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STAR-SHAPED COMPLEXES AND EHRHART POLYNOMIALS

TAKAYUKI HIBI

(Communicated by Wolmer V. Vasconcelos)

ABSTRACT. We study Ehrhart polynomials of star-shaped triangulations of balls
by means of Cohen-Macaulay rings and canonical modules.

A polyhedral complex I' in R is a finite set of convex polytopes in RY
such that

(1.1) if # €T and & isa face of #,then & €T, and

(12) if #,& €T, then £N& is a face of & and of &.

We are concerned with a polyhedral complex I' in RY which satisfies the fol-
lowing conditions:

(2.1) every vertex a of @ eT has integer coordinates, i.., a € ZN , and

(2.2) the underlying space X := UgerZ(C R¥) of T is homeomorphic to
the d-ball.

Let X denote the boundary of X ; thus 8.X is homeomorphic to the (d —
1)-sphere. Given an integer n > 0, write nX for {na;a € X} and define
i(X, n) tobe #(nXnZN), the cardinality of nXNZY . In other words, i(X, n)
is equal to the number of rational points (a1, 01,...,ay) € X with each
ne; € Z . It is known that

(3.1) i(X, n) is a polynomial in n of degree d , called the Ehrhart polyno-
mial of X,

(3.2) i(X,0)=1,and

(3.3) (=1)4i(X, —n) =#n(X —8X)NZ"] forevery l <neZ.

Define the sequence dg, d1, 62, ... of integers by the formula

:Lv%_:Mi;Eu Mu%i
n=1 i=0
Then
(4.1) dg=1 and &, =#X NZN) - (d +1),
(4.2) 6; =0 for each i >d, and
(4.3) 6; =R[(X -8X)NZN].
We say that 6(X) = (&, 61, ..., 0g) is the d-vector of X . We refer the reader
to, e.g., [6, Chapter IX], for geometric proofs of the above fundamental results
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due to Ehrhart. Note that, even though X is not necessarily convex, the proofs
in [6] are valid without modification since X is homeomorphic to the d-ball.

Some algebraic technique! is indispensable for the study of combinatorics
on J-vectors. Fix a field k, and let &, ¢,, ... s 4N, t be (commutative)
indeterminates over k. If a = (a1, 02,...,ay) € nX N Z~ , then we set
gorr = L& &M m . We write [Ax ()], for the vector space spanned by
all monomials £*¢" with a € nX NZ¥. Thus, in particular, dimy [A4(D)], =
(X, n). Let 4,() denote @,5,[4x(D)], with [4 (D)o = k, and define
multiplication (£°¢")(¢t™) of monomials &2¢" and &#1™ in A () as fol-
lows: (Eorm)(EPt™) = Ea+Byn+m if there exists P € I’ with o € n? and
B € mP; (&) (EFt™) = O otherwise. - Then Ai(I') is a noetherian (i.e.,
finitely generated) graded algebra over k and the Hilbert series F (AT, A) =
Yoo dimg [A (D)],4" is (Oo+01A+6242+- - +6429) /(1-A)9+1 | Let QA4 T) =
@11 [Q(4k(T))]s be the graded ideal of A4,(I) which is generated by those
monomials ¢*#" such that 0 < n € Z and a € n(X - 8X)NZV. Since X
is homeomorphic to the d-ball, A(I) is Cohen-Macaulay {10, Lemma 4.6].
Thus, a well-known technique of commutative algebra enables us to obtain
6(X) 20, 1ie.,each d§; >0 (cf. Stanley [8]). On the other hand, the same tech-
nique as in the proof of [2, Theorem (5.6.1)] enables us to show that Q(A4,(T)
is the canonical module of 4 (I).

We say that X is “star-shaped” with respect to a point a« € X — 8X if

ta+ (1l -t € X -08X for every point f# € X and for each real number
O<r<l1.

Theorem. We employ the same notation as used above. Suppose that the set
(X=8X)NZY is nonempty and that the underlying space X is star-shaped with
respect to some vy € (X —8X)NZN . Then the 5-vector d(X)={(d, 01, ..., 38y
of X satisfies the linear inequalities as follows:

(5.1)  Go+0di++6;<Ey+8q_1+ -+ 84, 0<i<[d/2];
AM.NV 4 <6, 2<i<d.

Sketch of proof. First, recall that a simplicial complex in R¥ is a polyhedral
complex A in RY such that every convex polytope belonging to A is a simplex
in RY. Fix an arbitrary simplicial complex A(0) in R with the vertex set
dX NZY whose underlying space is the boundary 8X of X. Since X is star-
shaped with respect to v, € (X —9X)NZ¥, we can define the cone A(1) over
A(0) with apex vy, ie., A(1) is the simplicial complex in R¥ which consists of
those simplices ¢ such that either ¢ € A(0) or o is the convex hull of TU{v}
in RY for some 7 € A(0). The vertex set of A(1) is X NnzZ")u {v,} and
the underlying space of A(1) is X. Let (X —8X)NZN = {vi,v2, ..., v}
and, for each 2 < j < ¢, construct a simplicial complex A(j) with the vertex
set (X NZY)U{v, vy,...,v;} and with the underlying space X by the
same way as in [7]. We write A for A({). Then the element § = £vit +
§Vt + - + &%t of [Q(A,(A))], is a nonzero divisor on Ax(A). Hence, it
follows from a standard technique of commutative algebra [11] (see also [4])
that 30«6 < Yoc;<;da—; for every 0< i< [d/2]. On the other hand, let
h(A) = (ho, hi, ..., hg, 0) be the A-vector (e.g., [9]) of the simplicial complex

! We refer 1o, e.g., [6, Chapter 1V] for “Commutative Algebra for Combinatorialists”.
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- ; < B
< h; foreach 2<i<d (cf. [7]). Also, h = &. Since h; < d;,

WA.HWMM W_ w<|~__~, we have &, < d; foreach 2<i< d as desired. Q.E.D.
omart oof, let Ai(A)* denote the w_.maoa mmg_mo.
over k. Then Ag(A)* coincides with the
x A. Thus Ag(A)* is Cohen-

Remark. (a) In the above sketch of pr
bra of Ai(A) generated by Ti.b:_ o
Stanley-Reisner ring [9] of En. simplicial comple
Macaulay with the Hilbert series N
F(Ap(A)*, A) = (ho+ A + hpd? + -+ hgA9) [(1 = A
i i enerated as a module over Ai(4)*. .

ZM%omwawﬂ&&ﬂﬁbﬂﬂ“ﬂ% as in [3, Theorem (1.3)], without the Eeoﬁowm
that (X —aX)N ZN is nonempty and X pm. mSTmer.&, we can Mw..o<o that the
s-vector 8(X) = (do, b1, ..., 94) of X satisfies the linear inequality

%&+%&:-+...+%&INMwo+m_+...+m..+%~.+_

for every 0< i <[(d -1)/2]. N
Example. Let N=d =3 and X =2 U&, where & c R? (resp. anﬂ vlww
the tetrahedron with the vertices (1,0, 0), (0, 1, 0), (0,0, w\ Am W,VID .Nu D
qmmﬁ. A~ , 0, Ov. AOu 1, OVu AOu 0,1) ’ A~ 1, Ovv . ‘HUMSOA m0<\0<0~. X is
{(0,0,0)} and X is not star-shaped with respect to 0, .mv\m. s ' 5
star-shaped with respect to, e.g., (1/3, 1/3, 1/3). <<.o have 6(X)=(1,2,1,
which fails to satisfy (5.1) for i =1 and (5.2) for i = 2. " .
. Let & c RV be an integral convex polytope o imension

MA.:MMM_W:WWQMM W\uN (P -8P)NLY is nonempty. .ﬂmmz Sm. m.émacw O(P) =
(6, 01, ..., 0q) of P satisfies the following linear inequalities:
(6.1) So+0y 4 +6<0g+0a_1+ - +dais oMNMR\Nr .
(6.2) O4+84_1+-+04_; <G+ 0+ +0i+0in, 0<ig(d-1)/2];
(6.3) d; <d;, 2<i<d. .

We conclude the paper with a remark about the ncamao.s.iuon W».CJ is
Gorenstein. For a while, we assume that N =4 and the origin ow. R¢ is con-
tained in the interior of X . We say that §(X) = (6o, 1, --- > Oa) s &.Eﬁoam
if 8; = 6,4_; forevery 0 <i<d. It follows ?on.:, e.g., [5]that X is Mﬁw.nﬂ.mm\mm%omm
with respect to the origin if §(X) is symmetric. On the oEQ.EE d, m& s
symmetric if and only if there exists a uoqrna—.&. oo.Bu_ox I in ﬁ _,S  he
underlying space X such that A,(T") ww. Gorenstein, i.e., the canonical modu
Q(4,(T)) of A(T) is generated by a single element of A ().
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CASTELNUOVO REGULARITY AND GRADED RINGS
ASSOCIATED TO AN IDEAL

BERNARD JOHNSTON AND DANIEL KATZ

AOoBBE:SSa by Wolmer V. Vasconcelos)

ABSTRACT. We compare the Castelnuovo regularity defined with respect 10 dif-
ferent homogeneous ideals in a graded ring and use the result we obtain to

prove a generalized Goto-Shimoda theorem for ideals of positive height in a
Cohen-Macaulay local ring.

1. INTRODUCTION

Let (R, m) bea Cohen-Macaulay local ring and I C R anideal. A number
of papers in the past ten years or so have studied the transfer of the Cohen-
Macaulay property of R 10 various graded rings associated to I, with particular
attention being paid to 2 =%2() and & = Z(I) — the associated graded
ring and the Rees ring of R with respect to I. In [H], Huneke showed that &
is Cohen-Macaulay whenever & is Cohen-Macaulay (and the ideal has positive
height) and pointed out that the converse need not hold. Since then, numer-
ous authors have studied additional conditions required for # to be Cohen-
Macaulay when ¥ is Oorov-z_mnuc_m«. One of the most important theorems
to emerge from these endeavors is the so-called Goto-Shimoda theorem ([GS,

Theorem 3.1]) which we now state.

Theorem (Goto-Shimoda). Le! (R, m) bea d-dimensional Cohen-Macaulay
local ring with infinite residue field and 1 C R an m-primary ideal. Then & is
Cohen-Macaulay if and only ifg is Cohen-Macaulay and J [4-1 = 4 for every
minimal reduction J of 1.

It is fair to say that [GS] has provided the impetus for a large amount of
research. Notable among subsequent endeavors is [GHO], where the Goto-
Shimoda theorem was extended to equimuitiple ideals (i.e., ideals whose height
equals their analytic spread). The theorem in [GHO] reads exactly the same
as the one above, only the assumption that [ is m-primary is replaced by the
(more general) assumption that [ is equimultiple and d = dim(R) is replaced
by s = s(I), the analytic spread of 7. Little progress was made on extending the
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