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We give an example of a simple oriented matroid ¢ that admits an oriented
adjoint. Furthermore, any adjoint of the underlying matroid D, does not itself
admit an adjoint. D arises from the well-known non-Desargues matroid by a
coextension by a coparallel element and, hence, has rank 4. The orientability of D
and some of its adjoints follows from an apparently new oriented matroid construc-
tion given in the paper that is a very special case of an amalgam of two copies of
one oriented matroid. ¢ 1996 Academic Press, Inc.

1. INTRODUCTION

One source of motivation for matroid theory is the study of the com-
binatorial structure of point configurations in linear space. While ordinary
matroid theory may be viewed as a quite general abstraction of projective
geometry over arbitrary fields, the study of oriented matroids was
motivated by combinatorial questions arising from geometry in real linear
space. The Topological Representation Theorem [ 5, Theorem 5.2.1.] states
that, indeed, the axioms of oriented matroids are strong enough to guaran-
tee a geometric situation in Euclidean space. By that theorem any oriented
matroid can be represented by an arrangement of pseudohyperplanes in real
projective space, where “pseudohyperplane™ means linear hyperpiane with
“some local deformations” allowed. This is called a Type I representation
of an oriented matroid.

Any matroid represented by a point configuration in linear space may
via polarity as well be represented by a hyperplane arrangement and vice
versa; this is the well-known point-hyperplane duality from projective
geometry. While any oriented matroid admits a representation of the
latter kind with slightly deformed “hyperplanes” (pseudohyperplanes) the
situation i1s more difficult with “pseudoconfigurations of points” (cf. [5,
Chap. 5.37]).
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278 HOCHSTATTLER AND KROMBERG

A standard approach to define the dependencies in matroids in a
geometric representation is to give a list of points, lines, planes, etc. They
need not necessarily represent a linear configuration (see [12]). The infor-
mation about the orientation of a hyperplane in oriented matroid theory is
encoded in the partition it induces for the points which it does not contain.
Thus, hyperplanes should partition space and, hence, be somewhat closer
to real hyperplanes. So, a natural extension of the geometric representation
by points in real linear space is to embed points into a configuration of
pseudohyperplanes. Such a model is called a Type 11 representation of an
oriented matroid. Unfortunately, such a representation does not always
exist.

Given a Type I representation of an oriented matroid .# by the
Topological Representation Theorem, the underlying pseudchyperplane
arrangement represents an oriented matroid which we call the adjoint .#"
of /. The elements (points) of . # correspond to some hyperplanes of .#"
and the elements of .7 are in one-to-one correspondence with the hyper-
plancs of ./#7. Thus, in the unoriented case an adjoint corresponds to an
embedding of the dual of the geometric lattice of a matroid into a
geometric lattice of the same rank such that the map is one-to-one from
copoints to points.

It was observed already in the first paper about adjoints [8] that they
may not exist. One reason for that is the following. Starting with an
(oriented) matroid ./ it is immediate that ./# is a submatroid of (.#)".
Thus, iterating the process of taking adjoints of adjoints yields an
increasing chain of submatroids the union of which has to have a modular
lattice. Hence, for nonlinear matroids of rank at least four at some point
the process has to get stuck. To get a better understanding of “reasons” for
nonlinearity, G. Ziegler (see [ 5, Exercise 7.15]) asked for an example of an
oriented matroid which has a Type II representation but no double adjoint.

We will prove that a certain coextension D of the non-Desargues
matroid has a Type II representation but a double adjoint fails to exist
already in the unoriented case. This coextension may also serve for a
matroid theory proof of Desargues’ Theorem as suggested by T. Brylawski
{see [ 18, Exercise 7.53]). To construct the Type Il representation of D we
give an apparently new construction method for oriented matroids which
we call the squint of an oriented matroid, which is a very special case of an
amalgam of oriented matroids.

The paper is organized as follows. In the next section we discuss some
background on adjoints of matroids and provide some technical results
used in Section 3. In Section 3 we introduce our example, shortly discuss
the existence of an unoriented adjoint, and prove the nonexistence of a
double adjoint. Section 4 reviews basic facts on topological representations
of oriented matroids focusing on the rank 3 case. In the final section we
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present our construction method and as corollary derive an oriented
adjoint of an orientation of our example.

We assume some familiarity with matroid and oriented matroid theory;
standard references are [ 18, 14, 17, and 5]. We will frequently refer to the
latter of these. The notation used is standard; however, we remark that we
denote by L(M) the geometric lattice of flats of a matroid M. Conversely,
for a geometric lattice L we let M(L) denote the simple matroid on the
atoms of L that has L for its lattice of flats.

2. BASICS ON ADJOINTS

There is a standard notion of duality in lattice theory. If L=(S, A, v )
1s a lattice, L :=(S, v, A }is a lattice as well —the opposite (or, order
dual)y -obtained from L by “turning L upside down.” For a geometric lat-
tice L the opposite lattice L™ will in general fail to be semimodular and
hence fail to be geometric. There is a noteworthy exception: opposite lat-
tices of modular geometric lattices are modular geometric and, indeed, a
special case of this is the well-known point-hyperplane duality from projec-
tive geometry.

For geometric lattices L in general, however, the best one can hope for
with regard to this kind of duality is that the opposite lattice L* may be
embedded into a geometric lattice L”' of the same rank as L. More
precisely, one defines

DEFINITION 1. Let L be a geometric lattice of rank ». A geometric lat-
tice L' is called an adjoint of L if L and L* have the same rank and there
exists an order-reversing injective map @: L — L”, taking the coatoms of L
bijectively onto the atoms of L.

It i1s easy to see that the property of having an adjoint is stable under
taking minors. It follows that coordinatizable matroids admit adjoints,
since coordinatizing a matroid is the same thing as representing the
matroid as a restriction minor of a coordinatizable projective space.

In general a matroid does not admit an adjoint. Already Cheung, who
first defined the notion of adjoint, showed in [ 8] that the notorious Vamos
matroid does not admit an adjoint. In [2] it was shown that the dual of
a matroid that admits an adjoint does not in general admit an adjoint
itself; the example given in that paper is the non-Desargues matroid shown
in Fig. 1 which also plays a prominent role in the present paper. In the next
section we give an example of a rank 4 (connected) matroid that admits an
adjoint, but any adjoint of which does not itself admit an adjoint. In [ 13]
Mason gave an example for a matroid of this kind. His example has the
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Z

FiG. 1. The non-Desargues matroids.

Fano matroid as a minor and is therefore nonorientable; our example is
apparently the first orientable matroid of that kind that admits an oriented
adjoint (cf. [5, Ex. 7.157). The example is a simple coextension of the non-
Desargues matroid. In hindsight, some matroid “around” the non-
Desargues matroid was, indeed, to be expected to provide an example of
this phenomenon.

We need some preparatory observations. Lemma 1 provides an easy to
use criterion for detecting some independent sets in an adjoint of a matroid.
The condition is not necessary. Proposition 1 states that the images of any
pair of flats of the original lattice L under @ are a modular pair in the
adjoint L. As already alluded to in the Introduction, this proposition
implies that iterated taking of adjoints, if possible, “converges” to a
modular geometric lattice and, hence, by the theorem of Veblen-Young
(see [4]) to a projective geometry if the matroid M(L) started with is
connected.

Let L denote a geometric lattice. Let # denote the set of copoints
{hyperplanes) of L and # denote the set of points of L. Recall that a
geometric lattice 1s atomic as well as coatomic; ie.,

VaeLia=\/{pe?|p<a}
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and
VaeL:a= /\ {he # |a<h}.

LeMMA 1. Let L be a geometric lattice of rank r and L an adjoint of L
with corresponding embedding ®: L — L. If h,, ..., h,, are copoints of L such
that

I>hy>h Ahy> - >hy A AK

then ®(h)), ..., (h,,) is an independent set of M(L").

Proof.  From the fact that L is coatomic it easily follows that any set of
hyperplanes with the assumed property may be augmented to a set
thy, .. h} < (renumbered. if necessary) such that

loh,>h  Ahy—> - >h A - AR,

where — denotes the covering relation on L. Then

</\{/1fl1<i<j—l}>

L=j=r+1

is a maximal chain in L and, as the rank of L' is r and & is order-reversing
and injective it follows that this maximal chain in L gets mapped to a max-
imal chain in L' by @. It follows that &(h,), ..., @(h,) span M(L") and

hence are a basis. |

Note that in particular the restriction of the rank function of L” to the
image of @ is seen to be the corank function of L. Furthermore, it follows
that @ is cover preserving.

The following fact is implicitly contained in [ 5, Exercise 7.17]. We omit
its straightforward proof.

PrROPOSITION 1. Let L be a geometric lattice and L™ an adjoint of L with
corresponding order-reversing injective function ®: L — L' mapping the
copoints of L onto the points of L. Then ®(x), ®(y) is a modular pair of
L' for any x,velL; ic.,

Fod () + 7, (@) =r, (D(x) v O(¥))+71,(DP(x) A D(y)}).
It follows from the above that for nonlinear connected matroids of

rank >4 an infinite sequence of iterated adjoints cannot exist and the pro-
cess has to stop after finitely many steps with a matroid that does not
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admit an adjoint. The next section gives an example of a matroid that has
an adjoint, any adjoint of which, however, does not admit an adjoint.

3. THE UNORIENTED EXAMPLE

Our example is a principal coextension of the non-Desargues matroid.
For a discussion of coextensions in general see Chapter 7 on matroid con-
structions in [ 18] or [14]. We do not need to get involved into the details
of coextensions, as our example is easily enough understood without know-
ing about coextensions.

Consider the non-Desargues matroid N on the set { p.a b oc d, b, c,
X, ¥, 7}, “affinely” represented in Fig. 1, the labeling of the points being the
one from the figure. Coextend N by a point w coparallel to p; ie., consider
the matroid D :=(N*+,.w)* where #*={xeL(M*)|p<x} denotes
the principal filter of L(M*) generated by p. An “affine” picture of D is
given in Fig. 2—solid lines are in the “original non-Desargues plane,” the
dotted line is in “space.” Since we coextend by a point w coparallel to p the
point p slides up into space along the line from p to w. We have renamed
p to p’ and indicated by an unfilled circle that the point p of the original
non-Desargues plane in D no longer exists.

Ve

o

FiG. 2. Coextending the non-Desargues matroid by a point coparallel to p.
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Not much is known in way of sufficient conditions for the existence of
an adjoint. In [1], however, it has been observed that for matroids of
rank 4 to admit an adjoint it is sufficient that the geometric lattice of the
matroid is pseudomodular. For a definition of this notion and first proper-
ties see [ 6]. Although D is not pseudomodular it is quite easily seen that
D “extended by p,” 1.e., extended by a point with respect to the modular cut
of D generated by the line wp’ and the plane abc, is pseudomodular of
rank 4 and, therefore, has an adjoint. As the class of matroids with adjoint
1s minor closed, we get that D itself also admits an adjoint. This, however,
also follows from the next section of the present paper, where it is shown
that D 1s orientable and admits an oriented adjoint.

We now show that any adjoint of our matroid D cannot itself have an
adjoint.

Suppose we had an adjoint (D) of an adjoint of D. The arguments we
are going to give may be followed in Fig. 3, where the final situation lead-
ing to a contradiction is pictured. We argue “in (D)™ now, using the fact
that flats of D when considered as flats of (D")" intersect modularly. This
follows from Proposition 1. Hence, the coplanar lines aw, a'p’ intersect in

Fi. 3. No matroid.
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a point ¢" and, similarly, we get points " =bwnb'p’ and " =ewnc'p'.
The intersection of the plane p’a”’h” and the “original non-Desargues
plane” H :=uabc is the line a’b’, and the intersection of wa”d” and H is the
line ab. As both of these lines contain x it follows that the line a”5” meets
H in x. Similarly, ¢"¢"nH=z and b"¢" n H=y. Now, the planes H and
«"b"¢" are different, and, thus, can intersect in at most a line, yet we have
d"b"¢" nabe 2XVZ = H, a contradiction.

Note that the argument we have given is a proof of the theorem of
Desargues for coordinatizable projective geometries of rank =3 “by
matroid theory” (cf. Brylawski’s exercise 7.53 in [18]). In fact, we have
shown that in any projective geometry of rank >4 the theorem of
Desargues holds, as is well known.

4. ORIENTED MATROIDS AND PSEUDOPOINT
CONFIGURATIONS

Oriented matroids were introduced in the late 1970s in [7] and [9].
From the various axiom systems for oriented matroids we will consider the
circuit axioms (cf. [5, 3.2.1]) here which may give the easiest access for
readers familiar with matroid and graph theory. In order to simplify nota-
tion in the proof of Theorem 2 our notation is slightly different from the
one used in [5].

DrriNITION 2. Let E be a set. For our purposes it will be convenient to
consider two copies of E namely E*, £ with different signs. The support
supp(X) S E of a subset X E* UE of the signed sets is the set of
elements of the underlying groundset. A signed subset XS E* UE~ of E is
a set with supp(XnE'")Ynsupp(XnE " )=. For short, we write
X' :=XnE' and X =XnE . The separator of two signed subsets
X, Y is defined as

sep( X, V) :=supp(Xn — Y).

A collection % of signed subsets of a set E is the set of signed circuits of an
oriented matroid on E if it satisfies the following axioms:

(CO) Té¢%.
(Cl)y 6=-—%, (symmetry)
(C2) VX, Ye%:supp(X)ssupp(¥Y)=>XelY, — Y},

(incomparability)

(C3) VX# —Ye® Veesep(X,Y) 3Zeb:Z=XuTY\{e", e}
(weak elimination).
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For our application oriented matroids of rank 3 are of importance. Here
their topological Type T representation is equivalent to the well-known
arrangements of pseudolines as introduced by Levi [ 11] (see also [10] and
[5,623]).

Choosing a positive and a negative side of each pseudoline, one derives
signed coordinates for the vertices of the arrangement. To be more precise,
let ¢ be a vertex of the arrangement and let C be the set of lines such that
v 1s positive with respect to the orientation of each line in C (i.e., it is on
the positive side). Let C’ denote the set of lines which have v on their
negative side. Then ¢ gives rise to the signed cocircuits C* u C’~ and
C v C'*. It is not difficult to see that this collection of signed sets satisfies
the signed circuit axioms of oriented matroid theory. Since the underlying
matroid has corank 3, for our purposes it is more appropriate to think of
the vertices in terms of cocircuits of the oriented matroid. The pseudoline
arrangement 1s called a Type I representation of this oriented matroid. In
just the same way a signed set is assigned to the vertices of the arrange-
ment, any point of the plane may be assigned a signed set. The collection
of all the signed sets obtained this way are the covectors of the oriented
matroid. With pseudohyperplanes and arrangements of these appropri-
ately defined (see [5, Chap. 5]) the above notions carry over to higher
dimensions and the Topological Representation Theorem states that
arrangements of pseudohyperplanes and oriented matroids are equivalent.

As mentioned in the Introduction, there is another topological represen-
tation of oriented matroids in terms of pseudoconfigurations of points. To
cut down on the topology we have to introduce, we retranslate this notion
into a combinatorial definition. For the general topological definition of a
Type II representation we refer the reader to [5, 5.3]. That the collection
of signed sets defined in Definition 3 is, indeed, the collection of cocircuits
of an oriented matroid is proved in [5, Prop. 5.3.2].

DErFINITION 3. Let .#"' be an oriented matroid of rank r on the
groundset £ and P a subset of the cocircuits of .# " with |P| > r such that

(1) the union of the supports of any r—1 elements of P is a proper
subset of E,

(i1) the collection of subsets
{{CePle¢supp(C)} | ec E}

is an antichain with respect to inclusion.

ForeeE let

P(c):={CePle eC} and  P,(e):={CePle €C}.
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Then the collection % of signed sets
{Pi(e)" UPse), Pye)" UP\(e)” |ecE)

is the collection cocircuits of an oriented matroid .# on P. The pair
(.#", Py is called a Type II representation of ..

As suggested by the notation, .#" then is an oriented adjoint of .#.
We note that the matroid underlying .#' is an adjoint of the matroid
underlying .#.

DEerINITION 4 [3]. Let .# be an oriented matroid of rank r on a set E.
An oriented adjoint of .4 is an oriented matroid .#' of the same rank r on
a subset E = %* of signed cocircuits of .# with ¢* = E/ & — E/ such that
the signed sets

Zle]={Y"€E"" |YeE' and e*eY)
U{Y €eE" |YeE" and e eV}
are cocircuits of . #7.

From a combinatorial point of view Type Il representations and
oriented adjoints are equivalent. The nice thing about Type II representa-
tions is that one model represents two oriented matroids; the Type 11
represented oriented matroid .# and the Type I represented oriented
matroid .4

Tueorem 1 [5, 5.3.6]). A4 simple oriented matroid has a representation
by a pseudoconfiguration of points (a Type II representation) if and only if
it has an adjoint.

As for unoriented matroids of rank 3, we also have that oriented
matroids of rank 3 admit an adjoint. Crucial in the oriented case is Levi’s
Enlargement Lemma, which we present next. For a proof see [ 10].

LemMMma 2 (Levi’s Enlargement Lemma). Let x and y be two vertices in
u pseudoline arrangement </ which do not both lie on any of the pseudolines
Jrom /. Then there exists a proper enlargement of .o/ by a pseudoline which
contains x and y. Furthermore, this pseudoline can be chosen such that it does
not contain any other vertex of .of .

Now, given a rank 3 oriented matroid .# and a topological representa-
tion as an (oriented) arrangement of pseudolines E with vertices E”' we
enlarge the configuration to an arrangement (E”)" such that any two
vertices in £ are contained in a pseudoline of (E*)".
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Then the vertices E*' together with the oriented matroid (.# )" (Type I)
represented by (E')" provide a Type Il representation of an oriented
matroid ./#" which is an adjoint of .#. By what we have already said
(.#")"is also an oriented adjoint of .#", or an oriented double adjoint
of . /.

Figure 4 shows a Type Il representation of an oriented non-Desargues
matroid. The “uninteresting” 2-point-lines are dotted. We have given a
pseudoline arrangement as claimed in Levi’s Enlargement Lemma; ie.,
apart from the points p, a, b, ¢, a', b', ¢’, x, y, z any point of the plane lies
on at most 2 of the (pseudo)-lines. The cocircuits of a Type II represented
oriented matroid may be read off the arrangement as follows:

Any pseudoline from the arrangement partitions the given points not on
the line into two sets C, C' according to which side of the line they are.
Then C7 w C’" " and C'" w C are the two signed sets determined by that
line. The cocircuits of the Type II represented matroid are all the signed
sets that arise in this fashion. Note that these cocircuits do not depend on an
orientation of the pseudolines. The four cocircuits of the Type II represented
non-Desargues matroid corresponding to be two bold (pseudo)-lines are U
with U' ={p ,a*, b*, ¢*,x "} and U ={da , b ", ¢}, its negative

FiG. 4. A Type 11 representation of an oriented non-Desargues matroid. Arbitrarily
orienting cach pseudoline defines an oriented adjoint.
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~U Vwith V' ={a',d",y"} and V ={c , ", x ",z } and its
negative — V.

The reader may have noticed that in the arrangement in Fig. 4, as are
the lines supported by wx, y, z, the pseudoline through b and z is not
straight, nor is the one through ¢ and o'. The reason is that, e.g. the
straight line through ¢ and &', the one through « and ¢, and the one
through b and z (seem to) intersect in one point and we perturbed these
lines in order to present an arrangement as claimed by Levi’s Enlargement
Lemma. However, even if it is in an “unnecessary” special position, the
arrangement with all dotted lines straight is still a Type II representation
of the same oriented non-Desargues matroid and hence gives rise to an
oriented adjoint. This shows that adjoints of matroids are far from being
unique.

The reader may recall from the discussion at the beginning of this section
how to derive the signed cocircuits of the pseudoline arrangement in Fig, 4
interpreted as Type I representation of an oriented matroid. A complete list
of these cocircuits fell victim to a garbage collection. Nevertheless, that
oriented matroid is an oriented adjoint of the oriented non-Desargues
matroid.

5. THE ADJOINT OF D IS A SQUINT

The following construction is a very special case of an amalgam of
oriented matroids. For us it serves as a tool to construct an oriented
adjoint of our example D from an oriented adjoint of the non-Desargues
matroid as given in Fig. 4. Before we give the formal definition we sketch
the construction in the realizable case.

Assume we are given a hyperplane arrangement .# in R’ which has a
vertex p such that for any other vertex v of # the line through p and v is
a line of the arrangement. From this we construct a hyperplane arrange-
memt in R"*" as follows. Identify R” with R” x {0} < R"*' and choose two
points p', w outside of R"x {0} such that the line through p’ and w con-
tains p. Now, for each hyperplane e # we derive two hyperplanes 7, /i,
of R”"" by considering the span of /4 and p’ resp. & and w. These two
hyperplanes coincide if and only if p e 4. Our arrangement now consists of
all these hyperplanes and R"x {0}. What are the vertices of this arrange-
ment”’

(1) The old vertices of .# remain vertices.

(i) Let v, and v, be vertices of .# such that the line through them
is a line of .# and meets p. Then the lines v,p” and v,w will be coplanar
lines of .#. Hence their intersection is a new vertex of #.

(iii) Finally, p’ and w are vertices of #.
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On the other hand, a closer inspection shows that the properties of p
guarantee that there will be no other vertices. Figure 5 depicts this con-
struction in the rank 2 case.

In terms of cocircuits of oriented matroids this gives rise to the following
definition.

DreriNITION 5. Let .# be a simple oriented matroid on a finite set E,
given by the list of its cocircuits ¢ and P be a modular cocircuit of .#
with the property that VC', C2e%: r(.#) —r(E\(supp(P) usupp(C')u
supp( C?})) < 3. Let S=supp(P) and S’ be a set disjoint from E such that
#: S — S’ is a bijection and /4 an element different from E U S’. Extend ¢ to
a map ¢: 6 — 2% by first intersecting the signed set corresponding to a
cocircuit C with §* U S and then mapping it to ST U S’ ~ the obvious

way. Consider the following set of signed sets which we call the squint of
¢ through P:

(1) VCe%: Cud(O);

(ii) VC' C? such that C', C? and P are on a coline and C' arises
from an elimination between P and C% C*u¢(C YU h™;

(ii) ATu¢(P)and L — P
(1v) the negative of the above.

We remark that 7 in the definition refers to the rankfunction of the
underlying matroid. The stated rankcondition is trivially satisfied for

~f S “
Gl ~ N ~
’ 7 Y

‘_ef,q)‘é\(;\%): h+ \\\

!
C0 )

Fi1i. 5. The rank 2 case.
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oriented matroids of rank 3 and guarantees that any two circuits together
with P span a pseudoline arrangement in . /.

Note that the construction is almost symmetric in S and S’. We say a
signed set is of type 1 if it arises from the first case in the definition.
Analogously, we define type 2 and type 3 signed sets.

If % is of rank 2 and, hence, realizable, this construction yields the signed
cocireuits of a line arrangement which is constructed as follows. Start with
points on a line /i as defined by % and add a line g through P. Choose two
points W, P’ in one component of g\h such that P’ is closer to P and add
the lines through all points of 7 and W resp. P' (see Fig. 5). Note that the
(pseudo)-lines in this arrangement may be taken to be straight, i.e., that the
squint of a rank 2 oriented matroid is realizable.

TueoReM 2. The squint of € through P satisfies the circuit axioms for
oriented matroids.

Proof. By construction the system is an antichain and symmetric. We
have to verify the circuit elimination axiom. Due to the condition

(- #) = r(E\(supp(P) usupp(C') U supp(C?))) <3

we may, in each of the cases to consider, restrict our attention to the
pseudoline arrangement which is spanned by C', C2 and P in the topologi-
cal representation of . /#.

Clearly, an elimination exists if both circuits are of type 1.

(1) Let Cu@(C) be a type | signed set, CCUd(C'yUh* be of
type 2 and e be an element in sep(C, C’), for an ie {1,2}.

If C'is on the coline through C', C? then we can find an elimination in
the line arrangement corresponding to the squint of the rank 2 minor
induced by that coline.

So assume C is not on the coline through C', C?. This situation is pic-
tured in Fig. 6. Consider the pseudoline arrangement in the plane spanned
by P, C and C'". By Levi’s Enlargement Lemma we may choose an exten-
sion of that rank 3 oriented matroid by two elements i and j which are lines
through C and €' resp. C and C’. Let C denote the elimination between
C"and C" on ¢ in the extended arrangement. If C\{/,;} is not a cocircuit
of % it is an edge of the pseudoline arrangement and both its vertices are
climinations of C and C’ on e. Let one of them be C'*2 and denote by g
the pseudoline through P and C'* 7 This pseudoline intersects j and again
we find C/*?e%, which is an elimination of C and C’ on g. Now, if
("= (", the signed set C*U¢(C?) is an elimination that belongs to our
set, and, if C*# C*, it is obvious that C* is an elimination of C* and P, so
that the signed set C*U¢(CH)Uh* is as desired.
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Fi. 6. Elimination between type 1 and type 2.

{11) 1f one of the two cocircuits is of type 3 and the other is of any
type, an elimination exists, since then again all cocircuits involved live in
the squint of a rank 2 minor of ¢ and the situation is as shown in Fig. 5.

(i1) We are left with the case where both signed sets are of type 2.

As a first subcase we show how to eliminate % from signed sets
Cog(Cyuh™ and C*UH(CYuh (see Fig. 7, left-hand side). Again
we augment the corresponding pseudoline arrangement by pseudolines
through C' and C* resp. C? and C°. The intersection of these pseudolines
is a point in some cell of the original arrangement the vertices of which are
contained in C'u C* as well as in C?uU C* due to compatibility of the
covector of a cell and the covectors of cells on its boundary. Thus, any such
vertex C defines a signed set C'u ¢(C) that is an elimination on A.

Assume now wlog, that we are to eliminate an element e e sep(C', C*)
(see Fig. 7 right case). Again, first we consider the augmented arrangement

o 4
—~

Fig. 7. Eliminations between type 2 and type 2.
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and the intersection of ¢ and the line through C' and C*. “Nearby” we find
a cocircuit C* of the original arrangement. Let g denote the coline through
C® and P, and let C° be a vertex at the cell corresponding to the inter-
section of g and the (possibly added) line through C? and C*. Now
cither C°UP(CY)Uh™ or C°UP(C’)Uh is in our set, depending on
the relative position of C° and C°® with respect to P, or C°=C° and
CTU@(C?) is as desired.

The case where we have to eliminate an element between two type 2
signed sets which both are positive on / is similar.

(iv) The remaining cases can be reduced to the above by taking the
inverse all over.

To complete our project we have to give an orientation of the matroid
from Section 3 and show that the above construction can be utilized to find
an oriented adjoint of this orientation. To describe signed cocircuits of a
coextension by a coparallel for an oriented matroid is easy. Let e€ E be
an element of the groundset of an oriented matroid .# and f¢ E and ¢
be the set of its cocircuits. Then {C|Ce%} u{CuUf \e'|e'eCeb} L
te'.f*} is the set of cocircuits of an oriented matroid.

Coextension by coparallel elements is a well known tool in oriented
matroid theory and usually serves to link realizability results from oriented
matroid theory to questions about the face lattices of polyhedra (see, e.g.,
[16; 5, Section 9.3; 15]). The authors of the latter article named the
coextension by a single coparallel element the Lawrence extension.

The squint construction, however, yields that a single Lawrence exten-
sion of a pseudoline arrangement does not destroy polarity; i.e., it implies
Theorem 3. We will not give a detailed proof for that theorem but will
rather make it plausible by giving the arguments for the matroid D con-
sidered in Section 3.

THEOREM 3. A coextension of an oriented matroid of rank 3 by a
coparallel element (in the sense of [5, 4.1.107) admits an oriented adjoint.

Applied to our example the method is as follows. Start with an oriented
adjoint .4" for the non-Desargues matroid, e.g., the oriented matroid
Type 1 represented in Fig. 4. Denote the cocircuits of the adjoint that
correspond to the labelled vertices in Fig. 4 by the corresponding capital
letters. Enlarge the pseudoline arrangement by a set ¥ of lines through P
such that for any cocircuit C of .4 there is a pseudoline connecting P and
C. Then P becomes a modular cocircuit in the enlarged arrangement. Let
# denote the squint of that arrangement through P. Consider the restric-
tion minor ¥ = Z\.¢ and let ¥ denote its set of cocircuits. Now, .7 is seen
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to be an oriented adjoint of an orientation 2 of D, if we can identify the
points of D with a subset of ¥ that satisfies the conditions in Definition 3
such that the matroid underlying that Type 11 represented oriented matroid
is D. We identify the cocircuits, leaving the (easy) verification that they
together with . satisfy the requirements of Definition 3 to the reader. The

points a, b, ¢, a', b', ¢/, x, y, z on the non-Desargues plane correspond
to Aud(A4), Bu@(B),... with entries corresponding to & deleted. The
point w corresponds P U h™ and the point p' corresponds to ¢(P)Uh™
(-entries deleted).

By the results of Section 3 the existence of an adjoint of any adjoint of
s fails already in the unoriented case. This answers a question of
G. Ziegler (cf. [ 5, Exercise 7.17]):

COROLLARY 1. The oriented matroid % has an adjoint, but none of its
adjoints has one.

REFERENCES

1. M. Alfter and W. Hochstittler. On pscudomodular matroids and adjoints. Discrete Appl.
Viath. 60 (1995), 3 1.
20 M. Alfter, W, Kern, and A. Wanka, On adjoints and dual matroids. J. Combin. Theory
Ser. B 60 (1990). 208-213.
. A, Bachem and W. Kern, Adjoints of oriented matroids, Combinatorica 6 (1986), 299-308.
4. G. Birkhott, “Lattice Theory.” 3rd ed.. Amer. Math. Soc. Colloq. Publ, Vol. 25, Amer.
Math. Soc.. Providence, 1967.
3. A Bjorner, M. Las Vergnas, B. Sturmtfels, N. White, and G. Ziegler, “Oriented Matroids,”
Cambridge Univ. Press, Cambridge, 1993.
6. A. Bjorner and L. Lovisz, Pseudomodular lattices and continuous matroids, Acta Sci.
Math. 51 (1987). 295 308.
. R. G Bland and M. Las Vergnas, Orientability of matroids, J. Combin. Theory Ser. B 25
(1978). 94 123,
8 AL CoCheung, Adjoints of a geometry, Canad. Math. Bull. 17, No. 3 (1974}, 363-365.
9. 1. Folkman and J. Lawrence. Oriented matroids. J. Combin. Theory Ser. B 25 (1978),
199 236.
10. B, Grinbaum. “Arrangements and Spreads.” CBMS Regional Conference Series in Math.
Volb. 10. Amer. Math. Soc.. Providence, 1972.
[1. 17 Levie Die Teilung der projektiven Ebene durch Gerade oder Pseudogerade. Ber.
Math-Phyvs. Ki. Sdchs. Akad. Wiss. 78 (1926), 256-267.
2. ). H. Mason, Geometrical realization of combinatorial gecometries, Proc. Amer. Math. Soc.
30 (1971 15 21
13, ). H. Muson. Glueing matroids together: A study of Dilworth truncations and matroid
analogues of exterior and symmetric powers, in “Algebraic Mcethods in Graph Theory”
(1. Lovasz and V. T. Sos, Eds.), Amsterdam, 1981.
14, 1. Gl Oxley. “Matroid Theory,” Oxford Univ. Press, Oxtord/New York/Tokyo, 1992.



294 HOCHSTATTLER AND KROMBERG

t5. 1. Richter-Giebert and G. M. Ziegler, Realization spaces of 4-polytopes are universal, Bull.
Amer. Math. Soc. 32 (1995), 403412, . :

16, B. Sturmfcls. Boundary compléx‘cg of ‘cohvex polytopes cannot be characterized locally,
Bull. London Math. Soc. 35 (1987), 314 226,

17. Do Jo A Welsh, “Matroid Theory,” Academic Press, New York/London/San Francisco.
1976.

I8. N. White (Ed.), “Theory of Matroids,” Cambridge Univ. Press, Cambridge. 1986.



