)
. (x(up+“q)+ — x““:+u;+(“p+uq)+-( j_uq_))
— my (x<up+uq)+ _ w—(u;—u;)+(up+uq)+—(u;*—u;))

= m (:L-(up+“q)+ _ x("p"‘uq)_)

Since z(r+ea)’ — gUrtua)” = §(u,4-u,), note that LCMIE?"q+)p+ LCM(E?L_ ) g = my®(u,+uy).
It remains to be shown that log(m;) € IN". Recallm; = LCM(p~, g*)z¥% —% ~(w+u)* Note
that log(m,) grows as m, and m, grow, so showing log(m,) € IN* for mp = my = 1 and
applying induction suffices.

The following identities may be understood by thinking about what happens for each
variable z; which can also be thought of as a vector coordinate. Note, for instance, that
LCM(u,,u;) = u, + (uf — u; )" because the right side is u; for coordinates in which

u, <u, and elsewhere (uf —u,)" is 0 which makes LCM (u;,u]) = u,, . Hence,

log(m,) = LCM(U; Uq+) + (u; —u, — (up + uqﬁ)

= u, + (uy —u)t Hul —uy — (up +ug)t

= — )t — ()

= u; + (u;' —u;)+ - (up+uq)+-

Also note that (u, + ug)™ = (v, — u;)* + (u} — u, )" since both sides equal u, + u, in
coordinates where u, and u, are both positive, both equal u, —u, in coordinates where up >0
and ug < 0, both equal u, — u, in coordinates where u, < 0 and u, > 0, and otherwise both
are 0. Substituting —(u; —u, )" for (uf —u, )" —(up+u,)* implies log(m;) = wf — (v} —u_ )",

but (u, —u;)* <wul coordinatewise, and so log(m;) € IN™. O

Definition 2.3.5 The support of a function is the subset of the domain which is not sent to
0.

Corollary 2.3.6 Ifp = ®(up) and ¢ = ®(uq) for up, ug € Z" and if uy and u; have disjoint

support, then ®(u, + ug) can be expressed in terms of ®(u,) and ®(u,).
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LCM(p at)

PROOF. By lemma 2.3.4, z*®(u, + u,) = p+ LCM(

q for some z € IN", and
since p = ®(u,) and ¢ = ®(u,), we need only show that z* = 1. Recall that 2z = u; —u, +
LCM ((u; +log(my)), (uf + log(mq))) (up +ug)™, but m, = m, = 1 since p = ®(u,) and
q = ®(ug), so 2 = u} — (v} — u;)" by the same argument as in the proof of lemma 2.3.4

when we assumed m,, = my = 1. Since support(v,) and support(u; ) are disjoint, u, only

contributes to terms of u] — u; not involving u¥, and then it contributes negative values,

so (uy —ug )" =u,;. Hence, z = u} — uy =0, 50 ®(u, +uy) = LCMIE_ )p+ LCM( 4 )q =
LOMb_a") () -+ %ﬂ@(uq)_ O
P q

Theorem 2.3.7 If K € IN™*", then (®(K)) = (®(span(K))).

Proor. Clearly (®(K)) C (®(span(K))) since K C span(K). Suppose v € {®(span(K))).
This means v may be written as a sum of terms of the form ®(3°, cx a;v;) each of which is
contained in (®(v1),...,®(v,)) by corollary 2.3.6; the disjoint support condition of corollary
2.3.6 is satisfied since the term u_ is always O for vectors in IN*. Hence, v is a sum of
elements of (®(K)), i.e. v € (2(K)). This means (®(span(K))) C (®(K)), and so (®(K)) =
(®(span(K))). 0

Theorem 2.3.8 Let K be a Z-basis. If G is a reduced Grobner basis for (®(span(K)))
then G C ®(span(K)).

’

PROOF. Every g € G may be written as a difference of monomials by lemma 2.3.4 since
each g is an S-polynomial, the object defined for Buchberger’s algorithm in section 2.1 and
also the linear combination equal to m, ,®(u, + u,) in lemma 2.3.4. If we may factor some
nontrivial monomial my, , out of this difference, then g = m,, ,q for some q of lower order than
g- Since q € (®(U)), a multiple of some element g’ of G other than g can be subtracted from
g to reduce it, so likewise g can be reduced by m, ,g’, and this contradicts the assumption

that G is reduced. O

Recall that T; sends a matrix A in ZZ™*" to the matrix where the jth column of A is

multiplied by —1. For a polynomial p = ®(u), let T;(p) = ®(Tju).
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Theorem 2.3.9 Let K be a set of v vectors in ZZ"™ and choose U such that U C span(K)
such that U is finite and (®(U)) = (®(spanK)). If G is a reduced Grobner basis for (®(U))
with respect to lexicographic order with z; > x; for alli # j, then (T;(G)) = (®(span(T;K))).

PRrROOF. If g € G, then there exists u € span(K) such that g = ®(u) by theorem 2.3.8, so
T;9 = ®(Tju). Hence g € G implies T;g € ®(span(T;K)) so (T;G) C (®(span(T;K))).

Now assume v € ($(U)). Express v as a:?jml —p, for my and p; monomialsin [z, ..., z;_1,
Tjt1,.-.,%n); this is possible since v = ®(u) for some u € U, so it is a binomial with at most
one term involving z;. Likewise, there is some g € G which will reduce v as G is a Grobner
basis for (®(U)) and since g € ®(U), g can also be written as xfj me — po for some my, po
monomials in [z1,...k,2;_1,%;j41,...,2,) with 8; < «; and my dividing m;. Note that

Tjv =my — z;7py and Tjg = my — 237 ps, s0

o
Tiv = mi—z;'p

- (3 ()5
e B (o).

Since Tjg € (T;G), if ( )pz ey’ % is in (T;G), then T;v € (T;G). Since (%) P2 —
plw?j % is a lower order term than T;v, induction implies every Tjv is in (T;G). Since Tjv is
an arbitrary element of T;(®(U)), and this equals (®(span(T}(K)), (®(span(T;K))) C (T;G)

as desired.
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3 Computational Results

This section details how Markov chains were run and what results were obtained. Section
3.1 together with the first appendix discuss how to go about computing Grébner bases used
in Markov chains and when it is reasonable to do so. Section 3.2 describes the random
number generator used since this can have a significant impact on results of Markov chains.
We outline in section 3.3 how to compute expected deviation for different sample sizes to
help in the analysis of results obtained and in choosing sample size. Section 3.4 gives a very
brief description of the results most relevant to determining how fast our Markov chains
should converge to the uniform distribution with respect to the diameter of the underlying
connectivity graph; we also provide a bound on this diameter used to decide how many steps
to run a Markov chain to generate each element of random sample. Pseudocode is provided
in section 3.5 for running Markov chains and testing how many elements in a resulting sample
belong to a subset to approximate what fraction of a larger space it occupies. Finally, section
3.6 lists results of Markov chain runs and compares these to some of the exact values being

approximated.

3.1 Using Macaulay to Find a Set of Basic Moves

We use Macaulay to find a Grébner basis corresponding to basic moves for a Markov chain.
Maple and other software packages include the necessary functions, but Macaulay seems
much faster and better able to handle large computations. Grobner basis computations in
general, and specifically using Macaulay, are very sensitive to the number of variables and
the degrees of the polynomials involved, so it is important to take care to minimize these.
One must input an initial basis for an ideal and from this a Grobner basis, or standard basis,
is computed. Macaulay requires polynomials in this initial basis to be homogeneous which
adds to the rate at which the degree of the polynomials grow; for example, if T11 — ricidy
were a basis element, then the variable z;; would be given weight 3 and thereby increase
the degree of all polynomials involving ;.

In entering the ideal defined in terms of 25 variables for the 16 table positions, 4 row

constraints, 3 column constraints and 2 main diagonal constraints, the computation just
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satisfied memory bounds of Macaulay. It computed a basis consisting of polynomials of
degree at most 4, but because polynomials must be made homogeneous and because it
must do further testing to be sure a Grobner basis is complete, Macaulay in this case tests
polynomials of degree up to 17, and the software package only allows polynomials of degree
up to 20 when dealing with 25 variables. Simply including the redundant column constraint
makes the computation too large since Macaulay has an internal bound related to the product
of the number of variables and the maximum polynomial degree being tested. Some slight
optimizations are discussed in [2], but probably more useful is a second technique discussed
in 2.3 for computing Grébner bases without introducing constraint variables; this should
make larger examples feasible to compute.

A script instructing Macaulay to find a Grobner basis for 4 x 4 magic squares may be
found in the first appendix together with an explanation of the commands used. Located in
the second appendix is the resulting basis of size 51 for the case where all 16 positions are

free to move.

3.2 Choosing a Random Number Generator

Knuth suggests a random number generator for producing a long sequence of random bits
quickly in [9]. This is especially useful in Markov chain simulation for deciding whether to
choose a basic move or its negation.

This random number generator is based on a few facts about finite fields. If 7(z) is an
irreducible polynomial in ZZ,[z], then (Z,[z])x() is a finite field of size p°&("(*)) with some
element & of order p&("(2)) _ 1 generating the multiplicative group (Zp[m]);(w). If p=2,
then % + 2? + 1 is irreducible, and for example every polynomial in (Zs[z])43s 42,1 can be
represented by a string of 35 bits. Multiplication within the field of a polynomial in ¢ by ¢
corresponds to a leftshift followed by replacing any £%° term by ¢2 + 1, i.e. adding mod 2
the lead bit with the new bits in positions 0 and 2. Since ¢ is primitive, all 23° — 1 possible
nonzero sequences are generated before repetition occurs, and so taking the lead bit at each
step as a stream of random numbers yields quite good results assuming the sample size is
much smaller than 23% bits.

This random number generator alone will not suffice for choosing which basic move to use

25



at each step of a Markov chain run since more than single bits are required to choose from
as many as 51 basis elements and Knuth warns against concatenating bits to generate larger
random numbers, so a C random number generator is used instead. It is not so important
that this be an excellent random number generator as long as there is a reasonable chance of
choosing each possible basic move. It is much more important that the decision of whether
to take a move or its negation be very random, and so for this we use the random number

generator described above and found in [9].

3.3 Computing Sample Size

Suppose a random sample is taken from a set A to approximate what fraction lies in a subset
B. If ||7|| = p, then the binomial distribution measures the distribution of approximations
to p since the likelihood that exactly k out of n things chosen in a sample will lie in B is
clearly (:) p*(1 — p)"~F. According to [12], the normal distribution may reasonably be used
to approximate the binomial distribution for np > 5 and n(1 — p) > 5, and this is easily
satisfied in studying tables with row, column and main diagonal sums 7 by choosing n large
enough since p and 1 — p certainly never need to be smaller than %

Let Z be a new random variable of normal probability distribution with mean 0 and
variance 1, i.e. N(0,1). Multiply this by the expected variance o for the binomial distribution

to achieve a nomal distribution approximation to the variance of a binomial random variable

X Z .
X from its mean p. Note that — ~ p+ 72, Taking logs after factoring out a p on the right
n n

log (%(—) ~ log(p) + log (1 + % (C—TTTZ)) .

Since log(1 + €) is very close to € for small ¢, approximate log (%) — log(p) by 5 (—)

side yields

Hence,

P (1 —e< XT/n <1+ e) = P(log(1 —¢€) < log(X/n) —log(p) < log(1 + ¢))

~ P(—e <log(X/n) —log(p) < ¢€)

1 Z
~ P(—G(—(U—)<6>
p\n
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= P(—M<Z<(pn)e>.

g g

(pn)e
g
acceptable range with probability 0.9944. Choose either a sample size n to be used and solve

We require

be 3 because then a chart in [12] analyzing N(0, 1) claims Z will lie in the

for €, a bound on the expected error range, or choose an € to see what sample size that degree
of assured accuracy will require. Recall that for the binomial distribution o = 4/ np(1 — p),

so the equations to be solved are

n=070) 4 —,/20=p)

pe? pn
For example, when we later use samples of size 1000 to approximate p which is actually
0.6, note that € = 0.077, so there is a very high probability of not deviating from 0.6 by
more than 0.077 if the Markov chain runs long enough for the sample collected to be from

very nearly the uniform distribution.In our Markov chain run, the deviance was only 0.013.

3.4 Deciding How Many Steps are Needed to Generate Each Sam-
ple Element

Diaconis and Saloffe-Coste very recently showed in [7] that Markov chain runs on the kernel
of totally unimodular matrices converge to a stationary distribution at a rate proportional

to the square of the diameter of the underlying connectivity graph.

Definition 3.4.1 A matriz is totally unimodular if the entries are all 0 or +1 and if the
rows can be partitioned into two subsets Ry and R, such that the sum of the rows in R,

subtracted from the sum of the rows in R, is a row with entries all either 0 or +1.

Note that contingency tables fit this model since they form the kernel of a matrix of
constraints with rows which may be partitioned into two groups, those representing row
constraints and those representing column constraints, and each column of this constraint
matrix has a single 1 in each of the two groups since exactly one row constraint and one

column constraint involves each table entry. To see this, note for example that the matrix
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of constraints for 3 x 3 tables is

[ R =R = R
S = O O O
S = O = OO O

S = O O =OO
= O O O = O
[ e = T
_o O = O O

0
1
0
1
0
0

[madi =R e N e BN an B

where this is applied to a vector (z11,212,...,%33).

L1kew1se the problem of maglc squares also ﬁts this category since if one of the additional

‘constraints is placed in one set of rows and the other constramt in the other collectlon of

rows, the difference of the two sets will be the dlfference of these two rows each vrlth entries

of only 0 or 1, and so the new differences have absolute value at most 1.

Example 3.4.2 The constraint matriz for 3 x 3 magic squares is

111000000
000111000
000000O0T1T11
100100100
0100100710]
001001001
100010001
001010100

Hence, it would suffice to bound the diameter of the underlying graph for magic squares,
except that the basic moves chosen for Markov chains run in this paper are not exactly
the same as those very recently found and used for totally unimodular matrices in [7].
Nevertheless, it seems likely that the square of the diameter would be a reasonable bound

for Markov chain convergence for the Grébner basis moves too.

Theorem 3.4.3 The diameter of the space of n X n magic squares with sums r is at most

2r((n—1)2—(n—2)).
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PROOF. Any two magic squares with the same row, column and main diagonal sums differ
by an element of an ideal I where I is the kernel of the map sending tables of integers
to monomial differences in k[yi,...,y2,1] With vy, ..., y2n 1 representing the 2n + 1 table
constraints. In particular, if

ai1q Q12 ... O1n

’

(7% an,2 e Opn

’ ’

can be written as a difference of matrices with nonnegative entries a;f ; and a; ; respectively,

+ + - -
. . a Qn.n o Qnn .
then the map sends the matrix in o to z,7" -+ zai™ — z,7' -+ zny". Hence, reducing a
monomial in kfy, ... , Ym) by elements of a Grobner basis for I corresponds to starting with

a legal table and applying basic moves to it. It suffices then to show any two monomials
differing by an element of I may both be reduced to the same unique remainder in r(n —
1)2 — r(n — 2) steps.

Note that at each step, we start with a monomial to be reduced, and since the Grébner
basis constructed consists only of differences of monomials, each reduction of a monomial
yields a new monomial in which the highest order variable that needed to be reduced now
has smaller exponent. In choosing the Grébner basis, we ordered the variables z;, j, < , Ja
if 43 < iy, or i1 = 45 and j; < jo. Each of (n — 1)? variables needs to be reduced in turn as
these determine the other variable values, and the diameter is bounded by the sum of the
amounts by which these variable are reduced. The (n — 1)? positions to be reduced start
with values no larger than r, and the sum of the end values is at least r(n — 2) since the last
row and column which include variables not to be reduced have sum r. This means the sum

of the magnitudes of all the reductions is at most 7(n — 1) — r(n — 2), but since two tables

must be reduced to the same remainder, the diameter is at most twice this. a

3.5 Simulating Markov Chains

A C program corresponding to the following pseudocode chooses from a set of basic moves to
generate random tables, and approximates what fraction of these have a certain value in the
first position. The same program together with the maximum subset of the Grobner basis

involving variables z; ;,...,Zn, will generate tables with fixed entries either z 4, ..., Tij—1
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forj#lora,,... , Ziy1,; otherwise. This new basis is used for approximating what fraction
of the tables have a specific value in position z;,; once earlier positions are fixed. Following

is the main loop of the random walk program.

while (walkcount < TOTALSTEPS)
{

while (needtable)
{
needtable := FALSE /* assume at start new table will be legal */
coinflip := getrand() /* random number generator taken from [9] */
i := Irand48() mod BASISSIZE /* choose random basis element */
for count = 0 to TABLESIZE - 1
{
if (coinflip = HEAD)
newtable[count|:=table[count]+basisi] [count] /* do move */
else newtable[count]:=table[count]-basisi] [count] /* undo move */
if (newtable[count] < 0)
needtable := TRUE /* if negative entry then new table invalid */
}
walkcount := walkcount + 1 /*Increment number of tables visited. */
if ((walkcount mod RANSTEP = 0) and (needtable = TRUE))
if table[TESTPOSITION] = TESTVALUE
incount:=incount + 1 /* test whether table lies in subset */
else outcount:=outcount + 1 /* while sitting idle one step */
b
for count = 0 to TABLESIZE - 1
table[count]:=newtable[count]
if (walkcount mod RANSTEP = 0)
if table TESTPOSITION]| = TESTVALUE /* test whether table lies in subset */
incount:=incount + 1 /* after moving to new position */

else outcount:=outcount + 1
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In choosing which subset of the space of remaining tables to measure in the 4 x 4 case

with sums 5, we fix more and more entries to values in the matrix

[
N e
R = =
e

since these seem likely to occupy nearly as large a fraction of the space as possible and
approximations of larger subsets tend to be more accurate.

Hence, we approximate first what fraction of tables with sums 5 have a 2 in position T1,1,
and then what fraction of these also have a 1 in position z12 and so on. In the case with
sums 20, the table of all 5’s serves as a good reference table from which to choose subsets

since 1t is in some sense near the middle of the space of legal tables.

3.6 Numerical Results

We test the quality of Markov chain approximations in which we use the square of the
diameter bound given in 3.4 or some multiple of it as the number of steps to take before
assuming one is in any position with equal probability. Hence, if this bound is s, then once
every s steps of the Markov chain we choose an element for a random sample.<=____

We begin with an example with know exact ratio. Simple calculation shows that the
number of 3 x 3 tables with row, column and main diagonal sums 6 is 13 and that 5 of these
have a 2 in the upper left corner, so % = 0.38461 is the exact ratio of tables with a 2 in the
upper left corner to all magic squares of sums 5.

The following table shows results of a random walk in which an item was chosen for the

sample once every 1300 steps.
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Tables with z;; = 2 | Sample Size | Fraction | Deviance | Allowable Deviance
197 500 0.3940 0.0094 0.1697
398 1000 0.3980 0.0134 0.1200
1929 5000 0.3858 0.0012 0.0537
3865 10000 0.3865 0.0019 0.0379

The choice of 1300 steps is made because the diameter of the underlying graph is bounded

above by 2r((n — 1)2 — (n — 2)) = 36 ~ v/1300. as r in this case is 6 and d is 4.

The next table shows results of a random walk in which an item was chosen for the sam-

ple once every 5200 steps since there is an unknown constant involved in the growth rate, so

we try four times the square of the diameter steps between sample elements.

Tables with z;; = 2 | Sample Size | Fraction | Deviance | Allowable Deviance
188 500 0.3760 | 0.0086 0.1697
382 1000 0.3820 | 0.0026 0.1200
1946 5000 0.3892 | 0.0046 0.0537
3837 10000 0.3837 | 0.0009 0.0379

Now we test more thoroughly the affect of changing number of steps in another simple
case. The next table shows results of a random walk in which an item was chosen for the
sample once every 325 steps. The diameter bound is 18, so 325 is chosen as approximately

the square of the diameter and used in the next run. The ratio being approximated in this

case is actually 0.6.
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Tables with z; ; = 2 | Sample Size | Fraction | Deviance | Allowable Deviance
155 250 0.6200 0.0200 0.1550
305 500 0.6100 0.0100 0.1096
616 1000 0.6160 0.0160 0.0775
3033 5000 0.6066 0.0066 0.0347
6043 10000 0.6043 | 0.0043 0.0245
15102 25000 0.6041 0.0041 0.0155

Trying a short Markov chain run, 50 steps per sample item, results are much better than

expected.
Tables with z;; = 2 | Sample Size | Fraction | Deviance | Allowable Deviance
149 250 0.5960 0.0040 0.1550
305 500 0.5980 0.0020 0.1096
595 1000 0.5950 0.0050 0.0775
3033 5000 0.6014 0.0014 0.0347
6043 10000 0.5994 0.0006 0.0245
15102 25000 0.5998 0.0002 0.0155

Using 1800 steps per sample item yields good approximations as well though surprisingly

not as good as with 50 steps between sample items.

Tables with z;; = 2 | Sample Size | Fraction | Deviance | Allowable Deviance
138 250 0.5520 0.0480 0.1550
292 500 0.5840 0.0160 0.1096
606 1000 0.6060 0.0060 0.0775
2966 5000 0.5932 0.0068 0.0347
6025 10000 0.6025 0.0025 0.0245
15026 25000 0.6010 0.0010 0.0155
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Next we approximate in several stages to estimate the number of 4 x 4 tables with sums
5. Running 5000 steps between sample elements since the diameter bound is 70, we generate
samples of size 4000 at each stage with the following results. Note that in this example the
individual, actual values of p are unknown, so we use the estimates obtained for p to roughly

approximate the allowable deviance.

Position Tested | Value | Tables with Value | Fraction | Allowable Deviance
Ty, 2 770 0.1925 | 0.0971
Tip 1 1382 0.3455 0.0653
T13 1 1576 0.3940 | 0.0588
T 1 1533 0.3833 | 0.0602
To.9 1 1785 0.4463 | 0.0528
T23 1 1187 0.2968 | 0.0730

Since there are 3 tables satisfying all these conditions, multiplication of ratios gives an
overall approximation of 2256 tables. A simple counting program reveals that the exact
number of tables is 1904, so the ratio of this approximation to the actual value is 1.185. This
is clearly better than the combined allowable deviances necessitate for high certainty.

Trying the same example, but with only 2500 steps per element of sample generated

yields the following approximate ratios.

Position Tested | Value | Tables with Value | Fraction
T11 2 767 0.1918
T 1 1356 0.3390
T13 1 1605 0.4013
Ta, 1 1 1503 0.3758
o 1 1827 0.4568
Tog 1 1152 0.2880

The corresponding estimate of 2327 tables is 1.222 times the actual number.

Again using 2500 steps between sample items, but with a much larger sample of size
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40,000, the results are somewhat better.

Position Tested | Value | Tables with Value | Fraction
T11 2 7943 0.1986
T12 1 13616 0.3404
T13 1 15428 0.3857
Ta1 1 15220 0.3805
T2 1 18210 0.4553
T23 1 11991 0.2998

The estimate is 2215 tables which gives an improved ratio of 1.164.
In approximating the number of tables with sums 20 using a sample of size 1000 and
taking 80,000 steps to generate each element of random sample as the diameter bound in

this case is 280, the following estimates were obtained.

Position Tested | Value | Tables with Value | Fraction | Allowable Deviance
211 5 82 0.082 0.318
1o 5 102 0.102 | 0.282
T3 5 105 0.105 0.277
T2 5 97 0.097 0.290
T3 2 5 142 0.142 0.234
To3 5 132 0.132 0.244

Since there are 121 tables in the subset with all the above values, this gives an approx-

imation of 75 million magic squares with sums all equal to 20. Eric Rains conjectures the

existence of a piecewise polynomial counting the number of magic sqﬁ;fes whichif correct
would imply there are actually only about 5 million such magic squares and so the approxi-
mation is not very good. He tested this conjecture for —12 < 0 < 8 and so overdetermines

the coeflicients making the conjecture seem quite plausible.
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Conjecture 3.6.1 The number of 4 x 4 magic squares is

150 , T even,

(r+1)(r+2)(r+3)(22£6r+13)(r2+2r+5)’ r odd.

fr) =

{ (r4+2)3(r*+8r3+29r2 +52r4+-60)

Forr >0, (—1)"f(—r) equals the number of such tables with only nonzero entries.

The maximum allowable deviance estimate suggests a random sampling should yield
approximations no more than 4 times the actual value for this size sample, and that would
allow estimates of at most 20 million. Some error may arise when we use the sample fractions
as approximations to p values in computing this allowable deviance, where perhaps these
estimates do not yield exactly e. Nevertheless, this estimate demonstrates that more work
needs to be done in understanding this, that perhaps 80,000 steps is not enough to be in
a random position in the space of tables, or maybe a better random number generator is
needed.

For reference, the actual number of magic squares with sums up to 10 are listed in the

next table. These were computed by a simple C program without any special optimization.

01,2 |3 4 ) 6 7 8 9 10
118148200 |675| 1904 | 4736 | 10,608 | 21,925 | 42,328 | 77,328

None of the included approximations ran for more than a few hours though perhaps the last
example suggests obtaining good approximations when row and column sums are greater
would be slow. There are, however, techniques for increasing the rate at which random

walks converge such as scaling steps by larger constants, and this should help a great deal

in larger examples.
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4 An Approach to Obtaining Exact Answers for Test-

ing Accuracy of Approximations

In section 4.1 we obtain a formula for counting 3 x 3 magic squares with sums r which allows
us to measure the accuracy of simple approximations. Diaconis suggested also trying to
generalize to magic squares a result of Stanley that the number of n xn magical squares of row
and column sums r is a polynomial H,, in r of degree (n —1)? such that H,(r) = H,(~n—r).
The intent was to compute exact answers in small cases to determine the coefficients of
the polynomial for a particular n and to use this to enumerate tables with larger sums.
Restricting attention to magic squares eases the problem of exact counting and consequently
gauging accuracy though approximations should work comparably on more general tables
with extra constraints. Diaconis suggested perhaps this theorem would generalize to a result
about magical squares with additional constraints 37 , Qi; = D.i-180in—it1 = T, but the
key lemma of Stanley’s proof is not true for magic squares. Section 4.2 surveys this proof
explaining where it fails for magic squares. The theorem itself may actually generalize though
not by the same argument.

Stanley views the space of tables with equal row and column sums as the intersection
of finitely many half spaces comprising what is known as a convex polyhedral cone, and he
uses the theory of linear homogeneous diophantine equations to count the lattice points in
its interior. This theory is developed in Stanley’s book, Enumerative Combinatorics, and we

present much of it in section 4.2.

4.1 Enumerating 3 x 3 Magic Squares

Lemma 4.1.1 If a 3 x 3 magic square has row, column and main diagonal sums s, then s

15 a multiple of 3.

PRroOF. Denote the center entry of such a magic square by ¢ and each sum by s. The sum
of the two diagonals and the middle row is 3s, but subtracting the three copies of the center
entry from this sum yields the sum of the left and right columns, so 3s — 3¢ = 2s which

implies s = 3c. Since c is an integer, s is a multiple of 3. O
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Proposition 4.1.2 There are r?+(r+1)* magic squares with row, column and main diagonal

- 7
) - g

sums 31 et _\g} . R

PROOF. We express the number of 3 x 3 magic squares with sums 3r in terms of the number
of 3 x 3 magic squares with sums 3(r — 1) and use induction. First note that there is one
table of sum 3-0 and 1 = 0% 4-1%. Assume there are (r — 1)? 4 2 tables with sums 3(r — 1).
Obtain a bijection between the tables of sums 3(r — 1) with nonnegative entries and the
tables of sums 3r with strictly positive entries by simply adding the magic square of all 1’s

to each table of sums 3(r — 1).

Next we show that there are 4r tables of sum 3r with some 0 entries. Note that the only

legal basic moves are

0 + - -+ 0

- 0 + and + 0 - |,

+ — 0 0 - +
and these connect the space of legal tables. This can be verified by observation or using
Macaulay. Each move involves a sum of these two types of basic moves or their negations.

Let m; and my denote the number of respective basic moves of each type taken in moving

from
roror
roror
roror
to another table. To make some entry O requires |m;| + |my| = r as this forces entry

12, g1, a3 Or asp to be 0. Since there are 4r solutions to |m;| + |mg| = = in integers, we
obtain 4r legal tables of sums 3r with some 0 entries. Since (7 —1)2 472+ 4r = r2 + (r +1)?2,

the induction is complete. O
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4.2 Stanley’s Theorem on Expressing the Number of Magical Squares

as a Polynomial

First we present the key lemma that every magical square may be expressed as a sum
of permutation matrices and show examples where both this and the weaker result Stanley
requires fail when diagonal constraints are introduced and magic squares are studied. Hence,
the picture is substantially more complicated by diagonal constraints. Stanley’s proof found
in [16] for magical squares is then divided into two sections, the first of which shows the
number of n x n magical squares with row and column sums r is a polynomial in r and the
second of which relates H,(r) to H,(—n — r) making it easier to obtain the polynomial by

reducing the number of places it needs to be evaluated to be determined.

4.2.1 An Underlying Lemma which does not Generalize to Magic Squares

The n x n magical squares, also known as integer stochastic matrices, are solutions of the set
of equations >3, ajx = Yf_; ax; for 1 < 4,5 < n. These equations specify that every row
sum equals every column sum. From this, we use n? variables of the form z;; to represent

our n” positions and denote the magic square

ozm ag’l e an’l

Qp Q2p .. Qpp
by 27'275° ... 2% which is sometimes written simply as z®. Let E be the space of all
magic squares, and for a = (1,1, 012, ... Anp) let E(z) denote 3 cp w‘f,ll’le’gz T

Lemma 4.2.1 The coefficient of A" in E(A,...,\,1,...,1) counts the number of magical

—_——
n

squares of sums .

PROOF. Substituting A for zy,...,%1,, and for ¢ > 1 substituting 1 for z;;, then each
magic square with a11 + ... + a1, = 7, i.e. each magic square with sums r, contributes one

copy of A" to the sum. Hence the coeflicient of A" in E(}A,...,A,1,...,1) is the number of
————

n

magical squares with sums r. a
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This allows us to first study E(z) and then gain information about specific coefficients

of E(A,...,\,1,...,1) to count the magical squares with sums r.
~——

To st7111dy E(z), we discuss a more general theory of solutions of systems of equations
of the form Y-, a;a; = 0 for fixed a; where in our case we have n? equations for the n?
choices of 1 < 4,5 < n such that ¢ _; ap; — 37, a;; = 0. We obtain a solution region in n?
dimensional space with coordinates representing our n? table entries. This region includes
the origin and any linear combination of solutions since these are still magical squares, but
since all coordinates must be nonnegative, the solution region does not include any lines and
hence comprises what is known as a pointed, convex polyhedral cone. The lattice points
of this region correspond to the tables of nonnegative integers, so our problem is one of
counting lattice points.

Stanley looks for a set of vectors whose convex hull is the space of all tables satisfying
the constraints. A vector a belongs to the set of completely fundamental vectors CF(E)
for a fixed convex polyhedral cone E if na = 8+ ' for 3,4 € E implies § and 3 are
multiples of «. In the case of magical squares, he proves that the permutation matrices
comprise CF(E). Unfortunately, the completely fundamental elements of our space with
added diagonal constraints are not so simply described; not every magic square with main
diagonal sums equal to its row and column sums has some multiple of itself which can be

decomposed into a sum of permutation matrices with a single 1 on each diagonal. For

example,

o - = O
N OO O

[ R = T
O M

o O

20
11
and 0 0
0 2
00

w o o o O

0
0
2
1
0 0

are completely fundamental elements once diagonal constraints are introduced.
No multiple of these can be broken into a sum of other elements of E, so they are in
CF(E). Nevertheless, we survey Stanley’s proof for magical squares beginning by proving

that for magical squares, CF(E) consists of permutations. We first need a few tools from
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graph theory.

Definition 4.2.2 A bipartite graph is a collection of edges E and vertices V which can be
partitioned into Vi and Va such that if v;,v; € Vi or v;,v; € Vs, then (v;, v;) € E.

Definition 4.2.3 A perfect matching of a bipartite graph is a collection of edges such that

each vertex in the graph is adjacent to exactly one edge in the collection.

A perfect matching is a bijective correspondence between vertices of V; and V, where there
1s an edge between any vertex of V; and its counterpart in V,. We will use the following well

known result of graph theory about perfect matchings which is known as Hall’s Theorem.

Theorem 4.2.4 Any bipartite graph in which every A C Vi is connected to at least |A|

vertices m Va has a perfect matching.

PRrROOF. May be found in [3] a

Theorem 4.2.5 The set of completely fundamental elements are the permutation matrices.

PROOF. First construct a bipartite graph from a magical square by creating a vertex in V; for
each row and a vertex in V; for each column. If entry ¢, j of the magical square has value q; ;,
then place a; ; edges between v; € V; and v; € V3. The result is a graph where every vertex
has degree equal to the sum of every row and every column, and |V;| = |V;|. This graph
satisfies the condition of Hall’s Theorem, so we may remove a perfect matching, i.e. subtract
a permutation from the magical square and are left with another graph satisfying Hall’s
condition. Hence, we may inductively decompose the magical square into permutations.

This implies only permutations may be in CF(E), but clearly all permutations are in
CF(E). O
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4.2.2 Obtaining a Polynomial H,(r)

We will use the resulting fact that for = a completely fundamental element, i.e. a permu-

tation matrix, 1 — 2™ = 1 — X\ when we set z1; to A and z;; to 1 for ¢ > 1 in looking at

E(A, ..., 1,..., 1) since only one element of each column of 7 is nonzero so [] a:f‘J’ Gy ddyd) =

T

A
Stanley’s approach is to triangulate the solution region, prove results about pieces of
the triangulation which are simpler to study and use these to obtain general results. This

relation of regions will depend on M&bius function theory.
Definition 4.2.6 An n-simplex is the convez hull of n points in space.

Lemma 4.2.7 A pointed convex polyhedral cone can be triangulated in such a way that the

edges of the triangulation are the edges of the cone.

ProOF. If the dimension is 1 or 2, the cone cannot have more edges than the dimension,
so the region is simplicial. Assume any cone can be triangulated with k extreme rays. If we
add another ray, we can triangulate the new cone by taking the convex hull of each of the
original simplices with our new ray to form new nonintersecting simplices which cover the
cone, hence a new triangulation, and so by induction we can triangulate any cone with the

edges of the cone equal to the edges of the triangulation. O

Let E, be the region ENo for o € T

Proposition 4.2.8 IfT is a triangulation of E, then CF(E) = U,crCF(E,).

PROOF. Any element a € E on an extreme ray must be a multiple of some element of CF(E)
since otherwise some multiple of it could be written as a; + as for ay,as € CF(E), but
either a3 or cvy would not lie in our region unless both were along the same ray as o. Hence,
{8 € E|3 lies on an extreme ray, but 8 # ng for any 8’ € CF(E) and n > 1} C CF(E).
The extreme rays of I" are exactly the extreme rays of E according to lemma 4.2.7, so for

ocecl, CF(E,) C {8 € E|f lies on an extreme ray, but 8 # ng for any 8 € CF(E) and
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n>1} C CF(E) and so CF(E,) C CF(E) which means the union is contained in CF(E).

The reverse inclusion follows from 4.2.7. g

We next develop background about partially ordered sets, the Mobius function and gen-

erating functions to prove E(A,...,A,1,...1) is a rational function of degree < 0 with
——

denominator (1 — A)* for some integer t.

Definition 4.2.9 A poset, or partially ordered set, is a set X together with a relation <
satisfying the following properties.

1. Forre X, z < z.

2. Forz,yc X, ife <yandy <z, thenx = y.

3. Forzy,ze€ X, ife <yandy < z, thenz < z.

As the term partially ordered set implies, not all elements are comparable, but the pre-
ceding properties give us the notion of chains of terms which can be compared. A poset
may be pictured as a directed graph with no cycles in which a vertex is smaller than all its

ancestors and larger than its descendents.
Definition 4.2.10 A chain is a totally ordered subset of a poset.

We will be concerned with posets of simplices. One simplex is contained in another if the
set of vertices specifying the former is a subset of the vertices specifying the latter. Clearly,
most simplices are not comparable. Conversely, from a poset we may construct a simplicial
complex by creating a vertex for each element of the poset and an i-face for every i-chain so

that the dimension of a face equals the length of the chain defining it.

Definition 4.2.11 The Mébius function u for a poset is defined by the following rules.
1 p(z,z) =1
2. 1(2,Y) = — Loy p(, 2) for z < y.

Example 4.2.12 If z is the point vy and y is the tetrahedron vy, v1, v, v, then u(z,y) =

1—number of edges including vo+number of triangles including vy, and this is —1 since

> keven (Z) — 2 kodd (Z) =(1-1"=0.

43



A property of the Mdbius function that we use next is the Mdbius inversion formula
proven in [16] which states that g(z) = 3,<, f(y) if and only if f(z) = Yu<e 9y, ).

Define E to be the subspace of E including only tables with strictly positive entries.
More generally, let E, be the region within E, which excludes the boundary, i.e. E, = {u e
E,:ugE forallT Co}.

We prove relations between generating functions for the regions E, E, E,, and E,,. Study-
ing £ and F together and then relating them to each other will later yield the formula
H,(—n —r) = £H,(r).

Lemma 4.2.13 The generating functions E(z), E(z), E,(z) and E,(z) satisfy the following

equations.

E(z) = — Z u(o, i)Ea(x)

ocl’

E(z) = 3 F, ().

ccl

PROOF. By definition, E(z) = Y ,cgpz® and for ' a triangulation of E with ¢ € T,
Ey(z) = Yacp, % Es(z) = ¥.<, E-(z), so by Mobius inversion

Ej(z) =) E,(z)u(o, 1).

o<i
Since Ej is the subset of E in no smaller simplex, and this is empty, E;(z) = 0, so
Y o<i Bo(z)p(0, 1) = 0. This implies B (z)u(1,1) + ¥, .1 E-(z)p(o, 1) = 0, so

= ulo, D) E, () = p(1,1)Ei(z) = By(z) = E(z)

o<1
as desired. Also note that E,(z) N E (z) = 0 for 0,7 € T" which means E = UyerE,, s0
E(z) = ¥, e Eo (). O
In examining regions of a lattice in proposition 4.2.14 and theorem 4.2.15, let {c;} be a set
of generators for the region such that v € E implies there exists n > 0 and aq, . .., a; € Z such
that v = aja; + ... + a;u. Let Rg be the subregion of remainders, i.e. linear combinations

of the o; with coefficients all less than 1 whose sum is some v € E. Let Rg denote the

related region with positive coefficients no larger than 1.

44



Proposition 4.2.14 The generating functions E(z) = ¥ cpz® and E(z) = ¥ 52> can
be expressed as
¢
E(z) = ( Yoz ) [1a-="
BERE i=1
and

o+

E(z) = (Z )Hl—m

BERE

PRrROOF. By the division algorithm, every v € F can be written uniquely as 8 + 3, a;;
with a; € ZZ for all i and 8 € R is the remainder term. Likewise any v € E can be written

uniquely as 3 + Zz 1 a;a; for B € Rg and each a; € Z. This implies

E(z) = ( Z xﬂ) H(l — g)7!

BERE =1

since each 7 € E can be written uniquely as a monomial in

( > xﬁ) f[(l + %+ g%+ L)

BERE i=1
and likewise,
t
BE@) = ( > ) ] - 2=
BERE i=1
O

These expressions for E(z) and E(z) are used to prove E(A,...,\,1,...,1)and E(},..., ),

——— ——
n n

1,...,1) have denominator a power of 1 — .

Theorem 4.2.15 Let a4,...,a, be any collection of integers such that r € IN implies the

number of solutions (a1, s, ...,am) € E to the equation ajay +. . .+ ana,, = r is finite. Let

g(r) be the number of solutions and let G(X) = 3,50 g(r)A". For E nonempty, the degree of

the generating function G is negative.

PROOF. Since E(z) is expressible as a sum of terms F,(z) by lemma 4.2.13, it suffices to

show that the degree of E,(A\%,..., A*") is negative for ¢ € I". By proposition 4.2.14,

Eo(z) = ( > wﬂ) _1_11(1 — )7,

BE€RE,
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so this implies

E,(A%,... o) = ( T (8)E (ABmya )fl _ paes)-

BERg,

Since each § may be written as Y¢_, Bia; for some §; < 1 with S Biai < Y aua;, the
degree of each term is negative. n
Lemma 4.2.16 If (ay,...

,0n) =1, then 1 — 22 is irreducible.

PROOF. If a € k for k a field and @ not a pth power in k, then by a theorem in [10], z™ — a

i1s irreduible in k[x]. Let k be k[zi,...,Z, 1, i ey %] then 1 — z™ can be rewritten as

(W — :cfj”) ozt but 1—% is not a pth power, so ;,1—1a—1— — x5 does
o . n

not factor over k[zy,...,z, 1, zIT’ N 1 -] which implies 1—2z™ does not factor in the smaller

ring k[z1,...,2, 1], s0 1 — z7 is irreducible. a

Theorem 4.2.17 The generating functions E(z) and E(x) are rational functions with de-

nominator [loccpg) (1 — %) when written in lowest terms.

PROOF. Theorem 4.2.13 gives an expression for E(z) as — ¥y (0, 1)E,(z) and for E(z)

s — Y ,cr Eo(z), so it suffices to note by 4.2.14 that E,(z) and E,(z) have denominators
[laccr(s,)(1 — 2*) and [lacor,)(1 — %) respectively for cach o and to observe by 4.2.8
that U,erCF(E,) = CF(E) for o € T, so the denominators D(z) for the expression for E(z)
and D(z) for E(z) will be of the form aecrr) (1 — 2*) as desired. If the expressions for
E(z) and E(z) with denominators D(z) and D(z) are not in lowest terms, then some prime
P(z) divides D(z), and in particular divides some term 1 — z®. Since 1 — z° is irreducible
by lemma 4.2.16, P(z) = 1 — z*, so E(z) may be reduced to N'(z)/ [1gta(1 — P) for some
N'(z), but the left sum includes ™ for every o while the right side may have only finitely
many such terms since a is in CF(E), so multiples of it are not expressible in terms of other
elements of CF(E); only finitely many 2™ may be found on the right side as increasing na
require greater and greater contribution from terms of the finite polynomial N’ (z) to obtain
points further and further from the convex hull of CF(E) — {a}. This yields a contradiction,

and similar argument shows E(z) is as desired. 0
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Recall now that C'F(E) consists of permutations, so E(},..., A, 1,...,1) has denominator
~———

n

some power of 1 — A.

Hence theorem 4.2.15 shows that the degree of E(A,..., A, 1,...,1) is less than 0. Theo-
N ——

rem 4.2.17 implies that E(z) is rational with denominator [Toccp(g)(1—2*) and so E(A*, ...,
A%r) has denominator (1 — \)? for some ¢ since T"|(A,..A1,..,1) = A for 7 a permutation. These

facts together with 4.2.19 will imply that H,(r) is a polynomial. First we show the following
from which 4.2.19 quickly follows.

Theorem 4.2.18 Let a;,..., a4 be complex numbers. The following conditions on generat-
ing functions are equivalent.

1. 3,50 f(n)z"™ = g—g% for Q(z) = 1+ a1z + ... + agz? with P(z) of degree no more than
d—1.

2. Foralln >0, f(n+d)+aif(n+d—1)+...+ agf(n) =0.

3. For alln >0, f(n) =X, Pi(n)y?, for ﬁ(l —yz) =1+ az+ ... +az?, v # v, for
1 # 7 and Pi(n) a polynomial of degree lessit:l;an d;.

4. Taso f(n)z" = 8 Gi(z)(1 — viz)~% for some Gi(z) of degree less than d;, where
1+az+ ... +agzd =15 (1 — yiz)% for distinct ;.

PROOF. We show that the four vector spaces consisting of functions with these four prop-
erties have the same dimension and then show inclusions to prove that the properties are
equivalent by showing that the vector spaces are the same. These vector spaces all have
dimension d since the first is determined by the d coefficients of P(z), the second by d
consecutive values of f and the last two vector spaces by the d coefficients of the set of
Pi(n).

If 3,50 f(n)2"™ = 587 then 32,54 f(n)Q(x)z™ = P(z), so equating coefficients of z"*¢

implies

f(Myag+ fn+ag1+...+ f(n+d)=0

as the degree of P(z) is less than n + d, so Vi C V,. By equality of dimensions, V; = V5. If

k
> fn)z" = ;Gi(w)(l — i),

n>0
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then the right sum may be written as

= Gi(@) M1 — )% i Gi(z) [Tzs(1 — vj2) %
i=1 Hf 1(1— vz x)d i=1 Q(x) ’
but for V4 we assume d; < degree of G;(z), so the numerator has degree less than d which
implies V, C Vj. This implies V; = V;. Now Z (1_6’(% is a sum of terms of the form
i=1 - N%T

T (—yz)™ (‘:”) which equals +z"" (d"+:_1). Replacing n + j by n implies

nonjfditn—1-3\  fdi+n—-1—7j
‘rfYt - 1:7171.
n—j d; — 1

n.on_ — di—1+n—j
29”1%](( d)»—(1 )>’

so the coefficient of 2™ is a polynomial in n of degree d; — 1, so Vi C V3 which means V; = V4.
Hence, Vi =V, = V3 = V. O

Corollary 4.2.19 If 3,5, f(n)z" = % for P a polynomial of degree < d, then f(n)

is a polynomial of degree at most d.

PROOF. If Q(z) = (1 — ), then condition 1 of theorem 4.2.18 is satisfied. This implies
condition 3 is also satisfied, so f(n) = 3.5 P,(n)y? where each P,(n) has degree at most d,

so f(n) is a polynomial of degree at most d. O
Theorem 4.2.20 The number of nxn magical squares is a polynomial in r of degree (n—1)2.

PROOF. Since E(z) is rational of negative degree with denominator some power of 1 — z,
and E(A*,... A%") has coefficients H,()\), H,(r) is a polynomial.

Now we show it has degree (n — 1)? by showing it grows with respect to r faster than any
smaller degree polynomial and slower than any larger degree polynomial. First note that
once the first n — 1 positions in each row and column are chosen, the constraints specify the
rest of the entries, so we have at most 7+ 1 choices of value in each of (n— 1)? table positions

for at most (r + 1)(»=1)* possible tables, a polynomial in r of degree (n —1)2. We need only
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fill in these (n — 1)? positions subject to the constraints that the row and column sums be
bounded above by 7 and the total of all (n — 1)? entries be at least (n — 2) - 7, so the entries
in the last row and column are not forced to be negative. If we choose each entry between

n—2 n

n—1)2
Ca and ”:1—1)77', then we find ((—;’"—177>( ) possible legal tables, and this grows faster

(n—

than any polynomial in r of degree less than (n — 1)2. a

4.2.3 Relating H,(r) to H,(—n — r) to Compute H,(r) More Easily

Finally, we relate E(X) to E(z) to show H,(r) = £H,(—n — r), but proving 4.2.26 will
require some algebraic topology, though it is not necessary to understand the proof to use

the result, so the argument is only sketched.

Definition 4.2.21 The Euler characteristic x(K) of a simplicial complex K of dimension
m is the alternating sum of the number of q-simplices, i.e. X7_o(—1)? dim(Cy(K, 7ZZ)) where

C, is the space of linear combinations of g-simplices of K with coefficients in ZZ.

For our purposes, dim(C,(K, 7)) which we denote by f, counts g-chains in the poset
P(K) corresponding to g-faces of the simplicial complex K. Treat @) as the unique (—1)-face,
so that f_; is to be interpreted as 1.

Definition 4.2.22 The reduced Euler characteristic X(K) equals 37" 1(=1)f,.

Note that ¥(K) = x(K) — 1 in general. Now let u5(0,1) be the Mébius function applied
to P with minimal and maximal elements 0 and 1 adjoined. Let A(P) be the simplicial
complex associated to P by sending g-chains to g-faces and for the next theorem let c¢; be

the number of i-chains including 0 and 1.

Theorem 4.2.23 u4(0,1) = X(A(P)).
ProOOF. The Mobius function can be defined as the inverse of the function ¢ where

C(z,y) =

0 otherwise

{1 forx <y
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so (( —1)(z,y) = 1if z < y and (¢ — 1)%(z,y) counts the number of g-chains. This ( is
described further in [16] Note that

0,1) = ¢3%(0,1)
= (1+(¢—1)7'0,1)
= 8(0,1) = (¢ — 1)(0,1) + ((p — 1*(0,1) — ...

pp(

= CO—Cl+CQ—...:|:Cm+2
= 0-fa+tfo—fit.. . Lfn
= X(A(P)).
a
By definition X¥(K) = ¥ _;(—1)? rank C, where C, is the group of possible linear

combinations of g-simplices, but this will imply ¥ (K) = g=—1(—1)¢rank fIq where fIq is the
qth reduced homology group of the simplicial complex. Homology is a measure of the degree
to which a sequence of maps § fails to be exact, i.e. the amount ker(d,) differs from im(dg41)-
Let &, be a map from Cyy; to Cy sending (py, ..., p,) to S8 o(=1)po, . .., Pic1, Pis1 .. - Dq);
note that d,..10, = 0. Denote ker(d,) by Z, and image(64+1) by Byi1, and then define H,
to be Z,/Bgy1. A simple and elegant proof that the reduced Euler characteristic is the
alternating sum of the dimensions of the H, may be found in [13)].

The advantage of this expression is that H is invariant under choice of triangulation as
is shown in [13]. In particular, reduced homology is preserved in moving to what is known

as a barycentric subdivision for a simplicial complex.

Definition 4.2.24 The barycentric subdivision of a simplicial complez K is a new simplicial
complex which adds an additional point for each simplex of the original complez; each new
verter is positioned at the average of the vertices of the simpler specifying it, and edges are

added connecting it to each vertez belonging to the boundary of its simplez.

From the poset associated to a simplicial complex, a new simplicial complex may be con-

structed in which each element of the poset becomes a vertex and each g-face corresponds to
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a g-chain. The result is clearly the barycentric subdivision of the original simplicial complex.
Computing u(z,y) for corollary 4.2.26 corresponds to finding the reduced Euler characteris-
tic of what is known as the link of F' where F is a maximal set {z1,...,%,,Z,¥,¥1,--.,Ys}

such that z; < ... <zand y < ... < y,.

Definition 4.2.25 The link of a simplex s is the union of all simplices in K which are

disjoint from s, but whose vertices together with those of s define simplices in K.

Corollary 4.2.26 follows directly from the fact that the reduced homology of link(F) is
simply that of either a ball or a sphere depending on whether F is in the boundary of K
or not; the reduced homology of a sphere or a ball may easily be computed using a Mayer-

Vietorus argument. Both this method and a discussion of the link may be found in [11].

Corollary 4.2.26 If I' is a triangulation and T' is the corresponding poset of inclusions

which 1s graded of rank d, then

(_1)dim(1‘)—dim(a') ZfO' <r<l1
wlo,7) =< (=1)&dm@+L  for =1 and o not in the boundary of T
0 for =1 and o in the boundary of T’

PROOF. Note that u(o,7) can be translated via the above discussion to the reduced Euler
characteristic of the link of a simplex in a simplicial complex, and this is an alternating
sum of reduced homology groups which in this case are equivalent to the reduced homology
groups of either a sphere or a ball depending whether ¢ is in the boundary of the complex or
not. An argument using a Mayer-Vietorus long exact sequence will show that the reduced
homology groups of a sphere are all 0 except in dimension m where the reduced homology

group is Zand the reduced homology groups of a ball are all 0, so the result follows. O
Lemma 4.2.27 E,(z) = (—1)4™E, (1)

Proor. Let d =dim(c). By 4.2.14,

e ()= (2 )1

BERE )

(1 -z )1

o1



but er, ¢ 7 = (—1)* L per, 7 since each 27# term corresponds to some 2%~ term, but
with —1 applied to each of the d coordinates. Hence, E, (%) = (—1)¢ (ZﬂeRE xa*ﬂ) E L (1—-
2 = (1) (Spemy 08) Toa(1 - 2% = (~1)9E, (z) = (1) )E, (a). o

Theorem 4.2.28 Ifd is the dimension of the region containing E, then E(z) = (—1)¢E (l)

T

PROOF. By 4.217, E (1) = — ©,cr u(0, 1)E, (1), but then 4.2.26 implies
1 . 1
ElZ)=_ -1 d—dzma+1Ea <__> ]
(2)=-Ze :
From this, 4.2.27 implies
-1 d—dima’E l _ -1 d—dimo -1 dimo E
> (-1) (=) = X (0 (—1)%m0) By (),
o&l z oel

SO

B (2) = D (DE (@) = (14 Y Bule).

I — il
oel ol

Lemma 4.2.13 then expresses (—1)? Y ,cr Eo(z) as (—1)?E(z) as desired. O

Corollary 4.2.29 The following are equivalent.
1 E(}) = (-1)%"E(z).
2.a€ Eifand onlyifa+v € E.

PROOF. By 4.2.28, E (%) = (~1%)E(z), so condition 1 implies (—1)4E(z) = (—1)4z" E(x)
which in turn yields E(z) = z7E(z). Hence, the coefficients of z* in E(z) correspond to
coefficients of 27 in E(z), so a € E if and only if &+ € E. To show condition 2 implies

condition 1, simply reverse all the implications. a

Proposition 4.2.30 If f satisfies apf(n+d) + asf(n+d—1) +... + agf(n) = 0 for all
n € 7L and for some compler set of a; then 3,5 f(—n)z"™ = —E (i)
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PROOF. Let Q(z) = ¢, oyz’, then note that Q(z) 27z f(—=n)z™ = 0 since the coefficient
of z" is f(—n)+ai1f(—n—1)+...+aqf(—n—d) which is 0. Since Q(z) Yo7z f(=n)z™ =0,
note that —Q(z) X,<o f(—n)z" = Q(z) ¥p50 f(—n)z"™ and hence observe

Q@E(;) = ~Q@ Y fn

z n>1

= =Q(z)>_ f(-n)z"

n<0

= Q(z) ) f(-n)z".

n>0

Cancelling Q(z) yields —F (l) = Y50 f(—n)z™ as desired. O

Since corollary 4.2.29 implies E(3) = (—1)A"E(A,..., A, 1,...,1) = (=1)4 3,50 Ha(r) X,
letting H,, = f and using proposition 4.2.30 yields

Yo Hy(=n—r)A" = 3 f(—n—r)x"

r>-n r>—n

= Xy

r>0

- ey

= (1S Ha ()N

r>0

= (1) Y H,(r —n)\
r>0

— (_1)d+1 Z Hn(’l")>\n+r.
r>—n

Equating coefficients shows that H,(—n —r) = (=1)#1H,(r) = (—1)%9HE(NH (7). For

example, Hy(r) = 7 + 1, and Hy(2) = 3 = —Hy(—4). Now H,(1) = ... = H,(n—1) =0
and H,(r) = H,(r —n), so H,(1 —n) = ... = Hy(n — (1 —n)) = 0, and this implies
H,(-1) = ... = H,(—(n — 1)) = 0 so this gives several initial values of H,(r). From

Stanley’s proof presented above we conclude that H,(r) is a polynomial in r of degree

exactly (n — 1)% such that H,(—n —r) = (=1)4" H,(r).
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5 Conclusion

Approximate counting of magic squares by Markov chains yields answers comparable to what
would be expected for a random sampling in small cases suggesting perhaps the square of
the diameter is a sufficient number of steps to take to very nearly approximate the uniform
distribution. However, a Markov chain run on tables with sums 20 gave an approximation
which was 15 times the exact count assuming magic squares may be counted by a piecewise
polynomial. If the sample were taken from the uniform distribution, the expected error
would be not much more than 4 times the exact answer, so quite possibly running a Markov
chain for 80,000 steps to generate each element of a random sample is not sufficient. The
number of steps needed likely grows at a rate proportional to the square of the diameter of
the underlying graph, and this is 80,000, but probably there is some constant factor involved
which is larger than 1.

The algorithm of Diaconis and Sturmfels for computing a Grébner basis was very easy
to use and sufficed for the case of 4 x 4 magic squares, but it would be interesting to try the
alternative algorithm of DiBiase and Urbanke to see if it actually handles larger cases well
and is more efficient. It also remains to be proven that the number of n x n magic squares
of sums r is a polynomial in r of degree (n — 1)2. This is probably true, though Stanley’s
proof for magical squares does not generalize to magic squares.

The assertion, that results about convergence rates for magic squares should be indicative
of behavior on more general tables, deserves more careful examination before being fully
accepted since the shapes of the spaces involved might be dramatically different. A more
thorough and careful analysis of when samples taken from Markov chains give comparable
approximations to those expected by uniform sampling might shed light on the constant
factors involved in the number of steps needed for a Markov chain to converge to nearly
the uniform distribution. It would be interesting to likewise study the behavior of Markov
chains using the basic moves very recently introduced in the work of Diaconis and Saloffe-
Coste, in which they show that some multiple of the square of the diameter suffices for
achieving very nearly the uniform distribution in Markov chain runs on the kernel of totally
unimodular matrices, a class of problems including contingency tables and magic squares.

Most importantly, more work needs to be done to determine whether good approximations
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are actually more efficient than exact counting for larger examples, perhaps using more

vigorous Markov chain moves.

A Macaulay Script

Macaulay may be obtained from math.harvard.edu by anonymous ftp. To output a Grébner
basis for the set of legal moves on 4 x 4 matrices with diagonal constraints, create a file such
as one containing the following list of commands, begin Macaulay by typing “Macaulay” and
then type filename >. The “monitor” command echoes results to the file 4d16.

ring R

25

d[1]d[2]r[1]-r[4]c[1]-c[3]x[1,1]-x[4,4]

1:93222233123313222

w

c[3]

setring R

ideal z
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r[4]d[1]-x[4,4]
std z y
putstd y
elim y n
monitor 4d16
putstd n

endmon

This creates a polynomial ring R in 25 variables d[1],d[2], r[1]-r[4],c[1]-c[3],x[1,1]-x[4,4].
The next line specifies weights for the variables chosen to make ideal elements homogeneous
polynomials, i.e. polynomials with each term of the same degree. 1:9 means the first nine
variables are assigned weight 1. Eventually, all variables up to c[3] will be eliminated, hence
its listing before setring R. There are 16 ideal generators given from which a standard basis,
ie. a Grobner basis, y is created. This file may easily be modified to other cases, but
this computation approaches the limits of Macaulay’s allowed memory. To obtain a partial
basis for computations which are too large, begin file with “set autocalc 1”7, followed by “set
autodegree x” for x the maximal degree polynomial to be found in any polynomial in the

partial basis.

B Grobner Basis

The following forms a Grébner basis for (z;; — r;c;ds, Tin—it1— TiCn—it1dy, T;j —15c; for j # i
and i + j # n+ 1).

L3,373,4%4,1T4,2 — X3,1232T4,3T44

L2,473,3L4,2 — T2,2234T4 3

T2,4T33L4,1 — T23L3,1T44

T2,4T31 — T21T34
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33%,4353,25133,3 - 552,2332,335%,4

L2 3L34T4,2 — 24732743
$2,3$3,3Ii2 - 1‘2,2333,2373,3
To3X31T42 — T21T32%4,3
L22T34T41 — T21732%4,4
T22%24T4,1T4,3 — T2,1L2,3T42T4,4
3?2,21'2,3373,1 - x%,1x3,2w3,3
T2,1L33T4,2 — T22731743
I2103,3T34T41 — 162,313%,1564,4
L21024T32L3,3 — T22L23T3173,4
T1,4T33T42 — T13%32L44
T1,4T24733%43 — T1,322,3%3,4%4.4
T1,4T22T43 — L12723T4.4
L1,4L22T3,4L42 — L12L2,4TL32T4,4
T1,4T22T33T41 — X1,102,3%3,2%4,4
T1,4T22T31 — X1,172,473,2
T1,4T21T33 — T1,1L2373,4
T1,3T42 — T1,2T4,3

T1,373,4T4,1 — T1,4T3,14,3
T13T24%41 — T1,4T21743
T1,3T24T32 — T12T23734
T1,3T22T4,1 — T1,122,374,2
T1,3T22%3,1 — T1,2021733
T1,322,173,3T4,1 — £1,1L2,3T3,174,3
T1,3%1,4T21T22 — £1,1L1,22,3T2,4
133,3%2,2333,2 - 33%,2302,3953,3
T1,0034T41 — T1,4T3,1T4,2
T1,2T33L41 — T1,1T3,2%4,3
T1,2%724T41 — T1,4T21T4,2

T1,2T24T33 — T13%22T34
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L1,222,3%33%42 — T1,3%22%32%43
L1,2T2,3L3,1 — T1,3%2,1T32
L1,2222%31%4,1 — L1,122,1T32T42
2

L1,271,4%3,3%4,3 — X7 373,2T4,4
L1,2%1,423,1%33 — £1,1T1,373,2T3 4
L1,1734%4,3 — 1,373,144
L1,1T3,4%a,2 — T1,2T31T44

2 2
L1,1L3 4T4,1 — L1423 1T4,4
L1,122,4Ta3 — T1,3721T44
Ty11024%42 — T1,2T21L44
L1,1T2,4T34%41 — T14L21T31T4 4

2 2
L1,1%2 4L4,1 — 21,473 124,4

2
L1175 4232 — T1,4T21T22T3 4

2
T1,122,3%4 9 — T1,2022T4,1%4,3
2 2

T1,1T1,4T4 3 — T13%4,174.4
L1,171,4T42%43 — T1,2T1,3T4,1T4.4

2 2
L1,1T1,4%y 5 — L] 9T41T44
b 2
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