INDISPENSABLE BINOMIALS OF TORIC IDEALS

HIDEFUMI OHSUGI AND TAKAYUKI HIBI

ABSTRACT. A binomial f belonging to a toric ideal T is indispensable if, for any
system F of binomial generators of I, either f or —f belongs to F. First, it will
be proved that a binomial f € I is indispensable if and only if, for any reduced
Grobner basis G of I, either f or —f belongs to G. Second, we show that the
toric ideal I arising from a finite graph G whose complementary graph is weakly
chordal is generated by the indispensable binomials if and only if no complete
graph of order > 4 is a subgraph of G. Third, we completely classify indispensable
binomials of the toric ideal I arising from a finite graph G satisfying the odd cycle
condition. Finally, the existence of indispensable binomials of I; will be discussed.

INTRODUCTION

The theory of toric ideals has been developed from viewpoints of combinatorics
and computational commutative algebra. One of the recent topics arising in applied
mathematics is to study the problem when a toric ideal possesses a unique minimal
system of binomial generators. Following [7] a binomial f belonging to a toric ideal
I'is indispensable if, for any system F of binomial generators of I, either f or — f
belongs to F. When is a toric ideal generated by the indispensable binomials?

The present paper is organized as follows. First of all, in Section 1, we discuss
fundamental binomials, indispensable binomials and circuits of toric ideals. It will
be proved that every fundamental binomial is indispensable and that every funda-
mental binomial is a circuit. In addition, we will present (i) a binomial which is
both indispensable and a circuit but not fundamental; (i) a binomial which is indis-
pensable but not a circuit; (iii) a binomial which is a circuit but not indispensable.
Second, in Section 2, it will be proved that a binomial f belonging to a toric ideal I
is indispensable if and only if, for any reduced Grébner basis G of I, either f or —f
belongs to G. Third, in Section 3, following [5], we study the toric ideal I, arising
from a finite graph G. Based on the combinatorial classification of indispensable
cycles (Theorem 3.2) we will show that the toric ideal I of a finite graph G whose
complementary graph is weakly chordal is generated by the indispensable binomials
if and only if no complete graph of order > 4 is a subgraph of G. See Theorem 3.4.
Third, in Section 4, we completely classify indispensable binomials of the toric ideal
I arising from a finite graph G satisfying the odd cycle condition [2]. See Theo-
rem 4.3. Finally, the existence of indispensable binomials of I will be discussed in
Section 5. Let G be a finite connected graph with I # (0) and suppose that G has

no vertices of degree 1. (The degree of a vertex ¢ of G is a number of edges of G
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with 7 € e.) Then I possesses an indispensable binomial if and only if G is not a
complete graph. See Theorem 5.3.

1. BINOMIALS AND TORIC IDEALS

Let K[t] = K[t,... ,t4] denote the polynomial ring in d variables over a field K
with each degt; = 1. Given a finite set 4 = {f,..., fu} of monomials belonging to
K[t] such that all the f;’s have the same degree, we write K[A] for the subalgebra
of K[t] generated by fi,...,f, over K. Let K[x] = Kl[ay,...,x,] denote the
polynomial ring in n variables over K with each degz; = 1 and 7 : K[x] — K[A]
the surjective ring homomorphism defined by setting 7(z;) = f; for all 1 < 5 < n.
We write I 4 for the kernel of 7 and call 14 the toric ideal of K[A].

A binomial of K[x] is a polynomial f of the form f = u — v, where u and v are
monomials of K[x] with u # v and with degu = degv. The support of a monomial u
of K[x] is supp(u) = {; : z; divides u } and the support of a binomial f = u — v is
supp( f) = supp(u) Usupp(v). A binomial ideal of K[x] is an ideal of K[x] generated
by binomials. For example, the toric ideal I4 of K[A] is a binomial ideal.

A binomial f = u — v belonging to I, is called primitive if there is no binomial
g =u'—v" € I, with f # ¢ such that v’ divides u and v' divides v. Every primitive
binomial is irreducible. The Graver basis of I 4 is the set of primitive binomials of
4. The Graver basis of I 4 is finite and is a system of binomial generators of I 4.

We say that an irreducible binomial f belonging to I4 is a circuit of I 4 if there
is no binomial g € I4 such that supp(g) C supp(f) and supp(g) # supp(f). Every
circnit is irreducible and primitive. A binomial f € I 4 is a circuit of 4 if and only
if [4N K[{z; : z; € supp(f)}] is generated by f.

If f=wu— v is a binomial belonging to I4, then we write Ty for the set of those
variables ; such that t; divides m(u) (= 7 (v)). Let K[T;] = K[{t; : t; € T}}] and
Ay = AN K[Ty]. The toric ideal 14, of K[A;] coincides with I 4N K[{:zc1 s w(x;) €
K[T¢]}]. A binomial f € I, is called Jundamental if 14, is generated by f.

Finally, a binomial f belonging to I 4 is called mdzspensable if, for any system of
binomial generators F of 14, either f or —f belongs to F.

Theorem 1.1. (a) Every fundamental binomial is a circuit.
(b) Bvery fundamental binomial is indispensable.

Proof. (a) Let f = u — v be a binomial belonging to I4. Since n(z;) € K[Ty]
it x; € supp(f), one has supp(f) C {z; : w(z;) € K[Tf]}. Let g € I4 be a
binomial with supp(g) C supp(f). Then g € Iy, If f is fundamental, then Iy,
is generated by f. Since g is a binomial, it follows easily that g is of the form
g = +(u'u — v'v), where v’ and v' are monomials of K[x] with degu’ = degv'.

particular supp(f) C supp(g). Hence supp(f) = supp(g). Thus f is a circuit of IA.

(b) Let F be any system of binomial generators of I 4 and f = u—v afundamental
binomial of I4. If neither f nor —f belongs to F, then one has 0 £ h = o/ — o' €
F such that v’ divides u. Hence n(v') € K[Ty]. Since m(u') = n(v'), one has
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m(v') € K[Ty]. Thus h € Iy, = (f). This is impossible since h # 0, h # f and
degh < deg f. U

Example 1.2. (a) Letd = 6, n==8and A= {tltg, tgtg, t3t4, t4t5, t5t6, tltﬁ, tQtG, t3t5}.
The binomial f = z 2525 — 222476 belonging to 1,4 is a circuit and indispensable.
However, f is not fundamental.

(b) Let d = 8, n = 10 and A = {tltg,tgtg,tltg,t3t4,t4t5,t3t5,t5t6,t6t7,t7t3,t6t8}.
The binomial f = 21242623710 — T2T3T5T729 belonging to I 4 is indispensable. How-
ever, f is not a circuit.

((“) Let d = 4, n =6 and A = {tth,t1t3,t1t4,t2t3,t2t4,t3t4}. The binomial
f = z126 — Tox5 belonging to I 4 is a circuit. However, f is not indispensable.

2. REDUCED GROBNER BASES

We refer the reader to, e.g., [1] and [6] for fundamental materials on Grébner
bases. Work with the same notation K[t] = K[t,,... ,t4], A= {f1,... cfnt KA,
Kix|] = K[z1,... ,2,] and I 4 as in the previous section.

Given a monomial order < on K[x], we write G.(I4) for the reduced Grobner
basis of I4 with respect to <. Since G.(I,4) is a system of binomial generators of
4, it follows that if a binomial f belonging to I, is indispensable, then either f
or —f belongs to G.(14). More precisely, the indispensable binomial of I4 can be
characterized in terms of the reduced Grébner bases of I 4. In fact,

Theorem 2.1. Let f be a binomial belonging to I4. Then the following conditions
are equivalent.

(1) f is indispensable;

(i) For any lezicographic order <i. on K([x], either f or —f belongs to G, (I4);

(ii1) For any reverse lezicographic order < evex 0N K{[x], either f or —f belongs
to g<rev]ex ([A):/

(iv) For any monomial order < on K|[x|, either f or —f belongs to G- (I14).

Proof. We already discussed (i) = (iv). Each of (iv) = (iii) and (iv) = (ii) is
obvious. We will show that (ii) = (i) and (iii) = (i).

( (i) = (i) ) Given a binomial f = uy — v, belonging to I4 which is not indis-
pensable, we choose a system of binomial generators F of I4 such that neither f
nor — f belongs to F. Since f € I, for a monomial w of K[x] with w # 0 and for
a binomial g € F, one has wg =ug—v. Let h=wg— f =vy —v € I 4.

It h =0, then f = wyg. Since f # g, one has w # 1. Thus f is reducible. Hence
[ can belong to no reduced Grébner basis of 1 4.

Let h # 0. If h is reducible, then there is an irreducible binomial A’ = ' —v' € I,
with u' # v, such that u’ divides vy. Let <o, denote a lexicographic order on K[x]
such that ing, (A') = . Here in._ (h') is the initial monomial of A’ with respect
t0 <iex. Hence neither f nor —f belongs to G.,_ (14).

Similarly, if wg is reducible, then f ¢ G (I4) and —f ¢ G (I4) for some
lexicographic order <j,, on K[x].
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Now, suppose that both binomials wg and h are irreducible. In particular w = 1.
Let 2; € supp(ug) and z; € supp(vg). Let <., denote a lexicographic order on K[x]
such that each of z; and z; is bigger than z; for all k with k # i and k # j. Since
x; ¢ supp(v) and z; ¢ supp(v), one has incy (g9) = uo and incr (h) = v. Thus
J &G (Ia) and —f & Gon (14), as desired.

( (iii) = (i) ) In the above proof of (ii) = (i), each of the lexicographic orders
Clex> <jex and <jo, can be chosen as a reverse lexicographic order. Thus if f is not
indispensable, then there is a reverse lexicographic order < eviex 0N K[x] such that

f & Gcnnlla) and —f & G\ (14). O

Corollary 2.2. Let f; =1 ---t; and set aj = (ayj, ... ,aq) € Z%. If there exists
an indispensable binomial u — v € I4 such that neither u nor v is squarefree, then
there exists no reqular unimodular triangulation 6, Chapter 8] of the convex hull of
{al, C ,an}.

The converse of Corollary 2.2 is false in general. See Example 4.5.

Example 2.3. Let K|z] denote the polynomial ring in one variable over a field K
and [ = (z — 1) = (z? — z,z% — 1). Since {z — 1} is the only reduced Grobner basis
of I and since {¢* — z,z? — 1} is a minimal system of generators of I, Theorem 2.1
cannot be generalized to, e.g., lattice ideals in the obvious way.

3. WEAKLY CHORDAL GRAPHS

When is a toric ideal generated by the indispensable binomials? Following [5] we
study toric ideals arising from finite graphs.

Let G be a finite connected graph on the vertex set [d] = {1,...,d} with no
loop and no multiple edge and E(G) = {ey,...,e,} the set of edges of G. Let, as
before, K[t] = K{t,,... ,t;] denote the polynomial ring in d variables over a field
I¥ with each degt; = 1. We will associate each edge e = {4,5} € E(G) with the
squarefree quadratic monomial t* = t;t; belonging to K[t]. Let Aq = {t®,...  te}
and K[G] = K[Ag]. Let K[x| = K[z1,...,,] denote the polynomial ring in n
variables over K with each degz; = 1 and write I (C K[x]) for the toric ideal of
K[G]. For notation and terminologies we use in the present section, we follow [5].
In particular if I' is an even close walk of G, then fi = fI(«+) - l(f) is the binomial
[5, p. 512] coming from I'. One has fr € Ig. Moreover, [5, Lamma 1.1] guarantees
that I is generated by all the binomials f, where I is an even closed walk of G.

The following Example 3.1 is essentially discussed in [5].

Example 3.1. (a) Let G be a finite bipartite graph. For a binomial f belong-
ing to Ig, the following conditions are equivalent: (i) f is indispensable; (i) f is
fundamental; (iii) f = f¢ for an even cycle C' with no chord.

(b) The toric ideal I of a finite bipartite graph G is generated by the fundamental
binomials of /.
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In the study of indispensable binomials of the toric ideal I; arising from a finite
graph G, the most fundamental question is when the binomial fc coming from an
even cycle C is an indispensable binomial of .

Let G be a finite connected graph and C = ({v1,v2}, {va,v3},... , {vag, 11}) an
even cycle of G of length 2q. A chord e = {v;,v;} with 1 < i < j < 2¢ is an
even chord (resp. odd chord) if j — i is odd (resp. even). When e = {vi,v;} and
e' = {vy,v;} are odd chords of C with 1 < i <j7<2and 1 <7 <j <2¢, wesay
that e and €' cross effectively in C if either i < ' < j < j’ ori' <i < j' < j and if
¢ — i is odd. (Since each of j — i and j' — 7' is even, it follows that each of j — 7,
J'—Jjand j' —1is odd.)

Theorem 3.2. Let G be a finite connected graph and I its toric ideal. Given an
even cycle C of G of length > 4, the binomial fc belonging to Ig is indispensable

if and only if (i) C has no even chord and (i) C has no odd chords e and €' which
cross effectively in C.

Proof. Let C be a cycle of length 4 with the vertex set {v;,vs,vs,v4}. It follows
casily that the binomial fc is indispensable if and only if the induced subgraph
of G on {vy,vs,v3,v4} is not a complete graph of order 4. In other words, fo is
indispensable if and only if C satisfies the conditions (i) and (ii), as required.

Let C' be an even cycle of length > 6. We will show that the binomial fc is
indispensable if and only if C satisfies the conditions (i) C' has no even chord and
(i) €' has no odd chords e and €' which cross effectively in C.

(First Step) (a) If an even cycle C has an even chord, then (First Step) (a) of [5,
p. 519] says that there are even cycles C' and C" and monomials w and w' with
w # 1 and w' # 1 such that fo = wfer — w'fen. Hence fe is not indispensable.

(b) Let C be an even cycle of G with no even chord and suppose that C' has two odd
chords e and e’ which cross effectively in C. Let, say, C = ({1,2},{2,3},..., {2g, 1}
and e = {1,2i+1} and ¢’ = {2j,2k} with 1 < 2§ < 2i+1 < 2k < 2g. Let ¢ > 6. Let
(" be the even cycle (e, {21,20+1} ... ,{2j,2j +1}, ¢, {2k, 2k+1},...,{2¢,1}) and
C" the even cycle (e, {20+1,2i+2}, ..., {2k—1,2k}, ¢/, {2j —1+1,25},... ,{1,2}).
By using the same technique appearing in (First Step) (b) of [5, p. 519], there are
monomials w and w' such that fc = wfe — w' fou. Hence fe is not indispensable.

(Second Step) Let C be an even cycle of G of length 2¢ > 6 with no even chord
and with no odd chords e and e’ which cross effectively in C, and suppose that
the binomial f is not indispensable. Let, say, C' = ({1, 2},{2,3},...,{2¢,1}) and
er = {1,2}, e = {2,3},... ,eq, = {2¢,1}. It follows from [5, Lemma 3.1] that there
exists an even closed walk I' (#£ C) of G such that the binomial fr is primitive and
fl(;H divides f}#) Let f1£+) = T24 1251 " " T24,~1, where 1 <<l <+ < ip <gq,
and fé‘) = ;T x5, Since fFH) is squarefree and since ey;, (1 and ey, 41 with
$ # t possess no common vertex, it follows easily from [5, Lemma 3.2] that I must
be an even cycle. Since I' # C, one of the edges €)1, €jy,- - ,€;, must be a chord of

C’. Moreover, since C possesses no even chord, such a chord must be an odd chord.
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Let I';, Iy, ..., I's denote the “connected components” of C N T and write
['= (ejzl 3 Fla eje2a FQa ejzaa sy €j16 3 Fé)a

where €ty Cieysr - - - » €5, are 0dd chords of C.

Each chord e divides C' into C*(e) and C™(e) in the obvious way. We will assume
that the region surrounded by C* (e, ) Ue;, contains no chord ej,, With 2 <k <4,
Let, say, e;, = {2, —1,2i,— 1} with r < s, and C+(ejll) = (e2i,—1,€2i,, - ,€2i,_2).
Let ej, = {244,240}, Thus I'y = (eas, 1,€0,,... ,€2,-1). Since the odd chords €jq,
and e;,, cannot cross effectively in C, one has 21, < 2i, < 24, — 1. This contradicts

our assumption that the region surrounded by C+(ejll) Uey,, contains no chord e,
with 2 < k < 4. O

(O (ejel )

A finite connected graph G is called weakly chordal if every cycle of G of length 4
has a chord. We will study the toric ideal of the complementary graph of a weakly
chordal graph. It follows easily that the complementary graph of a finite connected
graph G is weakly chordal if and only if the following condition is satisfied: (x) If e

and €' are edges of G with e e’ = (), then there is an edge ¢” of G with ene” # 0
and with ' Ne” # (.

Lemma 3.3. Let G be a finite connected graph whose complementary graph is
weakly chordal and suppose that no complete graph of order > 4 is a subgraph of
(i. Then the toric ideal I is generated by the binomials fco, where C is a cycle of
G of even length > 4 satisfying the conditions (i) and (ii) of Theorem 3.2

Proof. It follows from (Second Step) (a) and (Third Step) of [5, pp. 520 ~ 521] that
I is generated by the binomials fe, where C is an even cycle. Let (I¢)<q denote
the binomial ideal of K[x] which is generated by the binomials fe, where C is an
even cycle of G of length < 2¢. Since no complete graph of order > 4 is a subgraph

of (4, every cycle of G of length 4 satisfies the conditions (i) and (ii) of Theorem 3.2.
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It C 1s an even cycle of length 2¢ > 6 with an even chord, then (First Step) (a)
of the proof of Theorem 3.2 says that fc € (I¢),.

Let C be an even cycle of G with no even chord and suppose that C has two odd
chords e and e’ which cross effectively in C. Work with the same situation as in
(First Step) (b) of the proof of Theorem 3.2. If each of C" and C" is of length < 2g,
then fo € (Ig)<q. Let the length of C' be equal to 2g. Thus e = {1,2 + 1} and
¢ = {2,2:+2} with 1 <1 < ¢. Since g > 3, it follows that either (2i+1)—2 > 3 or
(2q+1) = (20+2) > 3. Let (204+1)—2 > 3. Let e, = {3,4} and e; = {2i+2, 2i +3}.
Since (7 satisfies the condition (*), one has an edge e3 with esMe; # 0 and esNey # 0.
Since €' has no even chord, either ez = {3,2i+ 3} or e3 = {4, 2i +2}. In each of the
cases, the edge e3 is an even chord of the cycle C' of length 2¢. Hence the binomial
Jor belongs to (Ig)<q. Since the cycle C” is of length 4 and ¢ > 3, it follows that
fe =wfer —w' for belongs to (Ig) <, |

We are now in the position to discuss the problem when the toric ideal I of a

finite connected graph G whose complementary graph is weakly chordal is generated
by indispensable binomials of I.

Theorem 3.4. Let G be a finite connected graph whose complementary graph is
weakly chordal. Then the toric ideal I is generated by the indispensable binomials
of I if and only if no complete graph of order > 4 is a subgraph of G.

Proof. (“only if”) Let G be an arbitrary finite connected graph and suppose that a
complete graph of order > 4 is a subgraph of G. In particular G possesses a complete
subgraph K of order 4. Let 1,2,3 and 4 be the vertices of K4 and ey,... ,es are
edges of Ky. Thus K, is the induced subgraph of G on {1,2,3,4}. Let C;,C, and
C'y denote the cycles of length 4 of K. Then none of the binomials f¢,, fe, and fe,
18 indispensable. However, since Iy, = I N K|zy,... , 7], any system of binomial
generators of I must contain at least two of three binomials f¢,, fe, and fe,. Hence
it 1s impossible for the toric ideal I to be generated by the indispensable binomials.

(“if”) Let G be a finite connected graph whose complementary graph is weakly
chordal and suppose that no complete graph of order > 4 is a subgraph of G.
Lemma 3.3 says that I is generated by the binomials fo, where C is an even cycle
of length > 4 satisfying the conditions (i) and (ii) of Theorem 3.2. Theorem 3.2 then
guarantees that I is generated by the indispensable binomials, as required. a

Remark 3.5. Let G be the graph in [5, Example 2.1). Then the complementary
graph is a cycle of length 5 and hence weakly chordal. Although I is generated by
indispensable binomials of degree 2, they are not a Grobner basis with respect to
any monomial order since I has no quadratic Grébner basis.

4. THE ODD CYCLE CONDITION

Let G be a finite connected graph on the vertex set [d] = {1,... ,d} with no loop
and no multiple edge and E(G) = {e),... ,e,} the set of edges of G. If C and C’
are cycles of G, then a bridge between C' and C' is an edge e = {i,j} of G, where

¢ (resp. j) is a vertex of C' (resp. C') and not a vertex of C" (resp. C). We say
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that G satisfies the odd cycle condition [2] if, for any two odd cycles C' and C' of G
having no common vertex, there exists a bridge between C and C'. We study toric
ideal I of a finite connected graph G satisfying the odd cycle condition.

A binomial f € I; is called redundant if f belongs to no minimal system of
binomial generators of I;. In other words, a binomial f € Iz is redundant if
and only if f is contained in the binomial ideal of K[x] which is generated by the
binomials g € I with deg g < deg f.

When G satisfies the odd cycle condition, which binomials belonging to I are
indispensable ?

Lemma 4.1. Let G be a finite connected graph satisfying the odd cycle condition and
['=(C,C") an even closed walk of G, where C = (e, 02}, o2, 45}, ..o, {Fap-1, 11 })
and C" = ({j1,ja}, {J2, 3}, ... , {J2g-1, 51 }) are odd cycles of G having ezactly one
common verter iy = jy.

(a) If fr be indispensable, then (i) either C' or C' is minimal and there is no
bridge between C' and C'; (i) if C' is minimal and if e = {iy,ix} is a chord of C
with 1 <k < k' < 2p, then either k =2 or k' = 2p—1, and k' — k is even; (153) if C'
us munimal and if e = {iy, i} and €' = {iy,isp_1} are chords of C with 2 < k < 2p
and 1 < k" < 2p —1 such that k is even and k' is odd, then k' — k = 1.

(b) Conversely, if C' be minimal and if there is no bridge between C and C’, then
fr 1s indispensable if the following conditions are satisfied: (i) if e = {ik,ip} is a
chord of C with 1 < k < k' < 2p, then either k =2 or k' = 2p — 1 and k' — k is
even; (it) if e = {iy, 5} and ¢ = {ik,i9p—1} are chords of C with 2 < k < 2p and
L <k <2p—1 such that k is even and k' is odd, then k' — k = 1.

Proof. (a) If there is a bride e = {iy, jo} between C and C’ with k #1land £+# 1 or
if there is either a chord e = {i;,4} of C with k % 1 or a chord ¢’ = {j1,7¢} of C'
with ¢ # 1, then (Second Step) of [5, p. 520] guarantees that fr is redundant.

[f there is a chord e = {i), i} of C with 1 < k < k' < 2p such that k' — k is odd,
then fr is redundant.

If there is a chord e = {4y, } of C with 2 < k < k' < 2p — 1 such that k' — k
is even, then the odd cycle condition yields a bride e = {i4, j,} between C and C"
with £ < k" < k" and 1 < ¢ < 2¢. Hence fr is redundant.

It there is a chord e = {iy,4x} of C with 2 < k < 2p such that k is even and if
there is a chord €' = {j,, ji} of C" with 2 < £ < 2¢ such that ¢ is even, then the odd
cycle condition yields a bride e = {i, jo} between C and C’ with 2 < k' < k and
2 <" <{. Hence fr is redundant.

Consequently, it turns out that either C' or C’ is minimal and there is no bridge
between Cand C’. Moreover, in case that C' is minimal and e = {iy, iy } is a chord
of " with 1 <k <k < 2p, either k=2o0r k' =2p—1, and k' — k is even.

Let e = {is, ik} and € = {ip,i9_;} be chords of C with 2 < k < 2p and
I < k" < 2p —1 such that k is even and k' is odd. If k < k' with ¥' — k > 1,
then the odd cycle condition yields a chord e = {i,,4,} of C with 2 < @ < k and

k' < b < 2p — 1. Thus, as we have already discussed, fr is redundant. If k' < k,
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then the same technique as in (First Step) (b) of the proof of Theorem 3.2 enables
us to see that fr is not indispensable.

(b) With assuming that the vertices 4, and j; are different, instead of the even
closed walk T', we may discuss the even cycle

({Z‘hiQ}a {1231.3}7 .- 7{i2p—17j1}) {jlaj2}7 {j?aj.’i}a . ){jQq—lyil}'

It is then clear that (Second Step) of the proof of Theorem 3.2 can be applied
without modification. O

For example, in each of the figures drawn below, the binomial fp with I' = (C, )
1s indispensable.

Lemma 4.2. Let G be a finite connected graph satisfying the odd cycle condition
and I' = (C,T',C",Ty) an even closed walk of G, where C and C' are odd cycles of G
having no common vertex and where I'y and T'y are walks of G both of which combine
a wvertez 1 of C with a vertex j of C'. Then I is indispensable if and only if each of
C" and C" is minimal and has ezactly one bridge = {i,5} and [y =Ty = ({i,5})

Proof. If each of C and C’ is minimal and has exactly one bridge = {i,7} and
I" =1T1" = ({i,j}), then I is an induced subgraph of G. Thus [5, Lemma 3.3
guarantees that fr is fundamental.

Let I' = (C,T',C",Ty) be an even closed walk of G, where C and C' are odd
cycles of ¢ having no common vertex and where I'; and T’y are walks of G both of
which combine a vertex i of C with a vertex j of C'. Since G satisfies the odd cycle
condition, one has a bridge e = {¢', j'} between C and C'. Let cither 7' 3 5 or 5 # 7.
Then (Third Step) of [5, p. 521] guarantees that fr is redundant. Let e = {i,7}.
Since the length of T' is even, it follows that either (i) both I'; and T’y are of even
length or (ii) both I'; and Ty are of odd length.

Let both Iy and I'; be of even length. By using the even closed walks I'y =
(C,e,T1) and I'y = (C",e,I'y), one has fr € (fr,, fr,). Thus fr is redundant.

Let both T'; and I'y are of odd length with T'y # (e). By using the even closed
walk I's = (C,e,C",T) and the even cycle C" = (e, I';), one has fr € (frs, fo)-
Thus fr is redundant.

9



Consequently, it follows that I' = (C,e,C’, ) with e = {i, j}. Finally, if C has a
chord ' = {a, b}, then either (i) there is a bridge ¢” = {i,'} between C' and C"
with either ¢’ ¢ or j' # j or (ii) there is an even cycle C" = (I, ¢") with ' C C.
In each of the cases (i) and (ii) the binomial fr is redundant. O

Theorem 3.2 together with Lemmata 4.1 and 4.2 gives the complete classification

of indispensable binomials of the toric ideal I of a finite connected graph satisfying
the odd cycle condition.

Theorem 4.3. Let G be a finite connected graph satisfying the odd cycle condition.
Then the indispensable binomials fr, where ' is an even closed walk of G, belonging
to the toric ideal I can be classified as follows:

(@) T 1s an even cycle C of G such that (i) C has no even chord and that (ii) C
has no odd chords e and €' which cross effectively in C';

(B) I''=(C,C") is an even closed walk of G, where C' and C' are odd cycles of
G having exactly one common vertez i and where either C' or C' (say, C') is
minimal, such that C = ({i,12}, {i2, 93}, ..., {i9p_1,%1}) with i = i; possesses
the properties (i) if e = {ix,ip} is a chord of C with 1 < k < k' < 2p, then
cither k =2 or k' = 2p — 1 and k' — k 1is even, and (ii) if e = {4y, i} and
e = {ip,lop-1} are chords of C with2 <k <2p and 1 < k' < 2p — 1 such that
k is even and k' is odd, then k' — k = 1;

(v) I'=(C,e,C",e) is an even closed walk of G, where C and C' are minimal odd

cycles of G having no common verter and ezactly one bridge e between C and
.

Theorem 4.3 says that if a finite connected graph G satisfies the odd cycle condi-
tion, then for each indispensable binomial f = u—wv of I, either u or v is squarefree.

However, the converse is false in general, even though I is generated by the indis-
pensable binomials. For example,

Example 4.4. Let G be the finite graph drawn below. Then G does not satisfy
the odd cycle condition. However I is generated by the indispensable binomials
Jro = 2115 — xoxy and fr, = 11247729 — zsrizs where Iy is a cycle of length 4 and
Iy = (C,e6,C’, e5) where C and C' are odd cycles of length 3 having no common
vertex and exactly one bridge eg between €' and C'.

We now close the present section with a counter example for the converse of
Corollary 2.2.
10



Example 4.5. Let G be the finite graph drawn below. Then G satisfies the odd
cvele condition. Thanks to Theorem 4.3, for each indispensable binomial f = u — v
of I¢;, either u or v is squarefree. (In this case, I is generated by indispensable
binomials.) Moreover, in [4], it turns out that there exists no regular unimodular
triangulation of the convex hull of the configuration arising from G.

There are 26 indispensable binomials in I¢: 16 even cycles satisfying (a) in The-
orem 4.3 (i.e., five even cycles of length 6 with one odd chord, ten even cycles of
length 8 with three odd chords, an even cycle of length 10 with five odd chords),
5 even closed walk satisfying (f) in Theorem 4.3 (all of them consist of two odd
cycles of length 3 with one common vertex), and 5 even closed walk satisfying (v)

in Theorem 4.3 (all of them consist of two odd cycles of length 3 without common
vertex joined by a bridge).

5. THE EXISTENCE OF INDISPENSABLE BINOMIALS

We conclude this paper with discussing the existence of indispensable binomials of
toric ideals arising from finite graphs. Let, as before, G be a finite connected graph
on the vertex set [d] with no loop and no multiple edge and E(G) = {ey,... ,e,}

the set of edges of G. Recall that the degree of a vertex ¢ of G is a number of edges
¢ of G with 1 € e.

Proposition 5.1. (a) Let G be a complete graph. Then I; has no indispensable
binomial. In particular Ig has no fundamental binomials.

(b) If G has a verter © of degree 1 and if G' is the induced subgraph of G on
[d]\ {7}, then I has an indispensable binomial (resp. a fundamental binomial) if
and only if Iew has an indispensable binomial (resp. a fundamental binomial).

(¢) Let G be a finite connected graph with no vertex of degree 1. Then Ig = (0) if
and only of G is an odd cycle.

1



Proof. (a) It follows from [6, Theorem 9.1] that I is generated by the quadratic
binomials. As we have seen, a quadratic binomial coming from a complete graph of
order 4 is not indispensable.

(b) We only note that each binomial belonging to a minimal system of binomial
gencrators of I does not contain the variable z; where i € e;.

(¢) This follows from [3, Lemma 1.4] together with Example 3.1. O

Jiirgen Herzog asked the authors if I(# (0)) has at least one indispensable bi-
nomial when G is not a complete graph. By virtue of Proposition 5.1 (b), when
we discuss the existence of indispensable binomials (or fundamental binomials), we
may assume that G has no vertex of degree 1.

Lemma 5.2. If C is an even cycle, then the binomial fc is fundamental if and only
if C has no even chord and has at most one odd chord.

Proof. Let G' denote the induced subgraph of G on the vertex set of C. When C
has an even chord e (resp. two odd chords e’ and €”), then there is an even cycle C'
of G’ with e (resp. ¢’ and €") its edge. Thus fc is not fundamental. On the other
hand, when C has at most one odd chord and no even chord, the induced subgraph
G’ can contain neither an even cycle C' with C' # C nor two odd cycles with at
most one common vertex. Hence (' can contain no primitive even closed walk [5,
p. 516]. Thus fc is fundamental. U

We now come to the main result of this section.

Theorem 5.3. Let G be a finite connected graph with I # (0) and suppose that G
has no vertex of degree 1. Then the following conditions are equivalent:

(i) G is not a complete graph;

(ii) Ig possesses a fundamental binomial;

(iii) I possesses an indispensable binomial.

Proof. First of all, (ii) = (iii) is obvious. Moreover, (iii) = (i) follows from Propo-
sition 5.1 (a). In order to prove (i) = (ii), suppose that G is not a complete graph
and that I; possesses no fundamental binomial. Example 3.1 says that it can be
assumed that G is not bipartite, i.e., G has an odd cycle.

(First Step) It will be proved that, for any even cycle C' of G, the induced subgraph
of ¢ on the vertex set of C' is a complete graph. By Lemma 5.2, it holds in case
that the length of C' is 4.

Let £ > 6 be the length of C and let G’ be the induced subgraph of G on the
vertex set of C'. Since the binomial fc is not fundamental, Lemma 5.2 guarantees
that C' has either (i) an even chord or (ii) two odd chords.

When € has two odd chords e and €', then there is an even cycle C" of G’ with
e and €' its edges whose length is less than that of C. By using the induction on ¢, -
the induced subgraph G" of G’ on the vertex set of C' is a complete graph.

[t turns out that the cycle C' has an even chord e = {i, 5}, which divides C' into

two even cycles C*(e) and C~(e) in the obvious way. Using the induction on ¢ again,
12



the induced subgraph of G’ on the vertex set of C*(e) (resp. C~(e)) is a complete
graph. Then each of the vertices i and j is incident to all vertices of C. Let i'( i, 5)
be a vertex of C*(e) and let j'(# 4,7) be a vertex of C~(e). Since there exists an
even cycle {i,7', 7,7’} of length 4, there exists an edge {7',5'} of G. Thus it follows
that the induced subgraph of G on the vertex set of C is a complete graph.

(Second Step) The case that G has no odd cycle of length 3 is now discussed. It
follows from (First Step) that there exists no even cycle of G and that all odd cycles
of (¢ is minimal. Since G is not bipartite, there is an odd cycle C' of G which is
minimal. Proposition 5.1 (c) says that there exists another minimal odd cycle C"
of GG. Since there exists no even cycle of G, two cycles C’ and C” have at most
one common vertex. If ¢’ and C” have exactly one common vertex, then there
exists no bridge between C' and C”. (Otherwise, G has an even cycle.) Thus the
graph I' = C" U C" is the induced subgraph of G and hence fr is fundamental. A
contradiction arises. Hence C' and C" have no common vertex. Since G is connected,
there exists a walk [ combining a vertex of C' with a vertex of C"”. We assume
that the length of I'" is minimal among all the walks combining a vertex of C’ with a
vertex of C". It then follows that the graph T' = C'UT"UC" is the induced subgraph
of G and fr is fundamental. Again, a contradiction arises.

(Third Step) Finally, the case that there exists an odd cycle C' of length 3 is
discussed. Let G’ be a maximal complete subgraph of G which contains C. Since
(7 is not a complete graph, one has G # G'. Since G has no vertex of degree 1, one
can find a cycle C' of G which is not contained in G’. Tt follows from (First Step)
that if C" is an even cycle, then the induced subgraph of G on the vertex set of C" is
a complete graph and, therefore, the induced subgraph on the vertex set of C' has
an odd cycle. Thus we may assume that the length of C’ is odd and C’ is minimal.

Case I: Suppose that G’ and C’ have at least two common vertices. Then there
exists a walk I' = ({41,412}, {42,%3},...,{¢r_1,%,}) such that each of the vertices %,
and 1, 18 a vertex of G’, each 4, with k ¢ {1,7} is not a vertex of G’, and I is a
subwalk of C'. If r is even, then (I, {4,,4,}) is an even cycle and hence the induced
subgraph of GG on the vertex set of I is a complete graph. This contradicts that C’
is minimal. Hence r is odd. Note that G’ has at least 3 vertices. For each vertex
J(# iv, 1) of G, (T, {ir, 5}, {J,741}) is an even cycle of G. Hence the induced subgraph
of G on the vertex set of G’ UT is a complete graph. This contradicts that G’ is a
maximal complete subgraph of G.

Case II: Suppose that G’ and C’ have exactly one common vertex i. Let C” be
an odd cycle of G’ of length 3 which contains . If there exists a bridge e between
" and C", then there exists an odd cycle of G which is not contained in G’ and has
two common vertices with G'. This is a contradiction. Hence there exists no bridge
between C" and C”. Thus the graph ' = C' U C" is the induced subgraph of G and
hence fr is fundamental. A contradiction arises.

Case I1I: Suppose that G’ and C’ have no common vertex. Since G is connected,
there exists a walk [ combining a vertex of G’ with a vertex of C’. We assume that

the pair (I, C") satisfies that the length of the walk I" is minimal among all the
13



pairs (I, C") such that C' is a minimal odd cycle of G containing no vertex of G
and I is a walk combining a vertex of G’ with a vertex of C’. Let C" be an odd
cycle of G' of length 3 which contains a vertex of V. It is not difficult to see that

the graph I' = C' UT" U C" is the induced subgraph of G. Thus fr is fundamental.
Again, a contradiction arises. O
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