Rings of invariants of tori, Cohen-Macaulay
rings generated by monomials,
and polytopes

By M. HOCHSTER*

0. Introduction

Let G be a reductive linear algebraic group acting rationally on an n-
dimensional vector space V over a field K ([13], Chapter 1, § 1). The author
has conjectured that the ring of invariants R° of the induced representation
of G on the symmetric algebra R = K[, +--, ,} of V is Cohen-Macaulay.
We shall prove this result here in the case where G is a torus, GL(1, K)™.
In fact, we shall show that if M is a semigroup of monomials x!t - 2» in
the variables x,, - - -, &, such that K[M]c K[, -+, &,] is normal (this con-
dition is independent of the field K), then R[M]C R, ---, ®,] is Cohen-
Macaulay for every Cohen-Macaulay ring R. This implies the desired result.
The proof depends in an essential way on a recent result concerning the
shellability of (real) polytopes, Proposition 2 and its Corollary in [2].
Throughout, “polytope” means real or rational convex polytope.

We make some remarks on Cohen-Macaulay rings for the convenience
of the reader unfamiliar with them. Let R be a Noetherian ring. We say
that r, -+, r,€ R form an R-sequence if (r, «++, 7 )R +* R and for each ¢,
0<i<n—1, ., is not a zerodivisor modulo (r,, «--, r)R. We define the
grade of a proper ideal I of R to be the length of any maximal R-sequence
contained in I. A Noetherian ring R is Cohen-Macaulay if one of the follow-
ing equivalent conditions holds:

(1) For every prime P of R, grade P = rank P (where rank P = Krull
dim RE;).

(2) Any ideal generated by an R-sequence has no embedded primes.

(3) For any prime P, every system of parameters in R, is an Ry
sequence.

(4) For every maximal ideal M, some system of parameters in Ry is an
R, -sequence.

If R is a finitely generated graded algebra over a field K, it turns out
that R is Cohen-Macaulay if and only if R is a finitely generated graded
free module over the polynomial subring generated by some (equivalently,
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every) homogeneous system of parameters. In this situation, if we represent
R as S/I, where S is a polynomial ring over K and Iis a homogeneous ideal,
then it is a theorem that R is Cohen-Macaulay if and only if dhsS/I=gradeI.
In this case, I is unmixed and grade I is the same as the rank of any minimal
prime of I. See § 3 of [12] for further information.

1. Reformulation of the problem

We note that several special cases of the conjecture mentioned above
were established in [12] (announced in [11]), [10] and even [4], [3], [5], [6], [16],
and [17], although the point of view taken in the latter papers was different.
Chow’s motivation in [4] was that the result that a Segre product of poly-
nomial rings is Cohen-Macaulay was needed for application to counting
problems in the study of zeta functions. Barshay [1] needed a result of this
type for the same reasons; he derived it from Chow’s results [4]. The rings
Barshay considered arose naturally as the rings generated over a field by
those monomials whose exponents satisfy certain homogeneous linear equa-
tions [1], p. 451. The connection with our work becomes clear if we re-
formulate our problem:

The representation of G = GL(1, K)™ can be diagonalized, and we can
assume that a = (a,, --+, a,) € G acts by taking x;€ K[x, +-+, 2.] to

t; tmj
Qe q) JQ;]. ,

1 =£J < #n, where the t;; are the mn integers which determine the diagonal
representation. R¢ ig therefore spanned, as a K-vector space, by those
monomials 2/: ... 2'» such that

“) ti1111+"'+tinllnzov 1§'L§m-

Conversely, if (*) is a given system of m linear homogeneous equations in x
unknowns over the rationals Q we can, after clearing denominators, assume
that the coefficients t;; are integers, and it is evident how to write down a
representation of GL(1, K)™ on the 1-forms of B — K [, -+, 2,] such that
the ring of invariants, R°, will be spanned as a K-vector space by those
monomials #/: - .. x*» such that (hyy +++, h,) is a nonnegative integral solution
for (*).

By a monomial in the variables z, *-+, %, we shall always mean a term
of the form z’: ... z'», where hi +++, h, are nonnegative integers. We can
regard, somewhat imprecisely, a given set M of monomials as a subset of
any polynomial ring Rz, - - *, ®,] in the variables «,, ---, z,. Throughout,
“semigroup” means semigroup with identity, and subsemigroups are assumed
to contain the original identity. Thus, a semigroup of monomials in Ty, oo, 2,
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320 MELVIN HOCHSTER

must contain 1 = a?... a7, and must be closed under multiplication. We
shall say that a semigroup M of monomials in Ty + v, 2, I8 full if whenever
p, p'y p” are monomials such that pp’ = p” and p, "€ M, then pe M.
This condition depends not just on the semigroup structure of M, but also
on how M lies in the semigroup of all monomials. We shall say that a semi-
group M of monomials is normal if M is finitely generated, and whenever
there are monomials 2,9, p" e Manda positive integer n such that p(p )=
(p”)", then there is a monomial p, ¢ M such that » = p. This condition
depends only on the semigroup structure of M. Clearly, full semigroups of
monomials are normal if they are finitely generated, and it does turn out
that full semigroups are finitely generated.

Our main result is Theorem 1 below. The preceding proposition gives
the correct perspective in which to view normal subrings of Kz, .- . T,]
which are generated by monomials. (A domain is normal if it is Noetherian
and integrally closed in its fraction field.)

PROPOSITION 1. Let M be a semigroup of monomials in the variables
Ty oo, 2, Then the Jollowing conditions are equivalent:

(1) For some field K, the subring K[M]c Kz, «--, 2,] is normal.

(2) M is normal.

(3) M is isomorphic as a semigroup to a full semigroup of monomials
in a (possibly) different Sinite set of variables.

(4) M is finitely generated as a semigroup and for every integrally closed
domain D, the subring DIM]c D[z, ---, %] is integrally closed in its
Jraction field,

The proof of Proposition 1, which is not particularly hard, is given in
the next section.

THEOREM 1. Let M be g normal semigroup of monomials in the variables
Ty vy &, Then R[M] s Cohen-Macaulay for every Cohen-Macaulay ring R.

Theorem 1 yields the desired result on rings of invariants of tori at once:

COROLLARY 1. If G = GL(1, K)™ acts rationally on a finite-dimensional
K-vector space V, then R°, the ring of invariants of the induced action of G
on the symmetric algebra R of V, is Cohen-Macaulay.

Proof. The set M of monomials whose exponents satisfy a system of
equations like the system (*) discussed above is evidently a full semigroup
of monomials.

Almost all of the rest of this paper is devoted to proving Theorem 1.
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Remark 1. The corollary is a nontrivial theorem even if m = 1. One
can reduce to the case where G = GL(1, K) acts on Klz, <), Yy o=+, 4]
by a:ux, - @, 1<i{<r q Yi—ay;, 1<7<s. See [12], proof of Pro-
position 8. In thig case, R”’:K[xij],-j, the Segre product of Kz, .. z,]
and Kly, .. *» ¥,]. Then R" =~ Klu;;]/I, where the U;; are rs new indeter-
minates and J is the ideal generated by the 2 by 2 minors of the matrix [u;;].
The result in this case was first obtained by Chow [4] and Sharpe [16], [17].

New proofs follow from [12], Corollary 4, [10], Corollary 3.13, and, of course,
the main result here,

Remark 2, Chow’s methods cannot be used to get the general case of
Corollary 1: the rings R considered are not, in general, obtainable by iterated
formation of Segre products (even if we allow the trick, used in [1], of
changing the grading at each stage) and/or adjunction of indeterminates. In
fact we sha]] associate g polytope with each R“: under this association,
adjoining an indeterminate corresponds to forming the cone over the poly-
tope, and taking the Segre product of two of the rings (even with altered
gradings) corresponds (up to isomorphism) to taking the Cartesian product
of their polytopes. Even in the plane, we already miss the convex n-gons
for n > 5. Wwe return to this point in § 4: see Remark 9. It would be
interesting If our results here could be unified with Chow’s results.

G = GL(1, K)» instead as a finite discrete group, the theorem is stil] true,
because the order of G is not divisible by the characteristic of k- see Pro-
position 13 of [12]. (Of course, R is much larger for this G.)

Remark 4. Let N be the class of Noetherian rings which are normal
domains, C the class of those which are Cohen-Macaulay, and P the class of
those which have principal ideals unmixed. Then NUCCP but Nand C
are incomparable, Let M be the class of rings finitely generated over the
field K by monomials, The surprising result N M < C might lead one to
hope that P M = CN M. This is false: all the inclusions

NnMchMcPﬂMCM

are proper. A4 = K [}, 2%, a,, z.&%,] is in M but not in P. Note the relation
(D) = 2¥(2,) on the system of parameters T, . Let B=K [M], where

Vi =

{xf‘!xgzx;ax:”: ki by, hsy ke Zyy kg + hy = hy + his b, hy - 1.
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322 MELVIN HOCHSTER

Z. is the nonnegative integers. M is easily seen to be finitely generated.
Then Bisin P (M but not in C. To see this, first note that the integral
closure B’ of B is K[M'], where M’ =

{afiwhaphsgphe, by Roy by By e Ziy i+ hy = hy + k).

A system of parameters for K[M lis a3, wi, xix; 4+ afal, This system of
barameters is not an R-sequence, for we have the relation
Tl - ake) = TR () + i, (wiad) |
That Be P may be seen as follows: if not, there are elements J, 9€ B such
that fB: gB is a rank 2 or 3 prime of B. Then g/fe B — B, for if 9/fe B,
then B’ is mixed. Let J,, i =1, 2, be the rank one prime of B generated
by the monomials which involve x,. Since g9/f€ B' — B, it involves a monomial
linear in 2, or %.. If g/f contains a monomial linear in x, but not a monomial
linear in &, ., then SB:gB = J,. If g/f contains a monomial linear in 2, and
4 monomial linear in %, then fB:gB = J N S,
Finally, note that K[z, 27 is in C but not in N.

2. Normal rings generated by monomials

Our goal in this section is the proof of Proposition 1. We first introduce
Some notation to which we shall adhere throughout. As before, Q denotes
the rational numbers. Q. ={geQ:q= 0}. We define Q*, the first orthant
in @, as (Q.)". Zis the integers. If Sc Q", we write S, for Sn Q. If
¥, 0ee, @, are indeterminates and h=(hy -, k.)€ Z*, we write x* for
T eeewin This gives an Isomorphism of the semigroup Z" under addition
onto the semigroup of monomials in the variables Ty, +++, z,. We denote the
inverse isomorphism by log, or, simply, log. We shall say that a subsemi-
group S of Q" is full if whenever s, s'¢ Sand s — s'e @, then s — s'¢ S,
If it happens that S C Z*, we can replace Q by Z? in this definition without
changing the meaning. Thus, M is a full semigroup of monomials if and
only if log, M is a full subsemigroup of Z*. We also make the obvious defi-
nition of normal for additive semigroups, by switching from multiplicative
to additive notation. Thus, M is normal if and only if log M is normal.

Let H be an additive, torsion-free, cancellative semigroup. Let Z(H)
denote the universal abelian group generated by H. Then @ ®: Z(H) is, in
an obvious sense, the universal Q-vector space spanned by H. We shall
denote this vector space by Q(H) and we shall denote by Q. (H) the smallest
subsemigroup of Q(H) which contains H and is closed under multiplication
by elements of Q.. It is easy to see that H is normal if and only if Q. (H)n
Z(H) = H. Note that if His a subsemigroup of a Q-vector space W, then
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o1 HC W extends uniquely to an isomorphism ¢’ of Q(H) with the span of &
in W, and that ¢’ induces natural isomorphisms of ZH) with H—- Hcw
and of Q.(H) with the set of Q.-linear combinations of elements of Hin W
(which is identical with the set {hin:he H, nez, — {0}}). Given an em-
bedding H < W we shall identify Q(H), Z(H), and Q. (H) with their uniquely
isomorphic counterparts in W.

We now show that (1) = (2) in Proposition 1. Assume (1). Since K [M]
is a graded Noetherian K-algebra, we can choose 2 finite set of monomials
Dy **+, pr€ M which generate the irrelevant maximal ideal of K[M]. It
follows that K[M] = Klp, -+, n] (see Lemma 5.7 and its proof in [8]),
and hence that M is generated by p,, -+, p,. Now suppose that p, p', p”" e M
and that p(p’)" = (p")*. Then ("/p)" = p, so that p"/p’ is in the integral
closure of K[M] and hence is in K[M]. Since K[M]is a free module over
K with M as basis, p"/p" € M, and we let p, = p"/p".

We next show that (2) = (3). We identify W = @ (log, M), Z(log, M),
and Q. (log, M) with their counterparts in Q" Let W* — Hom, (W, Q) be
the vector space dual of . Let

U= {we W= ww,) =0, 1 i<k},

Since U is a finite Intersection of half-spaces in W*, there are finitely many
functionals w7, .. » wr € Usuch that U is the Q+-span of w¥, «+. w*. Since

Q- tlog, M) is the Q.-span of w,, .- ", Wi, it is a finite intersection of half-
spaces, and it follows that

Q.(log, M) = N{we W: wi(w) = 0},

By replacing the w; by suitable positive integer multiples, we can assume .

that w!(w,) e Z. for all Y, J. Let T: W— Q" be defined by setting 7 =
(w?, «++, wr). By construction, T'(log, M) Z!. To complete the proof, we
need only show that 7 is one-one on log, M and that T(log, M) is a full sub-
semigroup of Z:. Suppose that 4 = 4’ in log, M: say their i® components
disagree. Let w* be the linear functional on W obtained by projection on
the ¢** component in Q". Since w* is nonnegative on w,, -++, w,, we have
that w* e U. Hence, we can write w* = ZJ. g;wy, where the ¢;e Q,. Since
w*(h) = w*(h'), we can choose J such that w# (k) = wi(h'), and so T(h) = ().

It remains to show that T(log, M) is full. Suppose that T(h)— T(h) e
ZI. Then each of WY, +++, w} is nonnegative on j — k', so that h — p'e

Q.(log, M). Since &, h'e log, M and log, M is normal, & — h'elog, M, as
required.
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324 MELVIN HOCHSTER

We shall next show that (3) = (4). Let K be the fraction field of D.
Since

DIM[ = K[M] 0 D, -, ,]

it suffices to show that M is finitely generated and that for each field K,
KIM] is integrally closed in its fraction field. These facts follow from
Lemmas 1 and 2 below. We first need to recall the definition of a Reynolds
operator (see [12], Propositions 9-12). If ACR are rings (where “ring”
always means commutative, associative ring with identity), by a Reynolds
operator from R to A we mean an A-module homomorphism 0: R — A such
that o(a) = a for each ac€ A. Thus, to give a Reynolds operator O:R— A
is the same as to give an A-module complement E for 4 in R.

LEMMA 1. Let M be o Jull semigroun of monomials n the variables
Ty oo, 20 Then for each ring R there is ¢ Reynolds operator Srom
Elx, «-.x] to R[M]. Hence, if R is Noetherian, so is R[M]. It follows
that M is JSinitely generated as a semigroup.

Proof. R[M] is a free R-module with M as basis. As a complement
for R[M] we can take the (free) R-submodule E of R[z,, -, z,] spanned by
the monomials not in M. Eisan R[M]-submodule of Rlz, +-+, z,] precisely
because the product of a monomial not in M and one in M is not in M (M is
full). That R[M] is Noetherian if R is Noetherian now follows from ([12],
Proposition 10, part 3). In particular, when R = K, 3 field, K[M] is

Noetherian, and it follows just as in the proof of (1) = (2) that M must be
finitely generated.

LEMMA 2. Let M be o Jull semigroup of monomials in the variables
T mee, %, and let K be a field. Let F be the fraction Jield of K[M]. Then
FnKlx, ..., z,] = K[M]. Hence, K[M] is integrally closed in F.

Proof. Suppose g¢¢ (FnKle, - *y ©.]) — K[M]. We can assume with-
out loss of generality that none of the monomials occurring in gisin M.
Then g = f/f’, where Sy farein K[M] —{0}. Let p be any monomial which
oceurs in f = gf’. Then P can be written p”p’, where »"” and p’ are mono-

mials which occur in g and 5, respectively. Since p, p’e M and M is full,
p" € M, a contradiction.

The proof of (3) = (4) is now complete once we observe that if M and
M’ are semigroups of monomials which are isomorphic as semigroups, then
R[M] = R[M 'l as R-algebras for any ring R. This is a consequence of the
fact that R[M ] is the semigroup ring of M with coefficients in R.

Since
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Since (4) = (1) is obvious, we have proved Proposition 1.

Note that if M is full it still need not be true that K[M] is integrally
closed in K[z, «-+,z,]: e.g. let n =1 and let M = {xi*: ke Z,}). We show
next that this is the only type of example of what can go wrong.

If M is a full semigroup of monomials (respectively, if Sis a full sub-
semigroup of Z7), let the expansion of M (of S), M* (S°), be the set of
monomials p (elements se Z7) such that p*e M (kse S) for some integer
k>0. It is easy to see that since M (S) is full, so is M* (S°). If M = M*
(S = S°) we say that M (S) is expanded. Clearly, the integral closure of
K[M]in K|z, +--, z,] contains K[M°], so that K[M] cannot be integrally
closed in Kz, -+, 2,] unless M is expanded. On the other hand, if M is
expanded, K[M] is, indeed, integrally closed in KJx, .-, z,]. To prove
this we first observe:

LEMMA 8. Sc Z" isan expanded (= full) subsemigroup if and only if
one of the following two equivalent conditions holds:

(1) S=Wn Z, where W is a vector subspace of Q".

(2) S s the set of solutions in the nonnegative integers of a system of
homogeneous linear equations with rational coefficients.

If M is an expanded semigroup of monomials then K [M] is the ring
of invariants of a torus as in Corollary 1. Conversely, every ring of in-
variants of a torus of the type described in Corollary 1 is K-isomorphic to
K[M] for some expanded semigroup of monomials M.

Proof. That W N Z? is expanded is clear. On the other hand, if S is
expanded, let W be the span of S. It is then easy to see that S= W n Z2.
The equivalence of (1) and (2) is clear. The remaining statements of the
lemma now follow from characterization (2) of expanded subsemigroups of
Z? and our reformulation in § 1 of Corollary 1 in terms of monomials whose
exponents satisfy a system (*) of equations.

Remark 5. If M is an expanded semigroup of monomials, so that K[M 1=
R?, the Reynolds operator from R = K [z, +--, 2] to K[M] described
earlier is the same one given by invariant theory (see [8], Definition 5.3 or
[13], Definition 1.5).

LEMMA 4. If M is a full semigroup of monomials in x,, - - - 2, and K
s a fleld, the integral closure of K[M] in Klz, +--,2,] is K [M°], and so
K[M] is integrally closed in K [, «--, 2] if and only if M is expanded.

Proof. We need only show that K [M] is integrally closed in R=
Klx, ++-x,] if M is expanded. But then K[M] is R° where G is a torus
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326 MELVIN HOCHSTER
acting rationally. If fe R is integral over R’ (or even algebraic) then the
orbit of f under G is finite: it is contained in the set of roots in R of the
equation of dependence for f. The stabilizer of £ in G is therefore a closed
subgroup of finite index: a contradiction, since G is connected.

We recall Proposition 12 of [12]:

LEMMA 5. Suppose that R is ntegral over a subring A and that there is

a Reynolds operator Srom R to A. Then if Ris Cohen-Macaulay, A is Cohen-
Macaulay.

From this lemma we can show that the question of whether K[M]is
Cohen-Macaulay for a normal semigroup M of monomials is determined by
the semigroup structure of Q+(log M). To be precise:

LEMMA 6. If M, M’ are normal semigroups of monomials and Q+(log M)
and Q;(log M’) are tsomorphic as semigroups, then K[M] is Cohen-Macaulay
ifand only if K (M is Cohen-Macaulay.

In particular, tf M is any full subsemigroup them K[M] is Cohen-

Macaulay if and only if K[M°] is Cohen-Macaulay. (For we have that
Q-tlog M) = Q. (log Me)).

Proof. We shall assume that K[M'] is Cohen-Macaulay and prove that
K[M] is Cohen-Macaulay. By Proposition 1, we can assume that M’ is a
full subsemigroup of monomials in, say, ¥, ++-, y,, and that M is a semi-
group in w, ---, v,. Suppose that 9: Q. (log. M) — Q.(log, M’) is the iso-
morphism. By replacing ¢ by a suitable positive integer multiple we can
assume without loss of generality that g(log, M) log, M’. Note that o
extends uniquely to an isomorphism of Q(log, M) with Q(log, M’), which we
shall also denote by 6. We claim that g(log, M ) is a full subsemigroup of
Z'. For suppose h, ke log, M and (k) — o(h')e ZZ. Then ¢(h — I')e
(log, M’ —log, M) n Z!, and since log, M’ is full, $(h —h')elog, M’. Since
¢ Is an isomorphism of Q: (log, M) with Q. (log, M') and is one-one on all of
QUlog. M), we must have that % — ke Q.(log,M). But h—h'e log. M—log,. M
and log, M is normal. It follows that 4 — &' e log, M, as required.

We replace M by M, = y", where H = ¢(log, M). M, is a full semi-
group of monomials in y,, ***, ¥, which is isomorphic to M. We want to
show that K[M]] is Cohen-Macaulay. Since M, is full, we have a Reynolds
operator from Ky, +--, y,] to K [3], and hence, by restriction, from K [M]
to K[M,]. By hypothesis, K [M'] is Cohen-Macaulay. By Lemma 5, to com-
plete the proof we need only show that K[M '] is integral over K [M,]. But
since each element of Q+(log, M’) = Qi(log, M) has a positive integer
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multiple in log, M, each element of M’ has a power in M,. This completes
the proof.

Remark 6. The general case of Theorem 1 for R a field therefore follows
from Corollary 1 of Theorem 1, by Lemma 6 above and Lemma 3.

3. Polytopes of ideals

Let P be a (real or rational) polytope of dimension d. We refer to the
(d — l)-faces of P as the facets of P. We denote by 0P the union of the
facets of P. Let L(P) be the set of subsets of 6P which are unions of faces.
L(P) is a lattice under M, |Y. Every element B of L(P) has a unique irre-
dundant representation as a nonempty union of faces: we call these faces the
components of B. (We regard the empty set Z itself as a face of dimension -1.)
The dimension of an element of L(P) is the largest dimension of any compo-
nent. We regard two polytopes as isomorphic if their lattices are isomorphic.
Note that the dimension function is recoverable from the lattice structure.

By a polytope of ideals in a ring R we mean a family 9 of proper ideals
of R which form a lattice under +, N together with a lattice isomorphism

@ of J onto L(P) for some polytope P (« reverses order) such that for some
constant ¢ € Z and for every ideal I e d,

dim/ — dima(I) = ¢ .

Here, dim I is the Krull dimension of R/I. We refer to a: $— L(P) as giving
the polytope of ideals. In this situation we agree to denote a~: L(P)—J
by 3. (We shall even speak of a “P of ideals”, e.g. a “cube of ideals” or a
“simplex of ideals”.) We refer to the ideals 3(B), where B is a face of P, as
the face ideals of 4. Every element of J has a unique irredundant decomposi-
tion as an intersection of face ideals. It is easy to see that if dim I —dim a(I)
is constant on the face ideals, then it is constant on J:dim(I,N 1) =
max {dim I,, dim I,}. We note that a polytope of ideals is a distributive
lattice, for L(P) is distributive. We also note that L(P) for a given rational
polytope P is the same as L(P) for the corresponding real polytope (i.e. the
real polytope with the same vertices as P which is, moreover, the closure of
P). For this reason we shall only state the theorems below for real polytopes,
although in the applications all the polytopes we consider are rational.

We recall that an ideal I of a ring R is semiregular if R/I is Cohen-
Macaulay. To prove Theorem 1 we shall need:

THEOREM 2. Let a:9 — L(P) give a polytope of homogeneous ideals in
a finitely generated graded K-algebra R. Suppose that the face ideals of 9
are semiregular. Then B(OP) is semiregular.

Bl s e b m

T n s b i



328 MELVIN HOCHSTER

Remark 7. This seemingly strange result turns out to be quite useful
in practice: one is trying to prove that the rings in a certain class R of
finitely generated graded K-algebras are Cohen-Macaulay. It then happens
that given Rc R one can choose a form of positive degree fe¢ R, not a
zerodivisor, such that either (1) R/fR is again in the class, or (2) fR is
B3(0P) for a polytope of homogeneous ideals given by «:9J— L(P) such that
for each face ideal I of 4, R/I is in the class. It then follows by Noetherian
induction, Theorem 2, and Lemma 8 of § 4 that all the rings ReR are
Cohen-Macaulay. This is the idea of the proof of the main result of [12]
(where only the case when P is a 1-simplex was needed), and also, of the
main result of [10] (where, although this point of view was not taken, it
was necessary to consider arbitrary n-simplices of ideals: cf. Proposition 1.4
of [10]). Here, we shall actually need Theorem 2 at least for all rational
polytopes P. The inductive step here will be a little more complicated than

described above: we need to perturb things a bit by means of Lemma 6 to
set up the right situation.

In order to prove Theorem 2 we introduce the notion of a “constructible”
subset of 6P. We prove the result recursively for all constructible subsets
of 6P. Finally, we make use of the results of [2] to show that oP is itself
constructible.

We define the constructible sets in L(P) recursively thus:

(1) Every face in L(P) is constructible.

(i) If B, and B, are constructible sets of dimension % and B, NB,isa
constructible set of dimension & — 1, then B, U B, is constructible.

THEOREM 2°. Let a: § — L(P) give a polytope of ideals in a Noetherian
ring R and let B be a constructible subset of 0P. Suppose that one of the
Sfollowing conditions holds:

(a) R is local and the face ideals of 9 are semiregular.

(b) R isa finitely generated graded K-algebra for some field K, the ideals
of 9 are homogeneous, and the face ideals of 9 are semiregular.

Then B(B) is semiregular.

Moreover, 6P is constructible, so that we can always apply this result
with B = 6P,

Proof. We first note that case (b) follows from case (a). For localizing
at the irrelevant maximal ideal will not affect whether a finitely generated
graded K-algebra is Cohen-Macaulay [12], Proposition 19, nor will it affect
the dimension. Moreover, the map from the lattice of homogeneous ideals
of the graded ring to their expansions in the localization will be a lattice
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isomorphism.

To handle case (a), we observe that we can replace R by its completion
without affecting the relevant issues. Hence, we may assume that R =
R'/I, where R’ is a regular local ring. Let ¢: R" — R. Then it is easy to see
that we need only prove the result for ¢7'(9) in R’: hence, we may assume
without loss of generality that R is a regular local ring. But then an ideal
J of R is semiregular if and only if it is perfect, i.e. dh, R/J = grade J,
where dh denotes homological (projective) dimension and the grade of a
proper ideal of a Noetherian ring R is the length of the longest R-sequence
it contains. This follows, for example, from Theorem 28.2 of [14]. Now,
utilizing the recursive definition of constructible set, we need only make the
following observations:

(i) Each face ideal is perfect, by hypothesis.

(ii) If I,, I, are perfect ideals of J of the same dimension, k, and I, + I,
is a perfect ideal of dimension % — 1, then I, N I, is perfect. (This follows
from Proposition 18 of [12] once it is noted that grade I = dim B — dim [
for any proper ideal I of a regular local ring.)

These two observations make it evident that the ideal corresponding to
any constructible subset of 6P is perfect. We are left with the question of
the constructibility of 6P. But this is immediate from the recursive defini-
tion of shellability (Definition 1) used in [2] and the Corollary to Proposition
2 of [2], which asserts that the boundary 6P of any (convex) real polytope
is shellable.

This completes the proof of Theorem 2° and hence of Theorem 2.

Remark 8. It is of some interest to determine the class of constructible
sets Be L({P) in some nonrecursive fashion. Even better would be a purely
topological description of the largest class of sets Be L(P) for which it can
be inferred that S(B) must be semiregular under the hypotheses of Theorem
2°. It is not clear that membership in this class is a purely topological'
matter. We do note the following topological facts about constructible sets:

(i) A constructible set is a union of faces of the same dimension.

(ii) In dimensions —1, 0, 1 we can characterize the constructible sets
thus: in dimension —1, @ is the only set and the only constructible set; in
dimension 0, every set of vertices is constructible; and in dimension 1, a
union of edges is constructible if and only if it is connected.

(ili) By using the Mayer-Vietoris sequence in homology, the fact that
the union of two simply connected complexes is simply connected if the inter-
section is connected, the Hurewicz theorem, and other standard facts from
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algebraic topology, it is not difficult to show that a constructible set B of
dimension &£ = 2 has the following property:

If C is a subcomplex of B of dimension, —1<17<k—3, then 7;(B—-C)=
0, 1<j<k—1i—2 and B— C is connected if dimC £ k — 2. Here, m;
is the 7" homotopy group.

It is natural to ask whether, under some reasonable additional hy-
pothesis, conditions (i), (ii), and (iii) characterize the sets B in L(P) such
that 3(B) is semiregular (under the hypothesis of Theorem 2°). The author
does not know the answer even if J is the simplex of radical ideals in
Klx,, ---, x,] whose face ideals are the primes generated by the nonempty
subsets of {x,, .-+, ,} (or even whether, given that B is a subcomplex
homeomorphic to a k-cell for some k, 3(B) must be semiregular).

4. The main result
In this section, we shall prove Theorem 1. We shall first prove:

THEOREM 1°. Let M be an expanded semigroup of monomials in
Ty, vee, T, and let K be a field. Then K[M] is Cohen-Macaulay.

The general case of Theorem 1 when R = K, a field, then follows from
Lemma 6 and we can use the results of [7] to obtain Theorem 1 for arbitrary
Cohen-Macaulay rings R once the case where R is a field is known.

We shall prove Theorem 1° by induction on %, but we need some pre-
liminaries. Let M be an expanded semigroup of monomials in «,, «-+, ®..
Let R = K{x,, +++, «,]. Let § be the (n — 1)-simplex of ideals in R whose
face ideals are the ideals generated by the nonempty subsets of {x,, - -+, x,}.
J may also be described as the set of ideals in K[z, «--, »,] which can be

generated by a nonempty family of square-free monomials in z,, « -+, z,. Let
J=49dn K[M], i.e.

d={nK[M]:Je g}.

We shall want to show that J is a polytope of ideals in K[M]. We first
note that if Je J, then J 0 K[M] is generated, in fact, spanned, by those
monomials in M which are multiples (in B) of the generating monomials
of J. It easily follows that Jn K[M] = o(J), where o is the Reynolds
operator from R to K[M] described in the proof of Lemma 1. In other
words, 9 = p(g). It is clear that o preserves sums, while from the fact that
o(J) = J N K[M] itis clear that o preserves intersections. Hence, o gives
a lattice homomorphism of § onto 4. Thus, J is a distributive lattice, and is
generated as a lattice by the images of z.R, - - -, x,R.
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We next want to associate a polytope P = P(M) with M (it will turn
out that 9 is a “P of ideals”). Let X be the hyperplane in Q" defined by the
equation ¢, - «+. £t =1, Let P= P(M) = XnQ.(log, M). Pisa bounded
intersection of half-spaces, hence, a polytope in Q. Note that, up to iso-
morphism, P is determined by the semigroup structure of S = Q+(log, M).
In fact, it is clear that each ray emanating from the origin and lying in S
meets P in precisely one point. It follows that L({P) is isomorphic to the
lattice L of nonempty unions of nonempty faces of the polyhedral set S. (of
course, in passing from L(P) to I dimensions are increased by 1) Itis
evident that the lattice L depends only on the semigroup structure of S =
Q-log, M): it is the same as the lattice of nonempty unions of nonempty
faces of Q.(log, M) regarded as a polyhedral set in Q(log, M). Thus, it
makes sense to write P = P(S). Note that we could have defined P as the
intersection of S with any hyperplane q¢t, - +-. + g:tn =1 (¢;€ Q) such
that the linear functional Zi qt; is positive on S — {0}. In fact, the linear
functionals 2. ¢t on Q" which are positive on S — {0} correspond to the
choices of grading for K[M]. (Two functionals give the same grading if
they agree on S. One must take a suitable positive integer multiple to get
the grading function to have integer values. We think of gradings which
are rational multiples of one another as essentially the same.) Thus, we can
think of the different polytopes P obtained from S by various hyperplane
sections as corresponding to various gradings on K[M]. We can therefore
paraphrase some of our observations by saying that the isomorphism class
of the polytope is independent of the grading.

Remark 9. It is easy to see that if we form the Segre product of K[M]
and K[M'] with respect to gradings d and d’ and grade the Segre product
by d + d’, the new polytope is the Cartesian product of the original ones.
It is also easy to see that if we adjoin a new indeterminate z to K [M] the
new polytope (corresponding to the semigroup

{pa:pe M, jeZ,))
is the cone over P. This completes our justification of Remark 2 in §1.

Remark 10. It is not difficult to show that every rational polytope P is
isomorphic to P(M) for some expanded semigroup M.
If u is a subset of {1, ---, n}, let
I, = ({z:icu}R) N K[M]

which, if w = 2, isin . (I, = (0).) Let M, be the set of monomials in the
variables
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{riie(l, «o, n} — u}.

Let X, be the set of points (g, -++, ¢,) in Q" such that ¢; = 0 if ¢ u. Then
log. M, = Z» 0 X,. If n(u) is the number of elements of {1, «- -, n} not in u,
then X, can be naturally identified with Q**, and we can think of the log
function for the polynomial ring K[M,] as taking values in X, instead of
n QM.

LEMMA 7. Let M be an expanded semigroup of monomials in the vari-
ables w, +++, 2. Then for each wc{l, .-+, n}, MN M, is an expanded
semigroup of monomials in the variables

{wriefl, «oo, n} — u}.
The jaces of P = P(M) are precisely the sets P X,. (P itself is PN Xgz.)
The racets of P lie among the sets PN X, 1 <1< m.
For each w, K[M]/I, = K[Mn M,], and P(MN M,), regarded as a
subset of X,, is P(M) N X,.
Moreover, for each wC {1, ---, n},

dim I, = dim K{M}/I, = dim (PN X,) + 1.
In particular, dim K[M] = dim S = dim P + 1.

Proof. It is obvious that M N M, is expanded if M is. The statements
about the faces and facets follow from the fact that S = W N Q?, where
W is a vector space. I, is spanned as a K-vector space by those monomials
in M which involve an x; for some iecu. It is consequently clear that
K[M}/I, = K[Mn M,]. What is more, it is obvious that

XN Q+(log. (M N M) = Xn Q.(log, M) N Q.(log, M,)
:Pﬂ(Xu)+:PmX“'

The first statement about dimension follows from the observations above
and the second statement about dimension. To see that dim K [M} (Krull
dimension, of course) = dim S, note that if s,, -+, s, is a basis for the vector
space S — S consisting of elements of log, M, so that k& = dim S, then
L, +«-, 2’ are algebraically independent elements of K[M] which form a
transcendence basis for its fraction field.

PROPOSITION 2. Let M be an expanded semigroup of monomials in
Ty, cee, La. Assume that each of the x; actually occurs in some element of M.
Define a map a from J to the set of subsets of P = P(M) by

a(I) = P — Q.(log, (I N M)).

Then a is a lattice isomorphism of 9 with L(P) such that for each uC
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{, +--, n}, a(l,) = PN X,. Moreover, for each Ic 9, dimI = dima(I) + 1.
Thus, a:d— L(P) gives 9 as a polytope of ideals.

Proof. Fach Ic J is spanned as a K-vector space by I N M. It is clear
then that a,:I— 1IN M is an injection of J into the set of subsets of M
which takes + to {J and M) to (). Since log, injects M into Q7, log, «,
gives an injection of J into the subsets of Q" which takes + to |J and N to
. It is easy to see that

Q-(log. (INM)n Zr =log, (INM).

It follows at once that Q. log, «, is a lattice isomorphism of J into the subsets
of @ which are unions of rays. Since each element of log, (I N M) is in
S — {0}, each of these rays is determined by its point of intersection with X
(the hyperplane ¢, + .-+ + ¢, = 1), which is the same as its point of inter-
section with P. Hence, a’: I— P (Q-log. (IN M)) is an injective lattice
homomorphism of 4, 4, [ into the set of subsets of P, Y, N. If we com-
pose &’ with the map which takes each subset of P to its complement, we
get «. A routine computation shows that «(I,) = PN X, for each uC
{1, -+, n}. It follows that each face P is in the image of «. Hence, Ima D
L(P). But Jis a distributive lattice generated by I,,, ++-, I,,,, so that Im«
is generated by the proper faces of P (proper faces because of the condition
that each x; actually occur in some element of M), and it follows that Im a =
L(P).

Finally, to show that dimI = dima(I) + 1 for every Ie d, it suffices
to show this when I =1,, wc{l, ..., n}). But we know this from the
preceding lemma.

Proof of Theorem 1°. We use induction on n. If n =1, it is easy to
see that dim K[M] < 1, so that K[M] is Cohen-Macaulay. Now suppose
that n>>1 and that the result is true for expanded semigroups of monomials
in fewer than n variables. Let M be a given expanded semigroup of monomials
in, -+, v,. If one of the variables x; does not occur in any p € M, then the
given semigroup can be regarded as a semigroup in fewer than » variables.
Hence, we need not consider this case, and we can assume that for each 1,
1 =7 = n, there is a monomial p; e M which involves z;. Letp = p, ++- p,.
Then p = «*, where h = (h,, -+, h,) has positive integer entries, and p e M.
Define T, a linear transformation from Q" to Q" which takes the first orthant
onto itself by

g, -+, qa) = (@/hyy =+ <, Qulh)
Let S = Q.(log, M). The T(S) is a subsemigroup of Q" isomorphic to S.
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Moreover, T(S) is full:

(T(S) = T(S) N Q> = (T(S) — T(S)) n T(QY)
=T((S -8 NnQ: =T,

as required. Let H=T(S)nZ". It isthen easy to see that H is an expanded
subsemigroup of Z* such that T(S) = Q_(H). By Lemma 6, K[M] is
Cohen-Macaulay if and only if K[x"] is Cohen-Macaulay, for

Q:(H) = T(S) = S = Q_(log, M) .

By construction, (1,.--,1)e H, so that we can assume without loss of
generality that «, --- e M.

We now apply Proposition 2. The map «:J— L(P) gives a polytope of
ideals in K[M]. The face ideals are the I, for v # 2, and each I, is semi-
regular by the induction hypothesis: K[M}/I,=K[MnM,], and Mn M,
is an expanded semigroup in fewer than n variables, hence, K[M N M,] is
Cohen-Macaulay. By Theorem 2, 5(6P) is semiregular, i.e.

S(P NnU:.X. )) = ni(-’«'iR N K[*W])
=@ -2, RN K[M] = (z,--- 2 )K[M]

is semiregular, where R = K[z, -- *, ©,]. But then the fact that K[M] is
Cohen-Macaulay is immediate from the Corollary to Proposition 19 of [12],
which may be restated as follows:

LEMMA 8. If S is a Noetherian graded K-algebra over a field K, and f
s a form of positive degree not a zerodivisor in S, then S is Cohen-Macaulay
of and only if S/fS is Cohen-Macaulay, i.e. of and only if fS is semiregular.

The proof of Theorem 1° is now complete.

Remark 11. Regard Q" as Q" x {0} in Q" and let S = Q. (log, M)
for an expanded semigroup of monomials M. Let ¢ be the projection map
from Q" onto Q"' (where we think of Q" as @ x @). It is not hard to
see that ¢ gives an isomorphism of S onto a full subsemigroup of @** unless
PN X, is a facet of P. Using this fact and Lemma 6, it is possible to reduce
the inductive step in the proof to the case where the facets of P are precisely
the sets PN X;, 1 <7< n, so that the ideals I;, are rank one primes of
K[M]. 1t is perhaps a little clearer what is happening when S is, so to
speak, minimally embedded in this way, although the argument is no shorter.

Remark 12. Instead of showing that a monomial » € M involving all
the variables generates a semiregular ideal, we might have singled out any
monomial (e.g. one involving a minimal subset of the variables), used the
same trick to reduce to the case where this monomial is linear in each of the
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variables, and then attempted to show that it generates a semiregular ideal.
If the monomial is, say, &, --- 2, this amounts to showing that the union of
the facets PN X, 1 =1 = £, is constructible. The remaining facets have
a point in common, (1/k, «++, 1/k, 0, -+, 0), so that, at best, we still have
to show that the 6P with the star of a vertex deleted is constructible — a
problem no easier than constructing the whole boundary.

Remark 13. If M is a normal semigroup of monomials, then the Segre
product of K[M] with K[x,, ».] is Cohen-Macaulay (for it is easy to see that
this ring is also generated over K by a normal semigroup of monomials).
Hence, we can frequently deduce from the converse statements in Chow’s
main Theorem [4], p. 818, that K[M] is proper. This is useful, for it then
follows that the Segre product of K[M] with any proper Cohen-Macaulay
homogeneous K-algebra is Cohen-Macaulay if the dimensions are bigger
than one.

Proof oy Theorem 1. For the rest of this paper we fix 2 normal semi-
group M of monomials in , ++-, z, and we let p,, «--, p, be a fixed set of
generators for M, not containing 1. Let y,, -+, y. be indeterminates. Let
R be any ring. We then have a unique R-homomorphism from Rly] =
Rly, -+, y.] onto R[M] which takes v, to p,, 1 < i< k. We denote the
kernel of this homomorphism by A,. Itis easy to see that 9, is generated
by the differences

yf”l e yl’:"k — y;h oo yZA
such that

p:”‘i...p,’:‘k :pi‘x...p}:k_

We then have that for any ring R, R@®, Z[M] = R[M], and that R®,%, =
UAp. Moreover, by Theorem 1° and Lemma 7, for any field K, K®,%U,isa
semiregular homogeneous prime ideal of grade ¢ = k& — dim Q(log, M) in
Kly]. It follows from the main results of [7] or Proposition 20 of [12] that
U, is a generically perfect prime ideal of Z[y] and therefore, by the main
result of [9], strongly generically perfect: see [15] for the definition of this
notion. It follows that 2, is a perfect ideal for every Noetherian ring R,
and, hence, a semiregular ideal when R is Cohen-Macaulay. But this means
that when R is Cohen-Macaulay, so is R[y]/%; = R[M], and the proof of
Theorem 1 is complete.

We conclude with the explicit statement of some ideal-theoretic corolla-
ries of the generic perfection of A,. As we have already shown above:
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COROLLARY 2. ¥, is a strongly generically perfect homogeneous prime
ideal of Z[y] of grade g = k — dim Q(log, M).

Hence, from the main result of [15] (or the main results of [7]):

COROLLARY 3. Let X be a graded free minimal resolution of Z [y]/,.
Then X has length g, and the complex X is grade-semsitive. That is, if
Wy v e, uy are elements of any Noetherian ring R, and we make R into a
Zlyl-algebra by means of the homomorphism o which takes y; to u;, 1 <15k,
then if E is any R-module of finite type such that JE + E, where J = (AR,
then the grade of J on E is the number of vanishing homology groups, count-
ing from the left, of the complex X & E, where the tensor product is over
Zlyl. In particular, if the grade of J on E is g, then K ® E is acyclic.

Thus, it is natural of think of X as a generalized Koszul complex.
Finally, the results of §§ 5-7 of [7] yield:

COROLLARY 4. Let R, u,, +++, uy, 0, and J be as in Corollary 3. Then
every munamal prime of J has rank at most g = k — dim Q(log, M). If the
grade of J is as large as possible, i.e. g, then J is perfect, hence, grade un-
mixed, and all the associated primes of J have grade g. If J has grade g and
R s Cohen-Macaulay, then the associated primes of J all have rank g, and
R/ J is again Cohen-Macaulay.
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