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Abstract

We investigate the properties of the Stanley ring of a cubical complex, a cubical analogue of
the Stanley-Reisner ring of a simplicial complex. We compute its Hilbert-series in terms of the f-
vector, and prove that by taking the initial ideal of the defining relations, with respect to the reverse
lexicographic order, we obtain the defining relations of the Stanley-Reisner ring of the triangulation
via “pulling the vertices” of the cubical complex. Applying an old idea of Hochster we see that
this ring is Cohen-Macaulay when the complex is shellable, and we show that its defining ideal
is generated by quadrics when the complex is also a subcomplex of the boundary complex of a
convex cubical polytope. We present a cubical analogue of balanced Cohen-Macaulay simplicial
complexes: the class of edge-orientable shellable cubical complexes. Using Stanley’s results about
balanced Cohen-Macaulay simplicial complexes and the degree two homogeneous generating system
of the defining ideal, we obtain an infinite set of examples for a conjecture of Eisenbud, Grreen and
Harris. This conjecture says that the h-vector of a polynomial ring in n variables modulo an ideal
which has an n-element homogeneous system of parameters of degree two, is the f-vector of a
simplicial complex.

Introduction

This paper is about some properties of the Stanley ring of a cubical complex. This ring is one of
the possible cubical analogues of the Stanley-Reisner ring of a simplicial complex. While in the
simplicial case commutative algebra was instrumental in obtaining combinatorial inequalities. this

time combinatorics seems to give some commutative algebraic insight.

In the preliminary Section 1 we introduce the basic notions and define a way of associating simplicial

complexes to cubical complexes, such that in the case of convex cubical polytopes our definition will
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coincide with the concept of “triangulation via pulling the vertices”. We will call our operation the

same way.

In Section 2 we show how to reduce greatly the number of relations defining the Stanley ring K[C]
for all cubical complexes C, and we compute the Hilbert-series of K [C].

In Section 3 we establish a connection between the Stanley ring of a cubical complex and the
Stanley-Reisner ring of its triangulations via pulling the vertices: We show that the face ideal of the
triangulation via pulling the vertices is the initial ideal with respect to the reverse lexicographic order
of the face ideal of our cubical complex. This fact is analogous to Sturmfels’ result in [22] on initial

ideals of toric ideals.

In Section 4 we take a closer look at shellable cubical complexes and their Stanley rings. Using an
idea of Hochster we establish the Cohen-Macaulay property of the rings. For later use in Section 5,

we prove that the edge-graph of a shellable cubical complex is bipartite.

Section 5 contains the hardest theorem in this paper. We show that in the case of shellable
subcomplexes of the boundary complex of a convex cubical polytope, the Stanley-ring may be defined
by homogeneous relations of degree two. By the theorem of Bruggeser and Mani on the shellability of

the boundary complex of convex polytopes ([4]), our result applies to the entire boundary complex of
a convex cubical polytope.

In Section 6 we introduce the notion of edge-orientable cubical complexes, which turns out to be
a cubical analogue of completely balanced simplicial complexes. Not only their Stanley ring contains
an explicitly constructible linear system of parameters, but they also have a completely balanced
triangulation.

Using almost all previous results of the paper, in Section 7 we construct infinitely many examples
verifying a commutative algebraic conjecture of Eisenbud, Mark Green and Harris. According to this
conjecture, the h-vector of a polynomial ring in n variables modulo an ideal which has an n-element
homogeneous system of parameters of degree two, is the f-vector of a simplicial complex. Taking the
face ideal of the boundary complex of any edge-orientable convex cubical polytope, and factoring out
by a set of linear forms which is a system of parameters modulo the face ideal we obtain an example
verifying the conjecture. The proof of the Eisenbud-Green-Harris conjecture in this very special case
uses a theorem of Stanley on the h-vector of completely balanced simplicial complexes, and it does
not work, if we drop the condition of edge-orientability. This makes the question interesting, whether
convex cubical polytopes with not edge-orientable boundary exist: if yes, (and they probably do,)
it may be a challenging task to verify the Eisenbud-Green-Harris conjecture already to this class of

polytopes.
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1 Preliminaries

Definition 1 An (abstract) simplicial complex A is a family of sets (called faces) on a vertex sct 'V
such that

(1) {v} € A holds for every v € V, and

(ii) if o € A and 7 C o then T € A\.

For every face o we call |o| — 1 the dimension of 0. The mazimal faces are called facets, their facets

are subfacets.

Definition 2 A cubical complex C is a family of finite sets (called faces) on a vertex set V with the

following properties.

(1) For every o € C the elements of o can be represented as the vertices of a finite dimensional cube,
where the faces contained in o are ezactly the vertez sets of the faces of this cube. (In particular,
we have ) € C.)

(it) If o,7 € C thenonT €C.

For every face o we call the dimension of the cube associated to o the dimension of o. As before,
mazimal faces are called facets, their facets are subfacets. The one-dimensional faces are also called
edges and two vertices u,v € V are called adjacent if {u,v} is an edge. Given a face o € C we will
denote the subcomplex {T € C : 7 C ¢} by C|, and call it the restriction of C to . Moreover, for every

nonempty face o we will call the compler C|, \ {o} the boundary of o and we will denote it by 0(c).



It is a well-known fact that every simplicial complex has a geometric realization ¢ : V. — R™ in a Fu-
clidean space, such that for every o € A\ {0} the set conv(#(0)) is a nondegenerate geometric simplex
with vertex set ¢(o), and any pair of faces o, 7 € A we have conv(@(o))Nconv(¢(7)) = conv(p(aNnT)).
(See for example [17, p.110].) Tt is not necessarily true, however, that cubical complexes have a similar
geometric realization ¢ : V — R™. (Now of course we would require conv(¢(o)) to be a dim(o)-
dimensional polytope with vertex set ¢(o) for every o € C \ {#}. An example of a non-representable
cubical complex is the complex C with three squares Fy, F,, F3 incident in such a way that they form
a Mobius strip. The proof of the fact that this complex has no geometric realization is implicit in the
proof of Theorem 7.)

Nevertheless, it is still true even for cubical complexes that their faces may be represented in a
standard way.

Definition 3 The geometric standard n-cube is the convez polytope
0,1 = {(z1,22,...,2,) ER™ : 0 < z; < 1}.

We define the (abstract) standard n-cube C™ to be the vertezx set of [0, 1]" together with the inherited
face-structure on the vertices. We call any 2™-element set with an isomorphic face-structure an n-

dimensional cube. We call a geometric realization ¢ : C™ — R™ standard if we have (V(C")) =

{0,1}".

Simplicial complexes will occur as triangulations of cubical complexes via pulling the vertices. We
will define these triangulations in an abstract way, i.e., our operation will associate a simplicial complex

to even those cubical complexes which have no geometric realizations. For this we use the notion of
cubical span.

Definition 4 For a set of vertices X C V in a cubical complex C we define the cubical span Cspan(X)
of X to be the smallest face containing the set X. (If there is no such face then we leave Cspan(X)
undefined.) For a pair of vertices {u,v} and a face T € C satisfying Cspan({u,v}) = 7 we say that
{u,v} is a diagonal of 7.

Definition 5 Let C be a cubical complex on the vertex set V and < a linear order on V. Let us denote
the smallest vertex of a face o € C \ {0} by é<(o). We define the triangulation of C via pulling the

vertices in order < to be the family of all sets {vy,...,vx} such that k € N, v;y > --- > v, and for
1= 1,..., k we have

v; = 6<(Cspan({vy,...,v:}))-

Remark Definition 5 may be naturally extended to the face complex of a convex polytope P by re-
placing the term Cspan({vy,...,v;}) with Pspan({vy,...,v;}), where Pspan(X ) stands for the smallest



face containing a set of vertices X. (To be read as the polyhedral span of the set X.) In [20], Stanley
gives an apparently different definition for triangulations A<(P) of convex polytopes P via pulling
the vertices, but the two definitions may be shown to be equivalent, without much difficulty. Tt is
straightforward from Definition 5 that the restriction of A(C) to a face ¢ is just the triangulation of
C|, via pulling the vertices with respect to the order induced by < on . Hence by [20, Lemma 1.1],
whenever a cubical complex C is geometrically represented, its (abstract) triangulation via pulling the

vertices A (C) will induce an actual geometric triangulation.

2 Definition and elementary properties of the Stanley ring
R. Stanley suggested investigating the following ring associated to cubical complexes.

Definition 6 Let C be a cubical complez, K a field. Associate a variable z, to each verter v € V.
The Stanley ring K[C] of the complezx C over the field K is the factor ring Kz, : veV] /[(C)’ where
the ideal I(C) is generated by the following elements.

(1) Tuy " Ty Ty, for all vy,...,vp €V such that {v1,...,v;} is not contained in any face of C.

(11) Ty - Ty — Ty - Ty for all u,w’',v,0" € V such that {u,v} and {u',v'} are diagonals of the same

face Cspan({u,v}) = Cspan({u/,v'}) € C.

We denote the ideal generated by the elements of type (i), (i1) by I,(C), I;(C) respectively. We call
I(C) the face ideal of the cubical complez C.

In this section we will show that condition (i) can be weakened to requiring the product of at most
three variables to be in J(C), whenever the set of their indices is not contained in any face. In Section
5 we will prove that for an important class of cubical complexes (shellable subcomplexes of boundary
complexes of convex cubical polytopes), it is even sufficient to set the product of pairs to be zero in
K(C) when they are not diagonals of a face. In doing so, the following equivalence relation defined on
multisets of vertices will be instrumental. (Entries between brackets “|” and “|” are to be read as a

list of elements of a multiset.)

Definition 7 We call the multisets of vertices |uq, uy, ..., ux] and |v1,va,...,v| equivalent, if k = I
and vy, vy, ..., can be obtained from |uy,us,...,ux] by repeated application of the following oper-
ation. If Cspan({uy,us}) exists, replace |uq, ug, us, ..., ux| with |uf, uh, ua, ..., ux], where [v vl is
any diagonal of Cspan({uy,us}).



The operation of replacing a diagonal with another one is reversible, and so we defined in deed an
equivalence relation. Clearly, if a face 7 € C contains {uy, ..., ux} then the same holds for all equivalent
multisets |vy,...,v¢|. Hence we can say that a face T contains or does not contain a given equivalence
class of multisets. In particular, Cspan(|u1,u2,...,ux]) is simultaneously defined or not defined for
all multisets of an equivalence class, and its value is constant on an equivalence class, on which it is
defined. The definitions yield immediately the following connections between the equivalence classes

of multisets and monomials.

Lemma 1 The monomials of K[z, : v € V] have the following properties.

1. We have x,, ---x,, € I;(C) if and only if Cspan(|uy,...,ur|) does not exist.

2. The differences o — T, where u and v are equivalent multisets of vertices, form a generating
system of the K -vector space I(C). Consequently, monomials of degree k indezed by equivalent

multisets of vertices represent the same element modulo I5(C).

The following theorem is the key to understanding the role of the equivalence of multisets of

vertices.

Theorem 1 Monomials not belonging to I,(C) and assoctated to multisets from different equivalence
classes are linearly independent modulo I(C).

Proof: Assume that we have a linear combination 3>, A, - 2, € I(C) of monomials z, € I,(C), with
coefficients A, € K, such that all the multisets v = [vl,._. ., v} occurring in this sum belong to different
equivalence classes. Let us fix one z,, = 2, -+ -y, , and show that we must have A, = 0. By z,, & ,(C)
the face Cspan(|uy,...,ux|) must exist. The factor of K'[C] by the ideal (z, : v € Cspan(|uy,...,ux]))
is the Stanley ring of Clepa.n(Lul,...,ukJ)’ and we have z, ¢ Il(chSpaJl([ul,...,ukj))' Moreover, if if
two multisubsets of V(CICspan(Lul,...,ukJ)) are not equivalent in C then they are not equivalent in
C‘Cspan(Lul,l..,ukJ) either. Thus w.lo.g. we may assume C = ClCSpan([ul,...,ukJ)’ i.e., that C is a
standard n-cube C” for some n € N.

Li(C") = 0 implies I(C") = I3(C™). Let us fix a standard geometric representation ¢ of C", and
consider the K-algebra homomorphism a : K[z, : v € V(C")] — K[yo,¥%1,- .., Y] defined by a(z,) =
yo-y ) -
Cspan({u,v}) = Cspan({u’,v'}). Hence Ker & contains I(C") = I;(C™), and monomials associated to

-yf"(v). The kernel of a obviously contains all binomials of the form z, -2, —2,/-z,/, where

equivalent multisets are mapped into the same monomial under a. Therefore in order to prove A, =0,
we only need to show that for a multiset v = |vy,...,v| not equivalent to u we have a(z,) # a(z,),

since then the coefficient of the monomial a(z,) in 0 = 30, A, - a(z,) will be A,.



Let us denote by Set(v) the set {¢ : ¢;(v) = 1}. The operation Set is a bijection between V(C™)
and the subsets of {1,2,...,n}. A subset X of V(C") is a face iff {Set(v) : v € X} is an interval
of the boolean algebra P({1,2,...,n}). Hence we have Cspan({u,v}) = Cspan({u',v'}) iff for the
corresponding subsets Set(u) N Set(v) = Set(u’) N Set(v') and Set(u) U Set(v) = Set(u’) U Set(+’) hold.
For a monomial z, = z,, ---r,, we have a(z,) = yg° - y7" - - Y™, where ag = [, and for i > 1, a; is

the number of j-s such that i € Set(v;). (We count repeated vertices with their multiplicity.)

Let v = |v1,...,v] be an arbitrary multiset of vertices. Replacing any pair (v;,v;) with the pair
(Set™!(Set(v;) N Set(v;)), Set = (Set(v;) U Set(v;))), we obtain an equivalent multiset of vertices. Using
this operation repeatedly, we can reach an equivalent multiset v’ = [v],...,v]] such that Set(v}) C
--- C Set(v;) holds. (We can prove this by induction on [.) Now the statement follows from the obvious
fact that for this multiset {v],...,v]] we must have Set(v}) = {t € {1,2,...,n} : o; 2 1+ 1 - j}.
Therefore a assigns different monomials to different equivalence classes of multisets of vertices. o

Corollary 1 We have z, ---z,, € I(C) if and only if Cspan(|u,...,ux]) does not erist.

Corollary 2 Two monomials x,, - -z, & I(C) and z,, - - -z,, & I(C) represent the same class modulo

I(C) if and only if k = | and the multisets |u,...,ux] and |vy,...,vx| are equivalent.

Remark Theorem 1 is also a straight consequence of the proof of Theorem 4. We included an
elementary proof, such that we may avoid the use of Grobner basis theory in this section. Part of the

argument presented may also be applied to show the following lemma.

Lemma 2 LetC be an arbitrary cubical complex and k > 2. Then any monomial z,, -z, - - - x,, such

that Cspan({us,...,ux}) ezists, is equivalent modulo Iy(C) to a monomial z,, - T, - - - ., such that

Cspan({v1,v2}) = Cspan({uy,...,ur}) = Cspan({v1,...,vk})

holds.

Proof: Without loss of generality we may assume C = Cspan({uy,...,ux}), i.e., that C is a standard n-
cube C™. Let us fix again a geometric realization ¢ and denote by Set(v) the subset of {1,2,...,n} with
characteristic vector ¢(v). We have shown in the proof of Theorem 1 that |uy, ..., ux] is equivalent to
a multiset |vq,...,v] such that Set(v;) C --- C Set(wg) holds. This |vy,...,vs] will have the required
properties. (Observe that in the notation of the proof of Theorem 1, {v1,v;} will be a diagonal of
Cspan({uy,...,ur}), whereas in the notation of the statement of this lemma {v,v;} is a diagonal.
But the difference is only in the numbering of the vertices, which is irrelevant when we investigate

multisets of vertices.) a



Using Lemma 2 we can show the following theorem.

Theorem 2 Let C be an arbitrary cubical complez. Let I{(C) be the ideal of K[z, : v € V] generated

by all monomials z,, - - -z,, such that k < 3, and {vy,...,v%} is not contained in any face of C. Then
we have

I1(C) = j(C) + I(C).

Proof: By definition, I{(C) is contained in I,(C). Hence it is sufficient to show that if {vy,..., 74} is
not contained in any face of C then z,, ---z,, is congruent modulo I3(C) to a monomial from I{(C).
We prove this statement by induction on k. For k = 2,3 we have z,, - - -z, € I](C). Assume we know
the statement for k, and that we are given vy, v, ..., vkyq such that {vy,...,vt41} is not contained in
any face of C. If {vy,...,v;} is not contained in any face, then we have z,,, - - -2,, € I1(C), by induction
hypothesis we get z,, -- -z, € I{(C), and so zy, - - -y, - Ty,,, € I{(C). Hence we may assume that
Cspan({vy,...,v:}) exists. By Lemma 2, the monomial z,, ---z,, is congruent modulo I5(C) to a

monomial 2, ---&,, such that we have
Cspan({vy,v3}) = Cspan({vy,...,vc}).
But then Cspan({v], v}, vk+1}) does not exist and we get
Tyt * Tyt * Tupy, € 11(C).

This implies

’
Typ o Tyt Ty gy € Il(c)7

and so T, « Ty, - Ty, is congruent modulo I3(C) to an element of I7(C). o

Theorem 1 and its corollaries also allow us to compute the Hilbert-series of the Stanley-ring of

a cubical complex. Recall, that the Hilbert-series of a finitely generated N-graded K-algebra A is
usually defined as
[e o]
H(A, 1) =) dimg(A4,) - 17,
n=0
where A,, is the vector space generated by the homogeneous elements of degree n, and the operator

dim g stands for taking the vector space dimension. (For details, see e.g. [19, p. 33].)

Theorem 3 Let C be a d-dimensional cubical complex and let f; be the number of i-dimensional faces
of C. Then the Hilbert-series H(K|[C],t) of the graded algebra K[C] is given by

d 00
HK[C),t) =1+ D fi- Y (k—1) -1, (1)
k=1

i=0



Proof: K[C] may be written as a direct sum of K-vector spaces as follows.
K[C]= @@(zul -+ Ty, : Cspan(|uq,...,ux]) = o). (2)
o€C k=0

(Note that this sum includes the vector space generated by the empty product 1 for o = @ and k£ = 0.)
It is a consequence of Theorem 1 and its corollaries that for an i-dimensional face & € C and a positive

integer k, the dimension of (z,, - - -z, : Cspan(|u1,...,ux]) = o) is equal to the number of multisets
| X1,..., Xi] of subsets of {1,2,...,i} such that we have

=X, CX,C---CXr={1,2,...,1}.

(For i = 0 we write @ instead of {1,2,...,i}.) The number of such multisets is 1 for i = 0, and
0 forv >0,k = 1. When ¢ > 0 and k > 2 then for every j € {1,2,...,i} there is a unique
B(j) € {1,...,k — 1} such that j & X3 U XoU---U Xp(;) and j € Xg(j)41 N Xp(j)42 N -+ N Xi. The
values /3(7) may be chosen independently, in (k — 1)* ways. Thus we have

dim ((zy, - 2y, : Cspan(|u,...,ux)) = o)) = (k — 1)},

and the theorem follows. a

Introducing

t)def Ztk — ,and<I>(t def Zk' -tk for r > 1,
k>0 k>0

we may rewrite equation (1) as

d
HOK(CL ) = 1+ 3 fi- - @i(0). 3)
1=0

Let D denote the derivation operator of the polynomial ring Z{t] defined by D : ¢ — 1. Then we
have t - D(®,(t)) = ®,41(¢). Tt is well-known that D satisfies the operator identity

(t-D)y* =Y S(n,k)-t* . D*,
k=0

where the letters S(n, k) denote the Stirling numbers of the second kind. (See e.g. {15, p. 218, Section
6.6, formula (34)].) Using this formula for D allows for us to obtain

#i(1) = 3 5G,0) ¢ 0 (1) = Zsm)t T

Assuming 5(0,0) = 1, this formula holds even for ¢ = 0. Thus (3) is equivalent to



d 1 .
HKICL O =14 3 fi-t- 3 8(0,9) ¢ L (1)

i=0 =0 (1 - 1)+
Introducing
d
A def Zfi's(i,j)'j! when 0 < j <d
1 when j = —1

we may transform (4) into the following equivalent form.

Xd: sz L - t)d-i—l
H(K[C), ) = ==

(1—1)d ' (6)
3 Initial ideals and triangulations

In this section we describe the connection between the Stanley-Reisner ring of a triangulation of a
cubical complex C via pulling the vertices, and the Stanley ring of this cubical complex, using the
language and standard facts of Grébner basis theory.

Let us first recall the definition of the Stanley-Reisner ring of a simplicial complex /. (See e.g.
[19].)

Definition 8 Given a simplicial complez A with vertex set V, we define the Stanley-Reisner ring
K[A] of A\ to be the factor ring Klz, : veV] /I(A)’ where the ideal I(A) is generated by the set
{Xo, 2o, * K EN{vy,..., 01} € A}. We call I(D) the face ideal of A.

Note that both K[C] and K[A(C)] are the factors of the same polynomial ring K[z, : » € V].
To express the connection between the face ideals I(A(C)) and I(C), we need the following concepts
of Grobner basis theory.

Definition 9 Consider an arbitrary polynomial ring K[X] over a field K. A monomial order on the
set of monomials of K[X] is a linear order < on the semigroup of monomials such that if my, m, and

n are monomials then

my > mo implies n-mqy > n-my.

Given a monomial order <, for every polynomial p € K[X] we define the initial term init(p) of
p to be the largest term with respect to the term order <. Given an ideal I of K[X] we denote by

10



init< (/) the ideal generated by the initial terms of elements of I. A generating system {py,...,px}
of I is called a Grobner basis with respect to the term order <, if init(I) is generated by the set
{init<(p1), ..., init<(ps)}.

In particular, we will use reverse lexicographic term orders, which are defined as follows.

Definition 10 Let K[X] be a polynomial ring and < a linear order on the set of variables X. We
define the reverse lexicographic order <;lex induced by < as follows. Given two monomials m and
n, we write both of them in the form m = z! coezgkin o= xl{‘ . -xi" where 21 > -+ > z. We set
m <qlox " if deg(m) < deg(n) holds or we have deg(m) = deg(n) and a; > b; for the last indez i
with a; # bi-

Using the above definitions, the relation between I(C) and I(A(C)) may be stated as follows.

Theorem 4 Let C be a cubical complex on the verter set V and < any linear order on the vertices.
Then we have the following identity.

it (1)) = I(A(0))

In words, the initial ideal of the face ideal of C with respect to the reverse lexicographic order induced
by < is the face ideal of the triangulation of C via pulling the vertices with respect to the order <.

Proof: By Definition 6 and Corollary 1, the face ideal I(C) is a binomial ideal, i.e., it has a gencrating
system consisting only of binomials. (A binomial is a linear combination of at most two monomials.)
Moreover, all monomials of 7(C) belong to I;(C). It is well known in the theory of binomial ideals,
that every binomial ideal with respect to any term order has a reduced Grobner basis consisting only
of binomials. (See e.g. [8, Proposition 1].) This is true, because if we start Buchberger’s algorithm
(described e.g. in [3, Section 5.5]) to compute a Grdbner basis on a set of binomials, every newly
added polynomial will be a binomial. In our case, we have a reduced Grobner basis G = G1UG,. where
G is the set of monomials minimally generating I;(C), and G, is the reduced Grébner basis with
respect 10 <;jox Of I2(C). It is easy to verify that the elements of G will be differences of monomials
of the form z,, -- -2y, — &y, - - Z,,, where Cspan({u,, .. ., Uk}) exists and the multisets |uy, ..., ux]
and |v1,...,vx| are equivalent. Moreover, a monomial z,, - --z,, & I;(C) is not the leading term of a
binomial @y, - -2y, — 4, -+ Ty, € [2(C) if and only if the set {ut,...,ut} is a face of AL(C). Tn fact
Tyy Ty, € 11(C) holds iff {uy,...,ux} is contained in some face o € C. Assuming uy > --- > ug,
there is a multiset |vy, ..., vx] equivalent to |u,,..., ug] with 2, ---z,, <ilex Tup *° * Tuy iff for some
i € {2,...,k} we have u; # 6<(Cspan(uy,-+-,u;—1). (This is a consequence of Lemma 2.) Thus
init < lex (1(C)) is generated by square-free monomials, and these square-free monomials are the same

as those generating I(A<(C)). a

11



Corollary 3 For any cubical complez C, and any of its triangulations via pulling the vertices /A (C)
we have

H(K[C],t) = HIK[AL(C)), 1) (7)

Proof: It is well-known in the theory of Grobner bases that for every polynomial ring K[X]. every
ideal I of this polynomial ring, and every term order < the Hilbert-series of K[X] / [ is equal to the
Hilbert-series of K [X] /init<(l)' (See e.g. [3, Lemma 9.26 and Proposition 6.52].) Thus we have

H(K[C],t)=H (K[z" Pve V]/init< : X(I(C))’t)’

and the statement follows from Theorem 4. a

Corollary 4 For any d-dimensional cubical complex C, and any order < on its vertices, the vector
(f_A] yees fdA) given by (5) is the f-vector of the simplicial complezx A (C).

Proof: This is a straight consequence of (6), Corollary 3, and [19, Ch. II., §1, 1.4 Theorem]. a

Remarks

1. The fact that a square-free initial ideal is the face ideal of a simplicial complex is widely used,
see eg.[22, Section 6], or [10, Introduction].

2. The above proof was inspired by (and is much simpler than) the analogous result of B. Sturmfels
for initial ideals of toric ideals in [22]. The special case when the cubical complex is a standard
n-cube is implicit in {22, Corollary 5.2.].

3. As a special case of Corollary 4, we obtain that every triangulation via pulling the vertices of
a standard n-cube has the same f-vector. This could also be deduced from [20, Corollary 2.7],
because using [20, Theorem 2.3] it is easy to show that the standard n-cube is a compressed

polytope.

4 Shellable cubical complexes

In the definition of shellable cubical complexes we will need the notions of ball and sphere. Remember
that an n-cube C" has a standard geometric realization ¢ : V(C") — R", where ¢ is a bijection
between V(C™) and {0, 1}, such that vertices connected by an edge go into to the vertices of [0.1]"
connected by an edge. (Sce Definition 3.)
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Definition 11 A collection {F\, F;,...,F;} of facets of the boundary of an n-cube is called an

k
(n — 1)-dimensional ball or (n — 1)-dimensional sphere respectively, if the set U conv(§(F)) is home-

omorphic to an (n — 1)-dimensional ball or sphere respectively.

As in [16], we encode the nonempty faces of C™ with vectors (uy,ug,...,u,) € {0,1,%}" in the
following way. Consider a standard geometric realization ¢ : C* — R” For a nonempty face o € C"
and 7 € {1,2,...,n} set u; = 0 or 1 respectively if the i-th coordinate of every element of P(o)is 0
or 1 respectively. Otherwise we set u; = . Using this coding, the facets of C* will correspond to the

vectors (uy, ..., uy) for which exactly one of the u;-s is not a *-sign.

Definition 12 Let A? resp. Al stand for the facet (u1,ug,...,uy) with u; = 0 resp. u; = 1 and
uj = for j # i. Let {Fy,..., F}} be a collection of facets of &(C™). Let r be the number of i-s such
that exactly one of AY and A} belong to {Fy,..., F.}, and let s be the number of i-s such that both A9
and A} belong to {Fi, ..., Fi}. We call (r,s) the type of {F,..., Fi}.

Note that when the type of {Fy,..., Fx} is (v, s) then there are exactly n —r — s coordinates i such
that neither A? nor A} belong to {Fy,..., F}}.

The following observation, originally due to Ron Adin [1], gives a full description of those collections

of facets {Fy,..., Fi} which are an (n — 1)-dimensional ball or sphere.

Lemma 3 The collection of facets {Fi,..., Fi} of the boundary of an n-cube is an (n — 1)-sphere if
and only if it has type (0,n) and it is an (n — 1)-ball if and only if its type (v, s) satisfies r > 0.

Remark Lemma 3 allows us to define (n — 1)-balls or (n — 1)-spheres combinatorially, by prescribing

their types.

Definition 13 A cubical complex C is pure if all facets of C have the same dimension. We define

shellable cubical complexes as follows.

1. The empty set is a ((—1)-dimensional) shellable cubical complez.
2. A point is a (0-dimensional) shellable complez.

3. A d-dimensional pure complex C is shellable if its facets can be listed in a linear order
ko, F,..., F, such that for each k € {1,2,...,n} the subcomplezr C|lp, N (C|lp, U ---UC|R,_,)
is a pure complez of dimension (d — 1) such that its mazimal dimensional faces form a (d - 1)-

dimensional ball or sphere.



By abuse of notation we will say that the attachment of C|p, to C|p, U---UC|g,_, in a shelling

Fo, F1,. .., Fi has type (r,s) if set of facets of C|p, N (C|p, U+ --UC|F,_,) considered as a collection of
facets of C|p, has type (r,s).

The definition of shellability often allows us to prove properties of shellable cubical complexes by
induction on shelling, i.e. by induction on their dimension and the number of their facets. One of the

most important results obtainable this way is the following theorem.
Theorem 5 IfC is a shellable cubical complez, then the Stanley-ring K|[C] is @ Cohen-Macaulay ring.

Proof (Sketch): The basic idea of the proof is due to Hochster. We ohserve that if I; and 7, are
perfect ideals of the same dimension, k, and I) + I, is a perfect ideal of dimension k — 1, then I, N I,
is a perfect ideal. (This is item (ii) in the proof of [12, Theorem 2°], essentially equivalent to [13,
Proposition 18].) Hence, like in the proof of [12, Theorem 2°], we can prove the perfectness of the
face ideal J(C) of a a shellable cubical complex C by induction on the number of facets. We leave the
details to the reader. (Note the well-known fact that the perfectness of an ideal in a polynomial ring

implies the Cohen-Macaulay property of the factor by this ideal-see, e.g. [2, Theorem 3.5.8].) a

Another example to the use of induction on shelling is the following elementary lemma, which we

will use later.

Lemma 4 The edge-graph of a shellable cubical complez of dimension at least 2 is bipartite.

Proof: We use induction on the number of facets. Let Fy,..., Fx be a shelling of C. By induction
hypothesis, the complex C|r U ---UC|F,_, has a bipartite edge-graph. Clearly C|p, has a bipartite
edge-graph: when we represent its vertices, as vertices of the standard d-cube [0,1]¢, an appropriate
coloring with 2 colors is to color the vertices according with the parity of the sum of their coordinates.
It is easy to check that the edge-graph of C|p, N (C|, U ---UC|F,_,) is a connected graph. Thus
the induction step follows from the fact that essentially there is only one way to color a connected

bipartite graph. O

5 A homogeneous generating system of degree 2 for I(C)

Theorem 2 inspires the following question. Let I}'(C) be the ideal generated by the monomials ,, - z,
such that the pair {u,v} C V is not contained in any face. When do we have I(C) = I{(C) + I,(C)?

For such complexes I(C) is generated by homogeneous forms of degree 2.

14



D F

Figure 1: A not well behaved cubical complex

Definition 14 We call a cubical complez well behaved when it satisfies I(C) = I{(C) + I,(C).

The following lemma is a straightforward consequence of Theorem 2 and of the trivial inclusion
I{(C) € [(C).

Lemma 5 A cubical compler is well behaved iff for every triple Luq, ug, ug| either {uy,us, us} is
contained in a face of C or there is a |vy,vq,v3] equivalent to |u1,us, us| such that {v;,v;} is not

contained in any face of C.

We will use the statement of Lemma 5 as an equivalent definition of well behaved cubical complexes.

Example Figure 1 represents a not well behaved cubical complex. The facets of the complex are
ABED,BCEF and ACDF.

It is easy to verify that for the triple |A,C, E| and for any equivalent triple, any two elements of

the triple are contained in a face, but there is no face containing all three of them.

Conjecture 1 Every shellable cubical complex is well behaved.

The following lemmas are statements about the properties of an eventual minimal counterexample
to Conjecture 1. (Minimality will always mean minimality of the number of facets.) At the end we will
not get a proof of the conjecture, but the properties to be shown will allow us to exclude all shellable
subcomplexes of a boundary complex of a convex cubical polytope from the class of shellable not well

behaved cubical complexes.
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Definition 15 Let C be a not well behaved shellable cubical complez. We call the triple |uq,us.us] a
counter-evidence if any two of uy, us and uz are contained in some face of C, but no face contains the

set {uy, uz, us}, and the same holds for all equivalent triples in C.

Clearly C is a counterexample to Conjecture 1 exactly when C contains a counterevidence. The

following lemma tells us, how a counterevidence must lie in a minimal counterexample.

Lemma 6 Let C be a minimal not well behaved shellable cubical complex and Fy, Fs, . .., Fy, a shelling

of C. Then every counter-evidence |uq, ug,u3| has ezxactly one element outside Fi, and two elements
mn F.

Proof: The triple |ui,u2,u3] cannot be a counter-evidence, if all three u;-s lie in Fi. Thus at
least one of them must lay outside Fi. If at least two of uy,us,us are not in Fy, then any face
containing at least two of them is also contained in C|p U ---UC|F,_,. In particular, we must have
{ur,uz,uz} C FLU---U Fr_,. By minimality, |u1,ug,us] is not a counter-evidence in the shellable
complex C|p U ---UC|F,_,. Thus there is an equivalent |vy, vy, v3| such that {vy, vy, v3} is contained
in some face of C|p, U---UC|F,_,. But then the same holds in C and so |u;,u2,u3] is not a counter-
evidence. Hence the only way for |y, uz, u3] to be a counter-evidence is to contain exactly one element

outside Fj. O

Corollary 5 Let C be a minimal not well behaved shellable cubical complex and Fy, F,,...,F a
shelling of C and |uy,uy,u3] a counter-evidence such that uy,us € Fy and uz € Fy Then for ev-
ery u € Cspan({u1,us}), the face Cspan({uz,u}) has exactly half of its vertices in Fj.

Proof: If necessary, we can replace the diagonal |u;, uz] by another diagonal of Cspan({u;,u3}) such
that u = u; holds, and so Cspan({us, u}) exists, and we may assume u; = u. By uz ¢ Fj, at most half
of Cspan({us,u}) belongs to F. If less then half is contained in Fy then the diagonal {u;, u3] may be
replaced by a diagonal |uj,u3] such that both u} and uj are outside F. Thus the triple |u},ua, u}]

(which is equivalent to |uq,ug, ug|) will not be counter-evidence by Lemma 6. o

k-1
Proposition 1 Assume that for the shelling Fy, ..., F; of C, the attachment of C|p, to | C|F; has
=1
type (r,0). Then C can not be a minimal not well behaved shellable complex.

Proof: Assume the contrary. When the type is (r,0) then Fy \ (Fy U---U Fj_1) is not empty: there

is at least one vertex which was added when we added Fj. Let |u;,uz, u3] be a counterexample with
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up,uy € Fi, uz € Fy. If Cspan({u1,u2}) contains a newly added vertex, then —after replacing eventu-
ally vy and uy with another diagonal of Cspan({u;, u2})- we may assume u; € Fe\(FLU---U Fi_1).
But then {uz,u3} is not contained in any face of C, and we get a contradiction. Thus we must have
Cspan({ui,u3}) C F1U---U Fk_;. In this case, however, any face containing at least two of u,, uo and

ug is contained in C|p, U---UC|F,_, and so |uy,uz, us] is a counter-evidence in this smaller complex
already. a

Lemma 7 Let C be a minimal not well behaved shellable cubical complex and Fy, Fy, ..., Fy a shelling
of C. Assume that there is a pair H, H' of subfacets which are opposite facets of O(C|r,) and both
belong to C|p, U---UC|F,_,. Let |u1,u2,u3] be a counter-evidence such that uy,us € Fr,us € Fy.
Then there is a face of C containing Cspan({uy,u2}) N H and us.

Proof: If Cspan({u),u2})N H = () then we have Cspan({u,u2}) C H' € C|p U - -UC|F,_,, meaning
that already C|r, U---UC|F,_, was a counterexample. Similar contradiction with minimality arises
when we assume Cspan({uj,u2}) N H' = §. Thus we may suppose u; ¢ H and u; € H, and we
may renumber all equivalent triples |vq,vq,v3) such that v3 € Fi, v; € H' and v, € H holds. Let
uj be the projection of u; onto H. Then we have Cspan({u},us}) = Cspan({us,us}) N H. If the
set {u},ug,u3} is contained in a face, then we are done. Otherwise, given the fact that the cubical
span of any two of u},u; and uj is contained in Clp U---UC|F,_,, a well behaved shellable cubical
complex, we obtain that the triple [uf,us,us| is equivalent to a triple |2y, 29, 23] such that there is
no face of C|p, U---UC|F,_, containing {z1,2;}. Consider a sequence of replacing diagonals, which
demonstrates the equivalence of |uf, up, us| and |21, 22, 23]. Assume that | w1, ug, u3] was chosen from

its equivalence class such that this derivation of equivalence is the shortest possible.

If the first step is replacing the triple |u},us,us] with |w},ws, uz| where {w}, wy} is a diagonal
of Cspan({u},us}) then we get a contradiction with the minimality of the derivation. In fact. let w;
be the projection of wi onto H'. It is easy to check that {wq,w;} is a diagonal of Cspan({u;,u;}),
so |wy,w, u3| is equivalent to |uy,uz,us|, and there is a shorter derivation of equivalence between
lw}, w2, us] and |21, z2,23]. We also get a contradiction when we assume that our first step was
to replace [uj,uz,us] with |u],ws, ws|, where {wq, w3} is a diagonal of Cspan({uz,us}). In this
case, the very same replacement can be performed on |uj,ug, u3| and we obtain the equivalent triple

%1, wg, w3, from which we have a shorter derivation.

Hence we are left with the case when the first step of the derivation involves replacing Lu), u2, us)
with |w}, uz, ws], where {w], w3} is a diagonal of Cspan({u},us}) such that w| € H and ws ¢ Fj.
Let ¢; be the projection of u; onto H'. Then |¢,w}, w3] is equivalent to |u;,uq, u3], so the first step
is again unnecessary.
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Therefore we may assume that at least two of u)},u; and us are not contained in a common
face. This pair cannot be {u},u3} C Fi and it cannot be {uy, us} because then |u1,u2, ug] is not a
counterexample. Finally, if {u},u3} is not contained in any face, then we obtain a contradiction since

lq1,u], u3] is not a counterevidence but is equivalent to lu1, ug, us|. O

Lemma 8 Assume Fi,..., F} is a shelling of a minimal not well behaved complez C, and w1, ug, us|
is a counter-evidence with uz ¢ Fy,. Assume H and H' are opposite facets of 3(C|r,), such that
they both belong to C|p, U - UC|F,_,. Then there is no edge {v,w} € Cspan({uy,us}) for which
ve H,we H' would hold and Cspan({us,v, w}) would ezist.

Proof: Assume the contrary. Since {v,w} is an edge, either {us,v} or {us,w} is a diagonal of
Cspan({u3,v,w}). W.lo.g. we may assume that {us,v} is a diagonal. We also may assume that
the triple |u1, ug,u3] was chosen in such a way that u; = v holds. (If not, we can replace the pair
lu1.ug| with another pair containing v € Cspan({u1,uz}).) Let u} be the vertex diagonally opposite
to w in Cspan({u3,v,w}). Then [uy, uz, us) is equivalent to |w, uy, u3| and here we have u} ¢ F}. and

{w,u} C H' € C|p, U -+ -UC|F,_,, contradicting the assumption about the minimality of C. a

k—1
Proposition 2 If C has a shelling Fy,..., F; such that the attachment of Clr, to U C|F; has type
i=1

(r,s) with s > 2, then C is not a minimal not well behaved shellable complec.

Proof: Assume the contrary. Let Hy, H; and H,, H} be pairs of subfacets which are opposite in Fy,
all belonging to C|r, N (C|p, U---UC|F,_,). Assume furthermore that |21, ug, uz] is a counterevidence
satisfying wy,u € Fy, uz ¢ F. Then Cspan({uy,u3}) N H; and Cspan({uq,uz}) N H! are non-empty
by the minimality of C. By Lemma 7, Cspan({u;,u2}) N Hy is contained in a face with uz. But then
we can find v,w € Cspan({u1,uz}) N Hy such that {v,w} is an edge and we have v € Hy,w € H},
contradicting Lemma, 8. o

Lemma 9 Let C be a minimal not well behaved shellable complez. Let H and H' be opposite facets of
A(C|F,) such that H also belongs to (C|g, U---UC|p,_,) but H' does not. Assume, there is a counter-

evidence [u1, uz, uz|, such that uy,uy € Fi,us3 € Fi, and Cspan({uq,u2})N H # @ hold. Then for any
u € Cspan({uy,u2}) N H' we have

Cspan({ug,u})N F, C H'.
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Proof: Note first that Cspan({uy, u2})NH' # 0 otherwise |u, uz, u3] would also be a counter-evidence
in (C|/, U---UC|R,_,). W.log. we may assume u = u; and so u3 € H. By Corollary 5 the face
Cspan({us, u1}) has exactly half of its vertices in Fi. In particular, u3 is connected by an edge to
a unique vertex v € F; and we have Cspan({us,u1}) N Fx = Cspan({u;,v}). Thus we only need to
show v € H'. If not, then we can replace the diagonal lu3, u1] with a diagonal |u},v] and obtain an

equivalent triple |v,ug, u5| with v, u; € H, contradicting the assumption of minimality of C. a

Proposition 3 Let C be shellable d-dimensional minimal not well behaved cubical complez, with

shelling Iy, Fy, ..., Fy. Then the type of the attachment of C|p, to C|p, U ---U C|F,_, can not be
(ryd—r).

Proof: Assume the contrary. By Proposition 1 and Proposition 2 we may assume that the type of the
attachment of C|p, to C|p, U---UC|F,_, is (d — 1,1). Thus, taking a standard geometric realization
¢ of C|F,, we may assume that exactly the following facets of 3(C|F,) belong to C|p, U---UC|p,_,:
AV AY, .. AT, AY and Al

Let |u1,ug,u3] be a counter-evidence such that uy,us € Fy,u3 ¢ Fi, and dim Cspan({uq,uz2})
is maximal under these conditions. Then, similarly to Corollary 5, we can show that for every u €
Cspan({uy,uz}) the face Cspan({us, u}) exists and has exactly half of its vertices in Cspan({uy,us}).
In fact, w.l.o.g. we may assume u; = u and so Cspan({us, u}) exist. At most half of Cspan({u3,u;})
may belong to Cspan({u;,u;}), because otherwise F;, would also contain more than half of the vertices
of Cspan({us, u1}), in contradiction with Corollary 5. If less than half of the vertices of Cspan({us, u1})
belong to Cspan({u;, u2}) then there is a u{ € Cspan({us, u1}) such that u} is connected to u; by an
edge, and uj € Fj.\ Cspan({u1,u2}). Let uj be the vertex diagonally opposite to u} in Cspan({us,u;}).
The triple |uj,us,u3| is equivalent to |uy,uq,us), it satisfies, wj,uz € Fy (hence we must have

uy ¢ Fy), and Cspan({u},uz}) properly contains Cspan({u,us}), contradicting the maximality of
dim Cspan({u1, uz}).

By the minimality of C, for any i € {1,2,...,d~1} the vertices v, and uy cannot be both contained
in A?, otherwise the triple Lu1, ug, us| is already a counter-evidence in C|p, U ---U ClF,_,. Similarly,
the last coordinate of uy and uy can not agree. These considerations show that the vertices u,v € Fj
defined by ¢(u) def (1,1,...,1,0) and ¢(v) def (1,1,...,1,1) both belong to Cspan({uy,uz}). We
claim that Cspan({us, u})and Cspan({us, v}) are edges. In fact, as noted above, half of Cspan({u3,u})
is contained in Cspan({u1,u2}). It is sufficient to show therefore that Cspan({us, u})NCspan({u.uz})
is zerodimensional. If not, then it contains a vertex u’ for which ¢(u’) differs from ¢(u) from exactly
one coordinate, say the j-th one. When j = d then we get a contradiction by Lemma 8, when j < d—1
we get a contradiction by Lemma 9. Hence {u3,u} is an edge and similarly {u3, v} is an edge. But then

u3,w and v form a triangle in the edge-graph of C, which cannot be bipartite therefore, contradicting
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Lemma 4. O

Propositions 1, 2 and 3 imply the following theorem.
Theorem 6 Every shellable cubical complex of dimension 2 is well behaved.

Proof: Take a minimal counterexample C with shelling Fy,..., Fx. By Lemma 3, the possible types
of attachments of C|, to C|r, U---UC|F,_, are the following: (1,0),(2,0),(1,1) and (0,2). The types
(1,0) and (2,0) are excluded by Proposition 1, type (0,2) is forbidden by Proposition 2, and finally
type (1,1) is disallowed by Proposition 3. a

Finally, we prove the main theorem of this section.

Theorem 7 Let C be a (d — 1)-dimensional shellable subcomplez of the boundary compler of a
d-dimensional convez cubical polytope P. Then C is well behaved.

Proof: Let C be a minimal counterexample, and Fy, F3, ..., F) a shelling of C. By the previous results,
we may assume d > 4, and that the type of attachment of C|p, to Cjp, U---U Clr._, is (r,1) with
0 <r<d-3. Let Hy and H, be the only pair of opposite facets of O(C|F,) such that they both
belong to C|p, U---UC|F,_,.

Let us take a counter-evidence |u1,us, us| such that uy, uy € Fi, us € Fi hold, and the dimension
of Cspan({u1,uz}) be maximal under these conditions. Let us denote Cspan({u,u;}) by 3. By
Lemma 7, the faces 7; dgf Cspan({us} U (73 N H;)) exist for ¢ = 1,2. As in the proof of Theorem 6,

the maximality of dim Cspan({u;,u;}) implies that exactly half of the vertices of 7, or 7, belong to

73. Thus we have

T T
:]Tlﬂrgl:|7-3OH1|:|—23|:|T3QH2|:|T207.3|:I_2L|,

and so 11,72 and 73 have the same dimension. Let us denote this dimension by 4.

I
2

Let S be the affine hull of u3 and 73. It is a (6 +1)-dimensional plane, and it intersects the polytope
P in a (& + 1)-dimensional polytope P’. Clearly, S contains both 7 and 73, because half of these faces

is a (6 — 1)-face of 73 (and so belongs to S) and the affine span of uz and 7; N 73 contains ;. (i = 1, 2.)

Consider the “pyramid” @ def conv(usz,73). We may assume that relint(Q) C int (P) otherwise
@ is contained in a face of 9(P), and so there is a face of d( P) containing 7,73 and 73. It is casy to

convince ourselves, however, that no cube can contain three equidimensional faces with the intersection
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Figure 2: Illustration to the proof of Theorem 7

properties of 71,7, and 73: if half of the vertices of 7y and 7, intersect 73 in opposite halves of 75 then
71 N 72 would be empty, and we need uz € 7y N 5. The affine hull of Q is S.

W.lo.g. we may assume that u, is diagonally opposite to uz in 7. (If not, we may replace ;. ug]
by another diagonal of 73.) Let uj be the vertex of 71 \ 73 which is connected to u; by an edge. (In
other words, let u3 be the vertex diagonally opposite to us in the face 7, \ 73.) Let ) be the vertex
diagonally opposite to uy in 73 N 7. Then ] is diagonally opposite to ) in 7y and so |u}, ug. uf] is
equivalent to |uy,uz,us], hence there is a face containing u% and us. In particular, the line segment

connecting u3 and uy belongs to d(P) and thus it cannot have any common point with relint(Q).

Consider now those supporting hyperplanes of @ in § which intersect Q in a facet of . These
hyperplanes are é6-dimensional, and with the exception of the affine hull of 75, they all arise as the
affine hull of u3 and of a (§ — 1)-face of 3. For each such hyperplane K, let us call that half-space of
K in 5 which contains @, the positive half of K. If K contains u},us and ua, then uj is in the strict
positive half of K. In fact, K then intersects 73 in a (§ — 1)-face of 73 and so it intersects 7y N 3 in
a (6 — 2)-face. K N 7y contains this (§ — 2)-face and u3, and so K N7y contains a (6 — 1)-face of 1.
Thus A N7y is equal to this (§ — 1)-face, because otherwise K would contain the whole affine hull of

71 which does not contain uy. The (6 — 1)-face K N7 of 7y contains u} and so it cannot contain uf
which is diagonally opposite to u} € K in 7.
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The only hyperplanes of facets of @ through u, which don’t contain both u3 and u} are aff (r3)
and aff (73). The vertex uj cannot be in the strict positive half of both of them, because otherwise the
line segment connecting uj with u; would contain a point of relint(Q) close to uy. Therefore either

ug € aff (73) or wj € aff () must hold. Equivalently, we have either u} € 75 or uf € 7.

Recall that uj € 71 \ 73, so u} ¢ 73. Therefore u3 must belong to 7 and so 7y N 75 contains the
(6 — 1)-face Cspan({us,uj3}), hence 7y N 7, must also be (6§ — 1)-dimensional. We claim that in this
case up is connected to uz by an edge. In fact by what was said above, the line segment connecting
us and uy intersects relint(72) and so 4 and uy are diagonally opposite in 75, and wu3 is connected to
uz by an edge. Therefore uf,us and u3 form a triangle, contradicting Lemma 4. a

Corollary 6 The boundary complez of a conver cubical polytope is well behaved.

Proof: As aspecial case of the results shown in [4], the boundary complex of a convex cubical polvtope

is shellable. Hence we may apply Theorem 7. ad

6 Edge-orientable cubical complexes
Definition 18 We call two edges {u,v} and {u',v'} of a cubical complez C parallel if there is a facet
F € C containing {u,v',v,v'}, and a subfacet H C F such that |{u,v} N H| = [{«’,v'} N H| = 1.
We can turn the edge-graph of C into a directed graph by defining a function
m:VxV — {~1,0,1},

satisfying the following properties

(i) m(u,v) = —7(v,u) holds for all u # v,

(i) m(u,v) = 0 if and only if {u, v} is not an edge of C.

(We say when w(u,v) = 1 that “the edge points from u towards v”.)

We call m an orientation of the edge-graph of C or edge-orientation on C if it satisfies the following
condition: given two parallel edges {u,v} and {u’,v'}, a facet F containing these edges and a subfacet
H C F such that {u,v} N H = u, {«/,v'} N H = v, we have

m(u,v) = w(u', )
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We call C edge-orientable, if its edge-graph has an orientation .

In plain English, edge-orientability means that we can direct the edges of C such that “parallel
edges point in the same direction.” As a consequence of Jordan’s theorem, the boundary complex of
a 3-dimensional cubical polytope is edge-orientable. Another often studied class of cubical polytopes
with edge-orientable boundary, is the class of cubical zonotopes. For general cubical polytopes in
higher dimensions, edge-orientability means that every (d — 2)-dimensional manifold connecting the
midpoints of parallel edges is orientably embedded into the boundary of the polytope. Tt seems to
be intuitively clear to the author that there are convex 4-dimensional cubical polytopes, of which the
boundary complex contains a “Mébius strip” of 3-dimensional cubes, but we leave the verification of
this conjecture to the reader.

Conjecture 2 There exist conver cubical polytopes, of which boundary complex is not edge-oricntable.

The following lemma shows the existence of a labeling for a shellable and edge-orientable complex C

which will have important applications.

Lemma 10 Let C be a shellable and edge-orientable complex of dimension at least 2 and T an orien-
tation of the edge-graph of C. Then there is a labeling

0:V —12

such that for every edge {u,v} we have

6(v) — 8(u) = (u,v). (8)

Proof: The proof is analogous to the proof of Lemma 4. Assume C is a counterexample with a
minimal number of facets. Let Fi, Fy,..., Fi be a shelling of C. The complex ClpU---UClp,_, is
shellable, and the restriction of 7 provides an edge-orientation on it. Hence, by the minimality of C,
there is a labeling 6’ on it which satisfies equation (8) for every pair of vertices of ClpU---UL|p_,-
On the other hand it is easy to see that there is a labeling 6” on the cube C|F,: we can take a standard
geometric realization ¢ : C|p, — [0, 1]9™€), such that the only vertex with no incoming edges in C|p,
goes into (0,0,...,0), and the only vertex with no outgoing edges in C|F, goes into (1,1,...,1). Then
we can set 8”(v) to be the sum of the coordinates of ¢(v) for every v € F. It is easy to check that

this labeling will also satisfy (8) for every pair of vertices of Fy.

Clearly, if a labeling 6 satisfies (8) in a complex then the same holds for 8 + ¢, where ¢ is an
arbitrary constant. Thus we may assume that we have a vy € Fi N (F1 U -+-U Fx_1) such that
#'(vo) = 6”(vp) holds. But then, as we have observed in the proof of Lemma 4, the edge-graph of

23



the complex C|p, N (C|F, U---UC|F,_,) is connected. It is easy to see that if # and #” are labelings
satisfying (8) in a directed graph G, which has a connected graph as underlying undirected graph, then
their difference is constant. Thus, by 6'(vo) = 8"(vy), the restriction of # to Clr,N(Cl/U---UC|F._,)
is equal to the restriction of 8” to C[r, N (C|p, U---UC|F,_,) . Therefore we can define

B(v) def ¢(v) whenve FRU---U Fp_y
- 6"(v) when v e Fy

and obtain a labeling for C that satisfies (8), contradicting our assumption. a

Lemma 11 Let C be a shellable, edge-orientable cubical complez, and T be an edge-orientation of C.
Then the transitive closure <, of the relation

def

u <y v whenever m(u,v) =1

is a partial order on the vertex set V of C.

Proof: We only need to show that there is no sequence of vertices vy, v2,..., 0k such that
T(v1,v2) = w(v2,v3) = -+ = T(Vk—1,v%) = T(vg, 1) = 1

would hold. If we had such a sequence then for a labeling 6 satisfying (8) we would have 8(v;};) =
B(vi)+ 1fori=1,2,....,k—1, and 6(vr) + 1 = 6(vy). But this would imply

6(v1) = 0(vy) + &,

a contradiction. a

Definition 17 Let C a shellable, edge-orientable cubical complez and © an edge-orientation of C. We

call the partial order described in Lemma 11 the partial order induced by m, and we denote it by <.

We define the triangulation A,(C) of C induced by 7 as follows.

1. We set V(2.0) % vie).
2. A set {vy,...,u} C V(C) is a face of A,(C) if and only if Cspan({v1,v2,...,vx}) erists and

{v1,v2,..., 0} is a chain in the partially ordered set (V, <).

Lemma 12 Given a shellable and edge-orientable cubical complez C and an edge-orientation m of C,
we have £:(C) = A<(C) for any linear extension < of the partial order <.
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Proof: Take an arbitrary subset {vy,...,v;} of the vertex set V. Without loss of generality we may
assume vy > --- > Ug.

If Cspan({v1,...,vc}) does not exist then {vy,...,v} does not belong to any of AL (C), A(C).
Thus we may assume that Cspan({vy,...,v;}) exist, and w.l.o.g. we may even assume that there is

no vertex outside Cspan({vi, ..., v}), i.e., C is a standard n-cube C™ = Cspan({o,...,v;}) for some
n.

In this special case the statement can be easily shown by induction on k. In fact, {v1,..., 04} €
AR (C) holds iff we have {vi,..., 061} € Ar(Cspan({v1,...,vk-1})) and v is the unique minimal
element of Cspan({v1, ..., v}) with respect to the partial order <,. Similarly, we have {v1,..., 7%} €
A(C) i {vr,...,v-1} € Ac(Cspan({vr,...,v6-1})), and vy is the unique minimal element of
Cspan({v1,...,v¢} with respect to the linear order <. Observe finally that <, being an extension

of <r, the unique minimal element of Cspan({wvy,...,vx}) is the same with respect to both orders. O

Recall that a d-dimensional pure simplicial complex A is completely balanced if the vertex set of
A may be colored with d + 1 colors such that no two vertices of the same color belong to a common
face.

Lemma 13 Let C be a d-dimensional shellable edge-orientable compler and © an edge-orientation
of C. Then A\, (C) is a completely balanced simplicial complez.

Proof: As shown in Lemma 10, there is a labeling 8 of the vertices of C satisfying (8). Color the
vertex v with the modulo (d+ 1) equivalence class of 6(v). We claim that A,(C) becomes a completely
balanced complex, with this coloring. In fact, let us take a a face {vy,vs,.. U} € Ag(C). By the
definition of the triangulation, there is a facet F € C containing {v1,vs,...,v}, and w.l.o.g. we may

assume vy <r vy <p :-+ <y k. It is an easy consequence of (8) that then we have
6(v1) < O(v2) < -+ - < O(wg).

The values of # on F are d+ 1 consecutive integers, hence no two of the above 0(v;)-s can be congruent
modulo (d + 1), and so A,(C) is a balanced complex. ]

Remark The coloring described in the proof of Lemma 13 allows as to give an explicit system of
linear parameters for K[C]. In fact, {Zcolor(u)m’ T, 1 t=1,2,...,d+ 1} is such a system. We leave
the proof to the reader.
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7 The Eisenbud-Green-Harris conjecture

Using the Stanley ring of the boundary complex C of an edge-orientable convex cubical polytope we
may construct an interesting example to a conjecture of D. Eisenbud, M. Green and J. Harris. Before
stating the conjecture, let us recall the definition of the h-vector of a graded algebra. Tt is a well known

fact that the Hilbert-series of a Noetherian N-graded algebra A may be written in the following form.

L k-t
HAT) = = 9)

where d dgf >_ €; is the Krull-dimension of A, i.e. the maximum length of an increasing chain of

1
prime ideals. (See e.g. [21].)
Definition 18 We call the vector (ho, ..., h;) in (9) the h-vector of the graded Noetherian algebra A.

In particular, for a simplicial complex A or a cubical complex C we define the h-vector of the
simplicial or cubical complex to be the h-vector of their Stanley rings.

Now we may formulate the Eisenbud-Green-Harris conjecture as follows. (See [7, Conjecture
(Vm)]-)

Conjecture 3 Let I be an ideal of a polynomial ring Klzy,...,z,] which contains a regular sequence
of length v in degree 2. Then the h-vector of the graded algebra Klzy,..., 2] /1 is the f-vector of

some simplicial complez.

Example Let C be the boundary complex of a (d + 1)-dimensional convex cubical polytope, and
assume that C is edge-orientable with an edge-orientation 7. Assume furthermore that K is an infinite
field. Then the Stanley ring K(C) is a d-dimensional Cohen-Macaulay ring, and it contains a linear
system of parameters [1,...,l3. We claim that the polynomial ring Klz, : veV] /(11’ ) and

the natural image of the face ideal I(C) in this ring provide an example for Conjecture 3.

In fact, by Theorem 7 the face ideal I(C) is generated by homogeneous elements of degree 2, and
so the same holds for the image I(C) of I(C) in Kz, : veV] /(11 o) Thus I(C) contains a

maximal regular system of parameters in degree 2. The factor of Klzy : ve V] /(11 g by I{(C)

is Artinian, isomorphic to KI[C] /(11 1) and its h-vector is equal to the h-vector of the cubical
complex C by the Cohen-Macaulay ’prof)erty of K[C]. By Corollary 3 this h-vector is the also the
h-vector of any triangulation via pulling the vertices A.(C) of C. By Lemma 12, whenever we take
a linear extension < of the partial order <., the simplicial complex A(C) is equal to the simplicial

complex A,(C). Thus we are left to show that the h-vector of A,(C) is the f-vector of some other
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simplicial complex. But by Lemma 13 the simplicial complex A,(C) is completely balanced, and
~being a triangulation of a sphere— it is a Cohen-Macaulay simplicial complex by [19, Corollary 4.4].
Therefore its h-vector is the f-vector of another simplicial complex by [18, 4.5 Corollary].
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