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INTRODUCTION

In this paper we give upper bounds (Theorem 2.1 and Proposition 3.4) for the
Betti numbers of shellable simplicial complexes with a given number of vertices
and facets, and of the boundary complex of certain classes of simplicial polytopes.
For shellable simplicial complexes our bound is attained when these complexes are
(d—1)-trees, and for the class of polytopes which we are considering the given bound
is attained when the polytope is stacked, that is, when it admits a triangulation
which is a (d — 1)-tree.

Recall that a (d — 1)- dimensional shellable simplicial complex A is called a
(d — 1)-tree if in the shelling of A each facet intersects the previous facets in only
one subfacet. It follows at once that the h-vector of a (d — 1)-tree is of the form
(1,h,0,...,0).

The Betti numbers of stacked simplicial polytopes have first been computed by
Hibi and Terai [7]. In this paper we give a different proof of their result, see 3.3.
It has been shown by Terai [9] that for 3-polytopes with a given number of vertices
the boundary complex of a stacked polytope has the maximal Betti numbers. One
could hope that this is true in all dimensions. With the methods developed in this
paper we can only give an upper bound for the Betti numbers of a d-polytope, if
this polytope admits a proper triangulation, that is, a shellable triangulation with
no interior vertices.
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1. BASIC CONCEPTS

We first recall some basic definitions on simplicial complexes. The reader is re-
ferred to (2], [6] or [8] for further details.
A simplicial complex on a vertex set V = {vy,... ,v,} is a collection A of subsets

of V such that

(1) {vi} € A;

(2) if GCV with Fe Aand G C F, then G € A.
The elements of A are called the faces of A. The dimension of a face F of A, denoted
by dim F, is the number |F| — 1. Faces of dimension 0 are called vertices, those of
dimension 1 edges of A. The maximal faces under inclusion are called facets. The
dimension of A is defined to be

dimA = max{dim F: F € A}.

A simplicial complex is called pure if all facets have the same dimension.

Let A be a (d—1)-dimensional simplicial complex. We denote by f; the number of
i-dimensional faces of A, and set f_; = 1. The vector of integers (f_1, fo,... , fi-1)
is called the f-vector of A.

Given a collection Fy,..., F,, of subsets of a vertex set V = {vy,...,v,}, there
exists a unique smallest simplicial complex A = (F,...,F,) on the vertex set
Uiz, Fi containing all F; as faces. Indeed,

A={GCV:GCF, for some 1,...,m}.

We say that A is spanned by Fy,... , F,.
Recall that a (d — 1)-dimensional simplicial complex is called shellable, if A is
pure, and if there exists an order of the facets of A, say, Fi,..., Fy,, such that

(Fi,..., Fi) 0 (F)

is spanned by (d — 2)-simplices. For ¢ = 2,... ,m we denote by k; the number of the
(d — 2)-simplices spanning these intersections, and set k; = 0. We call (ki,... ,kn)
the k-vector of the shelling.

Definition 1.1. A (d — 1)-dimensional shellable simplicial complex A with shelling
Fy,... ,Fy is called a (d — 1)-tree, if k; = 1 for i = 2,... ,m.

Let K be a field, and A a simplicial complex on the vertex set V = {vy,...,v,}.
The Stanley-Reisner ring of A over K is the factor ring of the polynomial ring,

K[A] = Klzy,... ,z4]/Ia,
where I, is the ideal generated by all monomials

C TR o= H x; with F & A,
vi€F
The polynomial ring K[z,,...,z,] is multigraded. The homogeneous elements
are the terms Az® with A € K and a € Z". The multidegree of such a term is
a € Z". Since the defining ideal of a simplicial complex A is defined by monomials,
the Stanley-Reisner ring K[A] inherits a multigraded structure.
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We set
Hya)(t) = 3 dimg K[A].t°,
a€Z
and call it the multigraded Hilbert function of K[A]. Here t = (ty,...,t,) and
t* =1¢7'...t2 for a € Z".
One has

(1) Hga)(t) = ) H —

FeA v.EF

Of course, since 5 is a graded ideal in the ordinary sense, too, the algebra K[A]
is homogeneous, that is, K[A] is a finitely generated K-algebra which is generated
over K by elements of degree 1.

Recall that an arbitrary homogeneous K-algebra R has a Hilbert function of the
form

_ Q@)
where d = dim R and Q(t) = 3., ht' is  polynomial with @(1) # 0; see [2, Lemma
4.1.7(b)]. The vector (ho,... ,hn) is called the h-vector of R, and Q(1) = g hi
is called the multiplicity of R. We denote the multiplicity of R by e(R).

The Hilbert function of K[A] is obtained from (1) by replacing all ¢; by ¢. There-
fore,

d—-1 fiti+l
(3) Hga)(t) = i; a-o

A comparison of (1) and (2) yields the identity

d
(4) Yohtt =Y fiat (1 -1)
i =0

which shows that the h-vector of a (d — 1)-dimensional simplicial complex has length
at most d. Moreover, using (4), one can compute the h-vector from the f-vector,
and vice versa.

For a shellable simplicial complex A there is a result of McMullen (cf. |2, Corollary
5.1.14]) which gives the h-vector from the shelling.

Theorem 1.2. Let A be a shellable (d — 1)-dimensional simplicial complex with a
shelling whose k-vector is (ky,... ,kn). Then the h-vector (ho, ... ,hq) of A is given
by

={i:kj=3} for 7=0,...,d

As an immediate consequence of the McMullen formulas one obtains

Corollary 1.3. Let A be a shellable (d — 1)-dimensional simplicial complex. The
following conditions are equivalent:

(a) A is a (d — 1)-tree;

(b) hy =0 fori>1
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It follows from (4) that hy = fo—d. We also conclude from (4) that the multiplicity
of K[A] equals
e(K[A]) = Z h,‘ = fd—-l-

In other words, e(K[A]) is equal to the number of facets of A. It follows from 1.3
that for a (d — 1)-tree one has e(K[A]) = fa1 = fo —d + 1.

For an arbitrary homogeneous K-algebra R with h-vector (ko ... ,hn) it is known
that h; = emb dim R—dim R, and that h; > 0 if R is Cohen-Macaulay; see [2, Propo-
sition 4.3.1]. Here embdim R denotes the embedding dimension of R. Therefore

e(R) > embdimR ~ dimR + 1.

if R is Cohen-Macaulay. This is the inequality of Abhyankar. If equality holds, then
R is said to have minimal multiplicity. It is clear that R has minimal multiplicity if
and only if h; =0 for ¢ > 2.

Since shellable simplicial complexes are always Cohen-Macaulay (see [2]), it fol-
lows that for a shellable simplicial complex fi_; > fo — d + 1, with equality if and
only if it is a (d — 1)-tree. Of course, the inequality follows also directly by induction
on the number of facets. More precisely, one has: if (ky,... ,kn) is the k-vector of
the shelling, then

fd..] —fo+d—1= HZ ki > 1}|

2. UPPER BOUND FOR THE BETTI NUMBERS OF A SHELLABLE SIMPLICIAL
COMPLEX

In this section we will study the minimal free resolution F over the polynomial
ring P = Klzy,...,2,] of the Stanley-Reisner ring K[A] = P/Ia of a simplicial
complex A. Since K[A] is multigraded, the resolution is multigraded as well, that
is,

F: 0o9F>F,_1—5...2 F > F— K[A] =0,
where each F; = @,cz- P(—a)P, and where all maps in this complex are homo-
geneous (of degree 0). Here we denote, as usual, for any b € Z" by P(b) the
shifted rank 1 free graded P-module with P(b), = P,y for all b € Z". The num-
bers f;, are called the multigraded Betti numbers of K[A]. For each i there are
only finitely many S, # 0. The graded Betti numbers of K[A] are defined to be
Bij(K[A]) = Xaezn jo)=j Bia) Where for a = (ay,...,a,) € Z" we set |a| = ¥ a;,
and the numbers §;( K[A]) = ¥,z 0;; are simply Called the Betti numbers of K[A].

Finally, the series
Poin(t, s) = Z Bitls
1€Z,a €L

is called the multzyraded Poincaré series of K[A)]. Similarly one defines the (graded)
Poincaré series.

We will prove the following

Theorem 2.1. Let A be a shellable (d ~ 1)-dimensional simplicial complez with n
vertices and m facets. Then

< B2 £ )
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Moreover, the bound is reached if and only if A is a (d — 1)-tree.

We first show that for a (d — 1)-tree A the given bound is attained. As observed
in the previous section, one has n = m + d — 1 when A is a (d — 1)-tree. Hence the
second sum in this upper bound is 0, and we have to show that

) sian =551 71)

More generally we note the following well-known fact, whose proof we outline for
the convenience of the reader.

Lemma 2.2. Let R be a Cohen-Macaulay ring with minimal multiplicity of embed-
ding dimension n and dimension d. Then Bi4;(R) = z;fk(’f:ll) ifj=1,and0
otherwise.

Proof. We may assume that K is infinite, because otherwise we may choose an
infinite base field extension without changing the Betti numbers. Then there exists
(c.f. 2, Proposition 1.5.12]) a regular sequence fi,... , fz of forms of degree 1. If F
is a minimal graded free P = K{z,,... , ;] resolution of R, then F/(f;,..., fa)Fis
a graded minimal free P = P/(fy,... , f4)P resolution of R = R/(fi,... , fi)R.

It follows that B
BE(R) = BE(R).

Since fi,...,fs is a regular sequence of 1-forms, P is isomorphic to a polynomial
ring in n — d variables, say P = K[y1,... ,Yn—a], and R is a quotient ring of P with
Hilbert function 1 + Ayt = 1+ (n — d)t.
Therefore,
R= P/(yl"" ’ 'n-d)2'

The ideal (yi,... ,Yn-d)? is strongly stable, hence its resolution over P is given by
Eliahou-Kervaire ([4]). The explicit formulas for the graded Betti numbers in [4]
(see also [1]) applied to this situation yield the desired result.

(Alternatively one may view (y1,... ,Yn—a)? as an ideal of maximal minors of the
matrix
(yx Y2 ... Yn-a O )
0 1 y2 ... Yn-a)’
whose resolution is a special case of the Eagon-Northcott resolution; see [3]). O

Proof. [Proof of Theorem 2.1] We prove the asserted inequalities for an arbitrary
shellable simplicial complex A of dimension d — 1 and with n vertices by induction
on the number m of facets. We choose a (d — 1)-tree I' with m facets, and let
V = {v1,...,v} be the vertex set of I Then n < r = m + d — 1. Hence may
assume that the subset W = {vy,... ,us} of V is the vertex set of A. For any integer
i <r weset P, = K[zy,...,zi]. Then Bi(K[A]) = 8 (K[A)).

We may view K[A] also as a P,-module, since
K[A] = Pr/(IAa Tnglyees axr)'

Let F be a minimal free P,-resolution of K[A]. Since &n41,...,2, is a regular
sequence on P,/Ia, we see that

(]F ®Pn Pr) ®Pr I((mn+lv ey Ty Pr)
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is a minimal free P,-resolution of K[A]. Here K(z,41,...,z,; P,) is the Koszul
complex of the sequence z,44,... ,z,.
From this we deduce the following equations

BF(K[A]) = zﬁmmn( J)

j=0

So
B (KIA]) = AP (K[A]) - Zﬂ”"(f [An( ])

The Betti numbers §;( K[A]) are bounded below by (he'ghu“); see for example [5].
Therefore, since height [s =n —d, and r = m 4+ d — 1, we get

st < prwian -5 (") (T,
Thus if we can show that
BIm+1 (K[A)) < B+ (K[T))

for all 7, then the theorem follows from (5).
We prove this inequality by induction on m. For m = 1 the assertion is trivial.

Now we assume that the assertion is proved for m > 1, and prove it for m + 1.
Let

A AU ( m+1) and E=AnN (Fm+1>.
In order to simplify notation we set
T+ (M) = Tor! (K, M)

for any Pnig4-module M, and if M = K[II}, we set T™(11) = T/*+¢(K[II]). Recall
that Bi(M) = dimg Tor{™(K, M).
There is a short exact sequence of P44-modules (c.f. [2, Sequence (3), page 210])

0 = K[A] = K[A]® K[{(Fry1)] > K[E] = 0
which gives rise to the long exact homology sequence

= THAY) = TPH(A) @ TP ((Fagn)) — TTH(E)

= TrHA) - ...
We first show that for all ¢ the map

I ({(Frya)) = TMH(T)
is injective.
Since A is shellable, ¥ is the union of (d — 2)-simplices, say, of the simplices

(Fn41 \ {vn}), L =1,... k. Then we have

I\’[(Fm+1)] = Pnta/(zi: vi € Fropa),

and

k
[L] m+d/(zz Vs ¢ Fm+1 (I:I wr;)-
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In both cases the defining ideals are generated by regular sequences, and hence the
Koszul complexes

k

K(2i; Pnyd)oigFmy,  and  K(zi, [ @r; Prtd)vigFms
=1

are the multigraded free P, 4-resolutions of K{(F,+1)] and K[X], respectively.
The natural inclusion map

k

(6) K(z:; Pntd)vighnys — K(2i, 1] 2ri; Protd)vigFmes
=1

is a lifting of the epimorphism
k
K{(Fni1)] = Pota/ (@it 0i @ Frag1) = Prya/(2i: vi € Fopa) + ([ 2,) = K[Z)].
=1

Since a is split exact, it induces for all i an injective map T ((Finy1)) = TTH(X).
For all i we now set M; = T (Z)/T™4((Fpns1)). Then we get the exact
sequence

Co=EY My o TPHAY) o TPYA) 25 M = TRFHA) = ...
From this we deduce

(7) dimg I7™+(4")

dimg T™(A) + dimg Miy,
— dimg Imeo; — dimg Imayiyg.

Similarly for T’ we get

(8) dimg THTY) = dimg TH(T) + dimg MY,
he dimK Im ﬁ,’ - dimK Im ﬂ,'.H,

where the M/ and 3; are defined for I’ as the M; and a; for A.
We note that M; is Z"-graded, set M = ®M; and

HM(t],... ,t,-,-S) = ZHM.'(tla-'- ,t,)si.

Then it follows from the definition of M and (6) that

k
Hy(tyy. .ty 8) = [ (A +ts)(J]t)s
vi€Fm4 I=1

Similarly, if I = T'U (F; ), with TN (F}, 1) = Fhi1 \ {vmtd} (since we assume
that IV is a (d — 1)-tree) we get for M’ = @M the formula
HMI(tl,... ,tr,S) = H (1 +t,’8)tm+d8.
“"ng'n-H
It follows that

dimg Miyy = (” - d) = dimg M,

?
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for all 7. Therefore, the equations (7) and (8) together with our induction hypothesis
imply that 87™+4(A") < BFm+4(I) if
(9) dimK Im o; + dimK Im (s 798 ] Z dimK Im ,81' + dlm;\ Im ﬁi+l

for all z.

We claim that 3; = 0 for ¢ > 1. Indeed, the Poincaré series Poinm4(t, s) of K[I']
as a Ppy4-module, and Poincaré series Poin,,4.4(t,s) of K[I'] as a Pp44-1-module,
are related by the equation

Poing,44(t, 8) = Poinpya-1(t, s)(1 + tmyas).
It follows from 2.2 that
Poinid-1(t,s) = 1 + Y Pi(t)s’
i>1
where Pi(t) € K[t1,... ,t44m-1] is homogeneous of degree ¢ + 1.
Therefore,
Poingta(t,s) = 1 + tmyas + Pi(t)s + D _(Pi(t) + Pi_i(t)tmya)s’.
i>2
On the other hand,
HMl(t) = H (1 + tjs)td+m8
Vi €Fm41

tapmS + O Qic1(t)tmyas’

i>2

where @);-,(t) is a homogeneous polynomial of degree ¢ — 1 over K. Assume that
Bi # 0 for i > 2, then Pi(t) + Pi_1(t)tm4a and Qi(t)t;n4q must have a common
monomial in the variables t;, v; € Fy ;. But this is impossible by degree reasons.

Since we now know that §; = 0 for i > 1, it follows that dimg Im a; > dim Im g;
for 1 > 1.

We finally show that dimg Im o = dimg Im 3, = 1, then the desired inequalities
(9) follow for all ¢, and the theorem is proved.

Notice that dimg M; = dimg M; = 1. Therefore since

k
I{[A n <Fm+1)] = Pm+d/(xi: Uy ¢ Fm+1) + (11:[ z"!)

and
KID O (Fl )] = Prsal (@55 0 € Flyy) + (0mta),

we see from the definition of M; and Mj, that the generator of M; corresponds to
Hle z,, and the generator of M{ to Z,,4+4. Thus in order to prove that dimg Ima, =
dimg Im 3;, we must show that the defining ideal (Ir,z;n44) of the P,iq-module
K(I'] contains the element 44 as a minimal generator (which is trivial), and that
the defining ideal (Ia, Tnt1,.-. , Tmtd) of the Ppyg-module K[A] contains the ele-
ment [[L, z,, as a minimal generator. The second assertion is seen by noting that
Fint1 is a non-face of A (which we add in order to obtain A’). However, it is not a
minimal non-face of A. The minimal non-face of A which is contained in F,4; is
the face G = {v,, ... ,v,,). Since the minimal non-faces of A correspond to minimal
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generators of Ia, we conclude that [],.eq *: = [1k, z,, is a minimal generator of /s
and hence of (Ia,Tnt1,... ,Tm+d), a8 desired. O

3. BETTI NUMBERS OF THE BOUNDARY COMPLEX OF POLYTOPES

In this section we give a short proof of a result of Hibi and Terai [7] who computed
the Betti numbers of the boundary complex of a stacked polytope, and give an upper
bound for the Betti numbers of the boundary complex of a polytope with a proper
triangulation.

Recall that a triangulation of a simplicial d-polytope P is a d-dimensional simpli-
cial complex I' whose geometric realization is P. A simplicial d-polytope P is called
stacked if it admits a triangulation which is a (d — 1)-tree. In other words, starting
with a d-simplex, one adds new vertices by building shallow pyramides over facets
to obtain P. Let P(n,d) be a such stacked d-polytope with n vertices. We denote
by AP(n,d) the boundary complex of P(n,d), that is, the simplicial complex whose
facets are the boundary faces of P(n,d). Note that dimAP(n,d) =d — 1.

It is well-known that the boundary complex A(P) of any simplicial d-polytope
is Gorenstein; see [2, Corollary 5.5.6]. In other words, for any field K the Stanley-
Reisner ring K[A(P)] is Gorenstein. In particular, P has a symmetric h-vector.
More precisely, one has h; = hy_; for 0 < i < d. These are the famous Sommerville
equations. {Here we follow the common convention to define the h-vector of P to be
the h-vector of A(P).) For stacked polytopes the Sommerville equations are more
special.

Proposition 3.1. The h-vector of P(n,d) is the vector (1,n—d,n~d,... ,n—d,1)
of length d.

The proof could be easily done by induction on the number of vertices. Instead
we will use the following theorem of Hochster (see [2, Theorem 5.6.2]), since this
theorem will be crucial for other arguments of this section as well.

We denote by wg[a) the canonical module of a Cohen-Macaulay simplicial complex
A over a field K.

Theorem 3.2 (Hochster). Let K be a field, and T' a Cohen-Macaulay complex
of dimension d over K whose geometric realization X = |T'| is a manifold with
a non-empty boundary 3X. Further let A be the subcomplex of I' whose geometric
realization is X, and J the ideal in K[I'| generated by the monomials z¥ = [1,, e i,
F eT'\A. Then the following conditions are equivalent:

(a) wiin = J as a Z"-graded K[I')-module;

(b) A is a Gorenstein compler over K;

We apply this theorem to a d-polytope P with triangulation I" and boundary
complex A. Since wgyr) = J it clear that

(10) K(T/wkm = K[A].

It follows then from (2, 3.3.18(b)] that A is Gorenstein. Moreover, if
d+1 htt
1=0 "1

Hppry(t) = -



166 Herzog and Li Marzi

is the Hilbert function of K[I'], then, by a result of Stanley [8],

oo ha-it!
Hwt{[r‘](t) = (1 _ t)d+1

is the Hilbert function of wqr); see [2, Corollary 4.3.8]. Therefore (10) yields

H"'[A](t) = H’\"[F](t) - HWK[r](t)
Tido hit' — I byt

(1 = t)d+t
— Zg:ogiti
(1-t)4’
where
(11) gi =Y (hj = hay1-;) for j=0,...,1

j=0

Now let us apply this to prove Proposition 3.1: Let I' be the stacked shelling of
P(n,d). We know from 1.3 that the h-vector of ['is (1,n — d — 1,0,... ,0), so that
from (11) we obtain for A(P(n,d)) the h-vector, as asserted in 3.1.

Next we give a short proof for the Hibi-Terai formulas [7].

Theorem 3.3 (Hibi-Terai). Let P(n,d) be a stacked simplicial d-polytope with n
vertices, and AP(n,d) its boundary complez. Then the minimal graded free reso-
lution of the Stanley-Reisner ring has only a 2-linear and a d-linear strand. More
precisely, one has

n—d-1 k-1 . .

- k( ) for0<i<n-—-d-—-1landj=1,
i (K[AP(n,d)]) = § k=i “\int ==
Biiai(K[AP(n, d)]) { i k() forl<i<n—dandj=d—1.

Proof. We apply Hochster’s theorem 3.2 to P(n,d). Let I'(n,d) be the stacked
shelling of P(n,d). By (10) and 3.2 we have

K[AP(n,d)] = K[I'(n, d)}/wkir(n,a-

Furthermore, wr(x,4)) is generated by all monomials zF € K[['(n,d)] where F €
I'(n,d) \ AP(n,d). Since the shelling of P(n,d) is stacked all such faces are of
dimension d — 1. Therefore all generators of WK[(n,d)] are of degree d.

By 2.2, K[I'(n,d)] has the graded minimal free S = K[zy,... , z,]-resolution

F:0> Fogoy = ... = Fy = Fy = K([I'(n,d)] = 0,

where F; = §(~i—1)% for i = 1,... ,n —d — 1 with b; = y}7¢-1 k(’;;;).
Let G be the minimal free graded S-resolution of WK[[(n,d)]- The resolution G
is obtained from F by dualizing F into S and shifting it suitably, see [2, Exercise

3.3.25]. Since in our case all generators of WK[I(n,d)] are of degree d, we see that
Gi=F; 4y _(-n)fori=0,...,n—d—1.
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The inclusion wi(r(n,g) — K[[(n,d)] lifts to a map of complexes a : G —+ F. The
mapping cone of o gives the resolution of K{AP(n,d)]. It has the form

0= F5(—n) = Fi(-=n)® Foog1 — ...
— Fr 4y (-n)® Fy = Fo = K[AP(n,d)] — 0.
This yields the assertion of the theorem. O

The Sommerville equations for a 3-polytope P with n = h + 3 vertices imply that
P has the h-vector (1,h,h,1). Here we see that the combitorial type of A(P) is
not reflected by the h-vector since it only depends on the number of vertices of P.
In particular, a stacked 3-polytope with the same number of vertices as P has the
same h-vector. Nevertheless the stacked 3-polytope is distinguished by the fact that
it has the largest Betti numbers among all 3-polytopes with the same number of
vertices. This is the theorem of Terai {9].

Let ' be a triangulation of a d-polytope P. The boundary complex AP of P is
generated by all d — 1-dimensional faces F' of I' which belong to exactly one facet of
I'. The faces of I' which do not belong to AP are called the interior faces of I'. We
say that I is a proper triangulation of P if I is shellable and has no interior vertices.

We conclude this paper with the following

Proposition 3.4. Let P be a simplicial d-polytope admitting a proper triangulation
with m facets. Then

Bi(K[AP]) < bi + bp_g—i

foralli=0,... ,n—d, where b, = Z;":"ll](f::)

Proof. Let T’ be the proper triangulation of P. Since I' has no interior vertices it
follows that wgqr) is contained in the square of the graded maximal ideal of K|[I].
Therefore K[I') and K[AP] = K([I'|/wkjr) are defined over the same polynomial
ring S, and a free S-resolution of K{AP] is obtained as a mapping cone of the S-
resolution of K[I'] and the S-resolution of wkry, cf. the proof of 3.3. This resolution
need not to be minimal. Thus, if §; denotes the i-th Betti number of K[I'] we get
Bi(K[AP)) < Bi + Bn-d-i- Hence together with 2.1 the desired inequality follows.

a
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