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Abstract

This thesis gives an account of the author’s contribution to the development of the

software LattE, which implements Barvinok’s polynomial time algorithm for enumer-

ating and counting lattice points in rational polytopes in fixed dimension, via rational

functions. The thesis also presents some new theoretical results and algorithms based

on Barvinok’s rational functions.

A more memory efficient version of Barvinok’s counting algorithm is presented, along

with its implementation as a new Memory Saving Mode in LattE. Then an algorithm

for Integer Programming is given (with proof of correctness), called the Digging Al-

gorithm, which extracts solutions for Integer Programming instances, out of rational

functions. An implementation of the Digging Algorithm in LattE is presented, and

compared to the standard Integer Programming software Cplex. Finally, a new the-

orem is proved that allows efficient summation of a fixed degree polynomial, over

the lattice points in a finite lattice point set encoded via Barvinok’s rational func-

tions. This gives a generalized weighted counting algorithm, and also allows various

applications to fields such as Statistics.

iv
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Chapter 1

Introduction

1.1 Preliminaries

The primary objects we will discuss are lattice points, and so naturally we should

begin with a definition.

Definition 1.1. By lattice points we mean those points in Rd which have integer

coordinates.

Thus, the set of all lattice points in Rd is Zd. We will be mainly interested in lattice

points that are contained inside rational polyhedra, which are defined as follows:

Definition 1.2. A rational polyhedron is a subset of Rd which is the set of all real

solutions of a system of non-strict linear inequalities with integer coefficients.

If P happens to be a bounded rational polyhedron, then we call P a rational polytope.

We can succinctly write a system of non-strict linear inequalities with integer co-

efficients as Ax ≤ b, where A ∈ Zm×d is an integer matrix, and where b ∈ Zm.

Then equivalently, a rational polyhedron is a subset P ⊂ Rd which can be written as

P = {x ∈ Rd : Ax ≤ b} for some A ∈ Zm×d and b ∈ Zm. We will often use the term

dimension when referring to d.
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It turns out that many problems in Combinatorics, Compiler Design, Representation

Theory, and Number Theory—just to name a few—can be expressed as problems

regarding lattice points inside rational polyhedra. See [21, 13, 11, 17, 18] for examples.

1.2 From Lattice Points to Monomials: Generating Func-

tions

One natural way to represent lattice points is with multivariate monomials. For

a given lattice point α ∈ Zd, we can associate the monomial zα in d variables

z1, z2, . . . , zd, as follows:

zα := zα1
1 zα2

2 . . . zαd
d (1.1)

Then, we can easily represent a set S of lattice points, by a sum of monomials:

f(S; z) =
∑
α∈S

zα (1.2)

For the time being, we are not yet considering such f(S; z) as a complex-valued

function of z, because if S were infinite, it is unclear whether the Laurent series
∑
α∈S

zα would even converge for some z ∈ Cd. So for now, at least, we will simply

regard f(S; z) as a formal sum of monomials and save ourselves such troubles until

later. We will often refer to f(S; z) as the generating function for S.

1.3 A Theorem of Brion

Given a rational polyhedron P = {x ∈ Rd : Ax ≤ b}, we define the vertices of P as

follows:

Definition 1.3. A vertex v ∈ P is a point in P which can be written as v = A′−1b′,

where A′ is an d × d invertible submatrix of A, and where b′ is the corresponding
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subvector of b.

Then for each such vertex v ∈ P , we define

Iv = {i ∈ {1, 2, . . . , m} : Ai · v = bi} (1.3)

where Ai denotes the ith row of A, and where bi denotes the ith component of b.

Then we define

cone(P, v) = {x ∈ Rn : Ai · x ≤ bi,∀i ∈ Iv} (1.4)

Such cone(P, v) is called the tangent cone of P at vertex v. It is well known [3] that

if P is a rational polyhedron containing no straight lines, then f(P ∩ Zd; z) does in

fact have a non-empty region of convergence as a Laurent series in z, so that we may

regard f(P ∩ Zd; z) as defining a complex-valued function of z ∈ Cd. Furthermore,

each cone(P, v) will also be a rational polyhedron containing no straight lines, and so

each f(P ∩ Zd; z) also has a non-empty region of convergence as a Laurent series in

z.

Brion [6] was the first to discover the following beautiful result, which relates the

complex-valued function f(P∩Zd; z) to the corresponding set of functions f(cone(P, v)∩
Zd; z) in a very natural way:

Theorem 1.4. [6]

Let P be a rational polyhedron containing no straight lines, and let V (P ) be the set

of vertices of P . Then:

f(P ∩ Zd; z) =
∑

v∈V (P )

f(cone(P, v) ∩ Zd; z)

From here on, we will assume that rational polyhedra and cones contain no straight

lines, unless we explicitly state otherwise.
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Note that Brion’s theorem reduces the problem of computing f(P ∩Zd; z) for rational

polyhedra P to the problem of computing f(K∩Zd; z) for which K is a rational cone.

1.4 Triangulations and Simplicial Cones

We begin with some basic terminology:

Definition 1.5. A rational cone K is a subset of Rd which contains no straight lines,

that can be written as K = {x ∈ Rd : x = v+Mε, ε ∈ Rµ, ε ≥ 0}, for some M ∈ Zd×µ

and v ∈ Qd, where no column of M can be written as a non-negative combination of

the others. Such v is called the vertex of K, and the columns of M , when regarded

as vectors, are called the generators of K. If the generators of K span Rd, then K

is called full-dimensional. If the generators of K are linearly independent, then K is

called simplicial.

It is well known that a rational cone K can be expressed as a finite union of simplicial

cones K =
⋃

i∈I Ki, where each Ki has vertex v, and where the interiors of the Ki are

disjoint. Additionally, this can be done so that the intersection of any pair of simplicial

cones in {Ki}i∈I is again a cone, whose generators are precisely those generators that

are common to the pair of cones. We call such a set simplicial cones {Ki}i∈I a

triangulation of K.

We would like to write f(K ∩Zd; z) as the sum
∑
i∈I

f(Ki ∩Zd; z), but we might“over-

count” some points that are contained in more than one Ki. However, a straight-

forward application of the inclusion-exclusion principle shows that we can remedy

this situation by subtracting all generating functions f(Ki ∩Kj ∩Zd; z) for pair-wise

intersections, and then adding all generating functions for 3-wise intersections, etc.

Therefore, we can write f(K ∩ Zd; z) as a signed sum

f(K ∩ Zd; z) =
∑

i∈I′
Ei f(Ki ∩ Zd; z) , (1.5)
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where each Ki is simplicial, and where each Ei ∈ {−1, 1}.
This further reduces the problem of computing f(P ∩Zd; z) for rational polyhedra P

to the problem of computing f(K ∩ Zd; z) for which K is a simplicial rational cone.

1.5 Toward a Formula for f(P ∩ Zd; z)

We now seek an explicit formula for the generating function associated with a sim-

plicial rational cone K with vertex v and generators w1, w2, . . . , wµ. We begin with a

familiar Laurent series,

1

1− zα
= 1 + zα + z2α + z3α + . . . , (1.6)

and note that

µ∏
j=1

1

1− zwj
=

µ∏
j=1

∞∑

k=0

zkwj (1.7)

is precisely equal to
∑
α∈S

zα, where S is the set of all non-negative integer coefficient

combinations of the vectors w1, w2, . . . , wµ.

Let Π be the half-open parallelepiped defined by Π = {x : x = v + Wε, ε ∈ [0, 1)µ},
where W is the matrix with columns w1, w2, . . . , wµ. Then, as some geometric rea-

soning might suggest, the well known formula

f(K ∩ Zd; z) =

∑
α∈Π∩Zd

zα

µ∏
j=1

(1− zwj)

(1.8)

will hold anywhere inside the region of convergence of
∑

α∈K∩Zd

zα, excluding the

measure-zero set of poles of the rational function given in (1.8).

Let us review for a moment. Using Theorem (1.4), along with the formulae (1.5) and

(1.8), if we were given A ∈ Zm×d and b ∈ Zm, then we could indeed compute the
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generating function f(P ∩Zd; z) associated with the polyhedron P = {x ∈ Rd : Ax ≤
b}.

The problem is, in order to write down the formula for f(P∩Zd; z) explicitly, we would

have to find and list all the lattice points contained inside various parallelepipeds, in

order to write down the numerators appearing in formula (1.8). But, in terms of

A and b, those parallelepipeds might contain a huge number of lattice points. In

particular, even if we considered the dimension d to be a fixed constant, there is no

polynomial in the standard input size of A and b (see Section (1.7)) that bounds the

maximum number of lattice points contained in a parallelepiped appearing in formula

(1.8).

1.6 Barvinok’s Algorithm

Enter Alexander Barvinok and his remarkable algorithm [2]. In 1994, Barvinok

showed how to explicitly write down a formula for f(P ∩ Zd; z) as a sum of ra-

tional functions, in time polynomial in the input size of A and b, when the dimension

d is considered to be a fixed constant. He then showed how to use this formula for

f(P ∩ Zd; z), to count the number of lattice points contained in a rational polytope

P , in polynomial time when d is fixed. This gave an extension of Lenstra’s celebrated

result [16] that one can determine whether P contains any lattice points in polynomial

time when d is fixed. Barvinok’s original version actually relied on Lenstra’s result,

but Dyer and Kannan [12] later showed how to modify Barvinok’s algorithm so that

Lenstra’s algorithm was no longer needed as a subroutine.

We give an overview of Barvinok’s main algorithm here. For a complete description,

consult [2, 12, 4]. The basic idea is to take a simplicial rational cone K with µ

generators, and use an integer vector ω ∈ Zd to express K as a signed sum of µ

simplicial cones Ki (modulo the set of closed half-spaces in Rd). Each simplicial
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cone Ki is formed from K by replacing one generator with ω. By using a clever

application of Minkowski’s Theorem, Barvinok guarantees that a particular ω can

be quickly found, so that formula (1.8) for each Ki will have an associated half-

open parallelepiped Πi containing significantly fewer lattice points than the half-open

parallelepiped Π for K.

This expressing of K as a signed sum of cones Ki is called a signed decomposition of

K, or simply a decomposition of K.

The same process can then be applied to obtain a signed decomposition for each Ki,

and then applied again to the cones thereby obtained, and so on. In fact, Barvinok’s

algorithm repeatedly computes signed decompositions of cones, until all simplicial

cones have parallelepipeds that contain just a single lattice point. (Such simplicial

cones whose parallelepipeds contain only one lattice point are called unimodular.)

Furthermore, by quickly finding well-suited ω’s to perform the decompositions, Barvi-

nok’s algorithm yields a signed decomposition of K into no more than p(A, b) unimod-

ular cones, where p is a polynomial in the input size of A and b, when the dimension d

is a fixed constant. Furthermore, the decomposition process runs in polynomial time.

Now, if d is a fixed constant, then a polyhedron P ⊂ Rd defined by P = {x ∈ Rd :

Ax ≤ b}, where A ∈ Zm×d and b ∈ Zm, has no more than ( m
d ) vertices, each giving

rise to a tangent cone having no more than p1(m) generators, where p1 is a fixed-

degree polynomial. Each of these tangent cones can be triangulated into no more

than p2(p1(m)) simplicial cones, where p2 is a fixed-degree polynomial. Note that

( m
d ) is also a fixed-degree polynomial in m, when d is fixed, and so using Theorem

(1.4), along with the formulae (1.5) and (1.8), we can write

f(P ∩ Zd; z) =
∑
i∈I

Ei f(Ki ∩ Zd; z) , (1.9)
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where |I| is bounded by a polynomial in the input size of A and b. Then applying

Barvinok’s signed decomposition process to each cone Ki yields the following result:

Theorem 1.6. [2] Suppose d is fixed. Then there exists an algorithm, which given

A ∈ Zm×d and b ∈ Zm, explicitly computes the generating function f(P ∩ Zd; z) cor-

responding to P = {x ∈ Rd : Ax ≤ b}, in the following form:

f(P ∩ Zd; z) =
∑
i∈I

Ei
zui

ni∏
j=1

(1− zvij)
(1.10)

where all Ei ∈ {−1, 1} and where all ui, vij ∈ Zd, and where all vij are non-zero.

Furthermore, the algorithm runs in polynomial time.

Theorem (1.6) is the main result of this chapter, and we will commonly refer to it

as Barvinok’s Main Algorithm. Almost everything we will discuss from this point

forward will derive from it in some way. In the next chapter we discuss the soft-

ware LattE, developed by our research group at UC Davis, which is the first-ever

implementation of Barvinok’s Main Algorithm.

But before we do, let us first take a glimpse of what we can do via Theorem (1.6).

Suppose P is a rational polytope for which we have computed f(P ∩ Zd; z) using

Barvinok’s Main Algorithm. Notice that, if we were to compute the limit

lim
(z1,z2,...,zd)→(1,1,...,1)

f(P ∩ Zd; z) = lim
(z1,z2,...,zd)→(1,1,...,1)

∑

α∈P∩Zd

zα (1.11)

we would obtain
∑

α∈P∩Zd

1 , which is precisely the number of lattice points inside

P . Barvinok [2] showed how to compute the limit (1.11) in polynomial time, when d

is fixed—thus proving that in fixed dimension, counting the number of lattice points

inside rational polytopes admits a polynomial time algorithm. We will commonly

refer to this algorithm for counting lattice points as Barvinok’s Counting Algorithm.
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1.7 Additional Notes and Miscellanea

Some Terminology Regarding Algorithms and Their Complexity

By standard input size, we mean the total number of binary digits needed to write

down A and b in a “reasonable way.” For our purposes, we will just define the standard

input size of an m × n integer matrix W to be cmn ∗ (log(max{|wij| + 2})) where

W = (wij) and where c is some universal positive constant. When we say that an

algorithm is polynomial time, we mean that the number of operations required by the

algorithm is bounded by a polynomial in the standard input size of its input data.

Stacks and Queues

A stack is a storage area that we may use for storing and retrieving objects. We may

insert an object into the stack whenever we wish, but whenever we retrieve/remove

an object from the stack, the object that we retrieve/remove will be the most recent

object that we have added to the stack. In a sense, we “stack” inserted objects on

top of each other, and always remove the object which is “on the top of the stack.”

A queue is also a storage area that we may use for storing and retrieving objects.

We may insert an object into the queue whenever we wish, but whenever we re-

trieve/remove an object from the queue, the object that we retrieve/remove will be

the least recent object that we have added to the queue.
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Chapter 2

The LattE Project: Implementing

and Improving Barvinok’s

Algorithm

The LattE project was conceived by Jesus de Loera of UC Davis, with the original

goal of implementing Barvinok’s powerful algorithm described in Chapter 1. That

original goal was indeed realized and thus the software LattE was born. The fruits

of the labor are presented in [9, 10]. David Haws and I joined the project shortly

thereafter, to help further develop and improve LattE.

2.1 A More Memory Efficient Version of Barvinok’s Count-

ing Algorithm

We first reviewed Barvinok’s algorithm for counting lattice points inside a rational

polytope P , and discovered that a considerable savings in memory could be accom-

plished through a minor modification.
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2.1.1 Barvinok’s Original Approach

Barvinok [2], and De Loera et. al [9], originally proposed the following approach to

count the lattice points in P :

Algorithm 2.1. Barvinok’s Counting Algorithm

1. Compute the function f(P ∩ Zd; z) via Theorem (1.6)

2. Find a “reasonably-sized” integer vector c ∈ Zd such that c · vij 6= 0 for all

vij ∈ Zd appearing in the denominators in the calculated formula for f(P ∩Zd; z)

(By “reasonably sized,” we mean that the standard input size of c is bounded by

a polynomial of the standard input size of A and b, when d is considered fixed.)

3. Make the substitutions zi → tci for each i = 1, 2, . . . , d, to obtain f(P ∩Zd; z) →
g(P ∩ Zd; t)

4. Calculate the limit lim
t→1

g(P ∩Zd; t) , by first calculating a residue for each gen-

erating function appearing in the summation (1.10), (using residue techniques

as described in [2, 9]), and then summing the obtained residues.

Barvinok described a polynomial time method to perform step (2) of Algorithm (2.1),

provided that the entire formula (1.10) for f(P ∩ Zd; z) was already computed and

stored in memory.

2.1.2 A Modified Approach

However, if we actually knew a priori a reasonably-sized c ∈ Zd that satisfied the

criteria listed in step (2) of Algorithm (2.1), then instead of calculating f(P ∩ Zd; z)

and then performing steps (2-4), we could instead use the following approach:



CHAPTER 2. The LattE Project: Implementing and Improving Barvinok’s Algorithm 12

Algorithm 2.2. A Different Approach for Barvinok’s Counting Method

1. Set RESIDUE-SUM := 0

2. Apply the algorithm in Theorem (1.6), as described in [9], for computing the

function f(P ∩ Zd; z), but each time a unimodular cone U is produced in the

cone decomposition process, such that U would contribute a function h(z) =

E zu

n∏
j=1

(1−zvj)
to the summation (1.10), then immediately do the following:

(a) Make the substitutions zi → tci (for each i = 1, 2, . . . , d) into h and calculate

the residue for h using the usual residue techniques as described in [2, 9]

(b) Add the computed residue to RESIDUE-SUM, and then discard the cone U

and the function h from memory

2.1.3 Stacks vs. Queues; Analysis of the Cone Decomposition Process

At first glance, this modified approach does not seem to necessarily save a great deal

of memory. But let’s review for a moment on Barvinok’s decomposition process.

Remember that a simplicial cone K with µ generators is decomposed into µ cones.

(And actually, we never have to deal with any lower dimensional cones or the inclusion-

exclusion principle, thanks to “Brion’s polarization trick.” See [9] for further details.)

Then any of the thereby obtained cones which are not yet unimodular are again

decomposed, and so on.

There are two very different ways that this decomposition process could be imple-

mented. On one hand, we could maintain a queue of simplicial cones, called NON-

UNI, which contains all current simplicial cones that are not yet unimodular. Using

this idea, we would implement step (2) in Algorithm (2.2) as follows:
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While NON-UNI is not empty:

1. Remove a cone K from NON-UNI

2. Decompose K into cones K1, K2, . . . , Kµ

3. For each obtained Ki perform steps (a) and (b) (from Algorithm (2.2) above) on

Ki if Ki is unimodular. Otherwise insert Ki into the NON-UNI queue if Ki is

not unimodular.

Actually, if we implemented NON-UNI as a queue, then our proposed modification

to Barvinok’s Counting Algorithm would fail to considerably reduce the amount of

memory used by the algorithm. But what if we implemented NON-UNI as a stack

instead of a queue? (For a quick description of stacks and queues, see the end of

Chapter 1).

We can model Barvinok’s decomposition process using a tree, where nodes represent

cones, and where leaf nodes correspond to unimodular cones. The children of a node

K represent the cones obtained by applying the decomposition process once to the

cone K. Now, if NON-UNI were a queue, then the maximum number of cones that

might be stored in NON-UNI is the number of internal nodes (i.e. non-leaf nodes) in

the tree. On the other hand, it is not hard to see that if NON-UNI were a stack, then

NON-UNI would never contain more than d∗ (L+1) cones, where L is the maximum

length of a path from the root of the tree down to a leaf node.

Our experiments indicate that in practice, the tree representing Barvinok’s decom-

position process will typically be fairly balanced, meaning that L is observed to be

roughly O(logd N), where N is the number of nodes in the tree. On the other hand,

the number of internal nodes in the tree will grow linearly with N when d is a fixed

constant. So this means that implementing NON-UNI as a stack, instead of a queue,

should reduce the amount of required memory from O(N) down to O(log N), which
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is a tremendous improvement.

In LattE, we added a new optional Memory Saving mode that employs (2.2) and

the stack implementation of NON-UNI as described above. We have observed that

the new Memory Saving mode uses considerably less memory than traditional LattE;

often the total amount of memory used is reduced by a factor of a hundred or more.

2.2 In Pursuit of a Suitable c Vector

The skeptical reader at this point may wonder how the Memory Saving version of

LattE constructs the c ∈ Zd that is demanded in step (2) of Algorithm (2.1). In

practice, we just choose c ∈ {1, 2, . . . , N}d “at random,” using a pseudo-random

number generator, where N is a fairly large integer whose standard input size is

about the same as the standard input size of A and b. It is not hard to see that, with

probability close to 1, such c will satisfy the required condition c · vij 6= 0 ∀vij. If it

does happen that c · vij = 0 for some vij, then a new c is chosen and LattE restarts.

In practice, this method for finding c is very efficient and effective. However, it is not

very satisfactory from a theoretical standpoint. After all, it might happen that we

are unlucky, and that LattE restarts many times before a value of c is produced that

satisfies the condition c · vij 6= 0 for all vij.

2.2.1 A Deterministic Memory-Efficient Construction of c

So, in order to certify that Algorithm (2.2) can indeed be used as a memory-efficient

polynomial time algorithm to count lattice points in fixed dimension, we need to show

how to easily and deterministically construct c in a memory-efficient manner.

Notice that we can use a slightly modified version of Algorithm (2.2) to compute the

maximum L∞-norm ||vij||∞ over all vij, as follows:
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Algorithm 2.3. Computing the maximum norm ||vij||∞

1. Set MAX-NORM := 0

2. Apply the algorithm in Theorem (1.6) for computing the function f(P ∩ Zd; z),

but each time a unimodular cone U is produced in the cone decomposition process,

such that U would contribute a function h(z) = E zu

n∏
j=1

(1−zvj)
to the summation

(1.10), then immediately do the following:

(a) Compare each ||vj||∞ to MAX-NORM. If any ||vj||∞ is larger than MAX-

NORM, then set MAX-NORM := max{||vj||∞}

(b) Discard the cone U from memory

By the following proposition, we can define c = (c1, c2, . . . , cd)
t by setting each ck =

Mk−1, where M = MAX-NORM + 1, and this c will satisfy c · vij 6= 0 for all vij.

Proposition 2.4. Suppose {vij} is a collection of non-zero integer vectors in Rd. Let

M = 1 + max{||vij||∞}, and define c = (c1, c2, . . . , cd)
t by setting each ck = Mk−1.

Then c · vij 6= 0 for all vij.

Proof. Suppose that we have c · vij = 0 for some vij, where vij = (a1, a2, . . . , ad)
t. We

have vij 6= 0 by definition, so let l be the largest subscript such that al 6= 0. Obviously

we must have l > 1 because c · vij = 0 and c1 6= 0.

Then,

l∑

k=1

ckak = 0 (2.1)

so that

clal = −
l−1∑

k=1

ckak . (2.2)
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Taking the absolute value of both sides, and using the fact that al ∈ Z\{0}, along

with the triangle inequality, we have

|cl| ≤ |clal| = |
l−1∑

k=1

ckak| ≤
l−1∑

k=1

|ckak| , (2.3)

which implies

M l−1 ≤
l−1∑

k=1

Mk−1|ak| ≤
l−1∑

k=1

Mk−1(M − 1) (2.4)

where the last inequality follows from the fact that each |ak| satisfies M ≥ |ak| + 1

by definition of M . But this is a contradiction, because

l−1∑

k=1

Mk−1(M − 1) =
l−1∑

k=1

Mk −
l−1∑

k=1

Mk−1 = (M l−1 − 1) . (2.5)

The proposition follows.

2.3 Concluding Remarks

Barvinok’s original counting algorithm constructed a very similar c, after all the vij

were calculated and stored in memory [2]. Note that Algorithm (2.3) uses essentially

the same amount of memory as Algorithm (2.2). Furthermore, when d is a fixed

constant, the standard input size of c is bounded by a polynomial in the standard

input size of the vij (which in turn is bounded by a polynomial in the standard input

size of A and b). Thus, using this c, Algorithm (2.2) will run in polynomial time when

d is considered fixed.

So, by first running Algorithm (2.3) to compute c, and then running Algorithm (2.2),

indeed we can efficiently implement Barvinok’s method for counting lattice points,

and use far less memory.
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Chapter 3

Integer Programming via

Barvinok’s Rational Functions

3.1 Integer Programming: Overview

We begin by defining the Integer Programming problem.

Definition 3.1. Suppose we are given A ∈ Zm×d, b ∈ Zm, and c ∈ Zd. We define a

rational polyhedron P ⊂ Rd by P = {x ∈ Rd : Ax ≤ b}.
Then the Integer Programming problem for (A, b, c) asks us to determine the following:

1. Whether P ∩ Zd is empty

2. Whether the set {c · α : α ∈ P ∩ Zd} is bounded above (provided that P ∩ Zd is

not empty)

If it so happens that P ∩Zd is not empty, and {c ·α : α ∈ P ∩Zd} is indeed bounded,

then the Integer Programming problem also asks us to find x∗ ∈ P ∩ Zd such that

x∗ · c = max{c · α : α ∈ P ∩ Zd} (3.1)

The art of solving instances of the Integer Programming problem is commonly called
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Integer Programming. It turns out that many natural problems that arise in Industry

can be restated as Integer Programming (IP) instances, and thus there has been an

incredible amount of time, attention, and money devoted to developing techniques

for solving them.

The commercial software Cplex is essentially the standard software used to solve IP

instances in industry. As one might expect, Cplex often performs very well, even

when d is large.

Intriguingly, though, there are also small, easy to state IP instances that Cplex can-

not solve within reasonable time and memory constraints. Aardal et. al [1] give a

collection of such examples which are low dimensional knapsack problems.

3.1.1 Hardness of Integer Programming

That Cplex sometimes fails to solve such innocent looking instances is perhaps not

so surprising in light of the fact that, when d is not considered fixed, the Integer Pro-

gramming problem is known to be NP-Hard. But moreover, even when d is considered

fixed, the popular “branch-and-bound” style algorithm that Cplex implements is not

guaranteed to run in polynomial time. However, Barvinok’s Counting Algorithm, for

instance, is guaranteed to run in polynomial time when d is fixed. Thus, when Cplex

fails on small IP instances such as those given by Aardal, other approaches may fare

much better.

3.2 From Rational Functions to Integer Programming

As mentioned in Chapter 1, Barvinok’s Counting Algorithm gives a more generalized

alternative to Lenstra’s polynomial time algorithm [16] for deciding whether a rational

polytope contains lattice points when d is considered fixed.

It is not hard to see that Lenstra’s algorithm can be used to solve the Integer Pro-
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gramming problem in polynomial time when d is fixed and P is a polytope. The gist

of the approach is to add the additional constraints

c · x ≥ L, and c · x ≤ U (3.2)

to our original system of inequalities Ax ≤ b that defines P , and then use Lenstra’s

algorithm to detect whether the resultant polytope contains any lattice points. By

repeatedly performing this process, and systematically varying L and U , we can

perform a binary search to find the optimal value M of the IP instance. Once M is

known, we can add the constraints c · x ≥ M, c · x ≤ M to our original system of

inequalities, and then apply Lenstra’s algorithm to the resultant polytope in order

to produce an optimal solution. (Lenstra’s algorithm actually outputs a lattice point

from the polytope when lattice points are present).

3.2.1 The BBS Algorithm

Alternatively, we could try the same binary search idea, but using Barvinok’s Count-

ing Algorithm instead of Lenstra’s algorithm. The resultant method for solving IP

instances, called the BBS Algorithm, is presented by De Loera et. al in [8].

Intuitively, the BBS Algorithm might seem wasteful because it executes Barvinok’s

Main Algorithm (given in Theorem (1.6)) many times during the binary search pro-

cess. We know that we can compute f(P ∩Zd; z) by using Barvinok’s Main Algorithm

just once, where P = {x ∈ Rd : Ax ≤ b}. Can we then somehow use f(P ∩ Zd; z), in

order to “read off” the solution to our IP instance, by inspection?
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3.3 An Alternative to BBS: Reading Off IP Solutions from

Rational Functions

If we could in fact “read off” IP solutions from f(P ∩ Zd; z), then we could compute

f(P ∩ Zd; z) just once, using Barvinok’s main algorithm, and then re-use it many

times, to obtain IP solutions for not just one, but many different values of c. This

would be particularly well suited for large families of IP instances that share the same

A and b, but have different c vectors.

So, to this end, suppose A ∈ Zm×d and b ∈ Zm are given, where d is a fixed constant.

We consider the family of IP instances {(IP )c} , defined as

(IP )c : Solve the IP problem defined by(A, b, c) (3.3)

We restrict our attention to the case where the system of inequalities Ax ≤ b defines

a polyhedron P ⊂ Rd, such that P ∩Zd is nonempty. (Because we can initially

use Barvinok’s Counting Algorithm, or Lenstra’s algorithm, to determine whether P

contains any lattice points.)

Using Barvinok’s Main Algorithm, we can explicitly compute the function f(P ∩
Zd; z) =

∑
α∈P∩Zd

zα in polynomial time, in the following form:

f(P ∩ Zd; z) =
∑
i∈I

Ei
zui

ni∏
j=1

(1− zvij)
, (3.4)

where all Ei ∈ {1,−1} , and ui ∈ Zd and vij ∈ Zd\{0}.

Suppose that for a given c ∈ Zd, we have c · vij 6= 0 for all vij.

We may then enforce that c · vij < 0 for all vij appearing in (3.4), by employing the
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identity

1

1− zvij
=

−1

1− z−vij
, (3.5)

in (3.4), for any vij such that c · vij > 0. (We may have to change some of the Ei and

ui and vij by using our identity, but we will slightly abuse notation and still refer to

the new signs as Ei and the new numerator vectors as ui and the new denominator

vectors as vij.)

Having enforced that c · vij < 0 for all vij appearing in (3.4), now put

M = max {c · ui|i ∈ I} (3.6)

and

T = {i ∈ I|c · ui = M} (3.7)

Finally, put

σ =
∑
i∈T

Ei (3.8)

3.3.1 The “Inspection” Theorems

In the following theorems, P, c, M, σ, T are all as defined in the preceding discussion.

The following result was proved by Jean B. Lasserre [15]:

Theorem 1. If P is a polytope, and if c ·vij 6= 0 for all vij appearing in (3.4), then M

is an upper bound for the optimal value of the integer program (IP )c. If in addition,

σ 6= 0, then M is the optimal value of the integer program (IP )c.

The author independently proved the result (1), along with the following stronger

statement:
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Theorem 2. If the optimal value of (IP )c is finite, and if c · vij 6= 0 for all vij

appearing in (3.4), then M (as defined above) is an upper bound for the optimal value

of the integer program (IP )c. If in addition, σ 6= 0, then:

1. M is the optimal value of the integer program (IP )c, and

2. Moreover, there exists an i ∈ T such that ui is an optimal solution for (IP )c.

While Theorem (1) is interesting from a theoretical perspective, in practice the opti-

mal value of an IP instance is often of limited use, unless an actual optimal solution

attaining that optimal value is also known. For example, in many IP instances, the

optimal value represents the maximum amount of profit that a company can earn

within production constraints, whereas the optimal solution represents how the com-

pany can adjust its production parameters in order to actually achieve that maximum

profit. Thus, Theorem (2)’s most important additional feature is that when the hy-

potheses are satisfied, we can recover an optimal solution for (IP )c, along with the

optimal value.

3.3.2 An Inspection Heuristic for Solving Families of IP Instances

Algorithm 3.2. A Heuristic for Solving a (Finite) Collection of IP Instances of the

Form (IP )c

1. Use Barvinok’s algorithm to compute f(P ∩ Zd; z) in the form given in (3.4)

2. For each (IP )c we wish to solve, such that c · vij 6= 0 for all vij in (3.4):

(a) Use the identity (3.5) as necessary to enforce that c · vij < 0 for all vij

appearing in (3.4)

(b) Check to see if the hypotheses of Theorem (2) are met. If not, then output

”?”.

(c) Otherwise, find i ∈ T that satisfies Aui ≤ b, and output M as the optimal

value of (IP )c, and output ui as an optimal solution.



CHAPTER 3. Integer Programming via Barvinok’s Rational Functions 23

Of course, the preceding is not really an algorithm, because we cannot guarantee that

it will solve all given (IP )c. (In fact, for some unlucky choice of A and b, perhaps the

“heuristic” always fails to solve (IP )c, regardless of c.)

3.3.3 The Case of the Vanishing σ

For a given non-zero c, we can take suitable precautions to work around the required

condition that c · vij 6= 0 holds for all vij in (3.4). (Essentially we can multiply the

objective vector c by a large enough positive integer and then perturb it slightly by

a suitable integer vector. Then an optimal solution for this new slightly perturbed

objective vector will also be an optimal solution for the original objective vector.)

On the other hand, what if Barvinok’s algorithm is doomed to produce rational

functions for which the probability of σ = 0 occurring is appreciable? The LattE

team has tested many examples, and while on many examples we observed that indeed

σ 6= 0, we also discovered that routinely the condition failed, so that Theorems (1)

and (2) could not be applied.

Hence, we need a strengthening of the Inspection Theorems, if we hope to obtain a

reliable method for solving IP instances.

3.4 Inspecting Deeper: The Digging Algorithm

3.4.1 The Laurent Series Approach

The original proofs of the Inspection Theorems were somewhat dissimilar from one

another, but both proofs used arguments about the asymptotic behavior of the ra-

tional functions appearing in (3.4), for particular large values of z. As it turns out,

ideas regarding monomial substitutions and convergence of particular Laurent series

make the proofs much easier, and also lay the groundwork for a more generalized

algorithm for extracting IP solutions from rational functions. Many of the ideas re-



CHAPTER 3. Integer Programming via Barvinok’s Rational Functions 24

garding monomial substitutions and convergence of Laurent series are similar to those

presented by Barvinok [2, 4] in other contexts.

We will no longer limit our consideration to generating functions for lattice points

inside of rational polyhedra. Indeed, recent work by Barvinok and Woods [5] shows

that generating functions can be quickly computed (in rational function form) for

many other interesting types of sets of lattice points.

Instead, we will assume that we have a pointed lattice point set S ⊂ Zd, and an

objective vector c ∈ Zd. By pointed, we mean that S is contained in some closed cone

K ⊂ Rd that contains no straight lines.

We define a (somewhat generalized) integer programming problem Πc by

Πc : Find π = max{c · x | x ∈ S}, and x∗ ∈ S satisfying c · x∗ = π (3.9)

As usual, we call π the optimal value of Πc, and we call x∗ an optimal solution. We

will assume that c 6= 0, and that S is nonempty and that π actually exists and is finite.

(These are mild restrictions, that basically require that Πc actually be an interesting

IP instance. At any rate, our restrictions are no stronger than those required by the

Inspection Theorems.)

Define

f(S; z) =
∑
α∈S

zα. (3.10)

We assume that the function f(S; z) has been computed in Barvinok’s form:

f(S; z) =
∑
i∈I

Ei
zui

ni∏
j=1

(1− zvij)
, (3.11)

where I is a finite indexing set, and where all Ei ∈ {1,−1} and ui , vij ∈ Zd.

As mentioned in section (3.3.3) , we may safely assume that c · vij 6= 0 for all vij.
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Letting ck denote the kth component of c, we make the substitutions zk → ykt
ck ,

for k = 1, . . . , d, and then (3.11) yields a multivariate rational function in the vector

variable y and scalar variable t:

gS(y, t) =
∑
i∈I

Ei
yuitc·ui

ni∏
j=1

(1− yvij tc·vij)
. (3.12)

Now, since the optimal value π of our IP instance is finite, it is clear from (3.10), and

by definition of our substitutions, that the Laurent expansion

gS(y, t) =
∑
α∈S

yαtc·α (3.13)

will converge absolutely, for all complex y and t such that |t−1| < 1 and such that y

lies within the region of absolute convergence for the expansion of fS given in (3.10).

Notice that since S is a pointed set, we are guaranteed some nonempty region in Cd

where the expansion (3.10) does in fact converge absolutely [3].

We may employ the identity

1

1− yvij tc·vij
=

−y−vij t−c·vij

1− y−vij t−c·vij
(3.14)

in (3.12), for any vij such that c · vij > 0. We therefore enforce that all vij in (3.12)

satisfy c · vij < 0. (We may have to change some of the Ei, ui and vij using our

identity, but we will slightly abuse notation and still refer to the new signs as Ei and

the new numerator vectors as ui and the new denominator vectors as vij.) Then, for

0 < r < 1 and |t−1| < r, each of the rational functions in the summation will have a

Laurent expansion of the form

Ei y
uitc·ui

ni∏
j=1

(1 + yvij tc·vij + (yvij tc·vij)2 + . . .) (3.15)
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valid for those complex values of y that satisfy |yvij | < r−1 for all vij. Note that

multiplication and addition of the resultant series is valid for such y and t, and we

thereby obtain from (3.12) a series expansion

gS(y, t) =
∑

α∈Zd,n∈Z

aα,nyαtn (3.16)

valid for such y and t, where the coefficients aα,n can be easily calculated.

We will now prove that the coefficients of the series (3.16) and (3.13) are equal:

Note that we only have finitely many vij. Thus for any s > 1, we can choose 0 < r < 1

small enough, such that whenever the coordinates yk of y all satisfy 1
s

< |yk| < s,

then we have |yvij | < r−1 for all vij.

This means that for any s > 1, we can choose 0 < r < 1 small enough, so that the

series (3.16) will converge for all (y, t) in the following region R:

R = {(y, t) | t 6= 0, |t−1| < r, and
1

s
< |yk| < s ∀k} (3.17)

Thus, for s sufficiently large and suitably chosen r, the region of convergence for the

series (3.16) will intersect the region of convergence for the series (3.13), such that

an open neighborhood is contained in the intersection. Inside this neighborhood,

both series (3.13) and (3.16) are valid, but they represent the same function, namely

gS(y, t), so we conclude that the corresponding coefficients of both series must be

equal, as was to be shown.

3.4.2 Formal Description of the Digging Algorithm

We have thus shown that the coefficients of the series (3.13) can be algorithmically

determined from the rational functions appearing in (3.11). Notice that all of the geo-

metric series appearing in (3.15) have terms whose degree in t are strictly decreasing.

Thus, when we multiply and add such series to obtain the series (3.13), we can easily
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do so in a fashion that lists the terms of (3.13), in order, with respect to decreasing

degree in t.

This allows an algorithm to solve Πc. The algorithm proceeds as follows:

Algorithm 3.3. The Digging Algorithm

1. Make the substitutions zk = ykt
ck , for k = 1, . . . , d, into (3.11), to obtain (3.12).

2. Use the identity (3.14) as necessary to enforce that all vij in (3.12) satisfy c·vij <

0.

3. Via the expansion formulas (3.15), proceed calculating the expansion (3.13) by

calculating the terms’ coefficients, proceeding in decreasing order with respect to

the degree of t. Continue until a degree M of t is found such that for some

α ∈ Zd, the coefficient of yαtm is non-zero in the expansion (3.13).

4. Return “π = M” as the optimal value of the integer program Πc, and return α

as an optimal solution.

3.4.3 The Digging Algorithm Generalizes the Inspection Theorems

Note that when the Digging Algorithm begins step (3), the first terms that are cal-

culated (proceeding in decreasing order with respect to degree of t) are terms of the

form yuitM , where i ∈ T , where

M = max {c · ui | i ∈ I (3.11)} (3.18)

and

T = {i ∈ I | c · ui = M} (3.19)
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By definition, the calculated coefficient of each such term yuitM will either vanish or

equal 1. Recalling the Inspection Theorems and the notation used there, we observe

the following:

The condition “σ = 0” in the Inspection Theorems is equivalent

to having all the calculated coefficients vanish for the yuitM terms

Thus, the Digging Algorithm, and the discussion proving its correctness, give a gen-

eralization of the Inspection Theorems that is guaranteed to provide a solution even

when σ = 0.

3.5 Implementing The Digging Algorithm in LattE

LattE was naturally suited for implementing the Digging Algorithm to solve inte-

ger programming instances defined over polyhedra P , since the software was already

equipped to compute the necessary generating function f(P ∩ Zd; z). So, after in-

venting the Digging Algorithm, the LattE team implemented it and compared the

method to both the BBS Algorithm (described earlier) and Cplex.

3.5.1 Performance Compared to BBS and Cplex

In the paper [8], De Loera et. al describe the performance of LattE’s Digging Algo-

rithm approach, compared to the BBS Algorithm approach and the software Cplex

(v 6.6). In particular, the programs were run on variants of Aardal et al’s “hard”

low-dimensional examples [1]. As described in [8], we found that Cplex 6.6 could

only solve one of the problems (Cplex ran out of memory on the rest), whereas the

Digging Algorithm approach solved most of them in a matter of seconds. Somewhat

surprisingly, the BBS Algorithm approach failed to solve most of the problems. (In

each case, the program was killed after many hours or days of computation.)

So, it seems that in practice, the Digging Algorithm approach is a considerable alter-
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native to Cplex on “hard” IP instances when d is small. Furthermore, the Digging

Algorithm (unlike Cplex) has the additional benefit of being well-suited for families

of IP instances that share the same matrix A and vector b. On such families, we only

need to use Barvinok’s Main Algorithm once to calculate f(P ∩ Zd; z), and then we

can use the same generating function for each IP instance in the family.

3.6 Complexity of the Digging Algorithm in Fixed Dimen-

sion

At first it seemed promising that the Digging Algorithm approach might be a poly-

nomial time algorithm in fixed dimension, since it is based upon Barvinok’s Main

Algorithm which enjoys such polynomial time guarantees. Unfortunately, however,

the author has discovered that the Digging Algorithm might calculate an exponential

number of coefficients before finding one that does not vanish. Thus, even in fixed

dimension, the Digging Algorithm is not a polynomial time algorithm.

3.6.1 A Simple Example Where Digging Requires Exponential Time

Consider the family of closed convex quadrilaterals QN , where N is a positive inte-

ger, with vertices (1
2
, 1

2
), (3

4
, 1

2
), (1

2
, 3

4
), and (1, N). Each quadrilateral QN obviously

contains exactly one lattice point, namely (1, N). It is easy to see that the system

of inequalities Ax ≤ b that define QN are given by a matrix A and vector b whose

standard input size are bounded by a polynomial in log N . Thus Barvinok’s Main

Algorithm computes the generating function f(QN ∩ Z2; z) in time bounded by a

polynomial in log N . Remember that, via Brion’s theorem, f(QN ∩ Z2; z) is com-

puted as the sum of the generating functions corresponding to the four tangent cones

of QN . In particular, the tangent cone at vertex (1
2
, 1

2
) is already unimodular, and its

generating function is
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∑
m,n∈N

z1
mz2

n =
z1z2

(1− z1)(1− z2)
(3.20)

and thus the above rational function will appear in the formula calculated for f(QN ∩
Z2; z). So, if we take our objective vector to be c = (−1,−1)t, then, upon making the

corresponding substitutions z1 = y1t
−1 and z2 = y2t

−1, this rational function becomes

∑
m,n∈N

y1
my2

nt−m−n =
y1y2t

−2

(1− y1t−1)(1− y2t−1)
(3.21)

This rational function’s Laurent expansion includes the terms

y1y2t
−2, y1y2

2t−3, y1y2
3t−4, . . . , y1y2

N−1t−N , and so the Digging Algorithm will have to

calculate the coefficients (which will all vanish) for all of these (N − 1) terms, before

finally calculating the non-vanishing coefficient of the term y1y2
N t−N+1. Thus, the

Digging Algorithm will have to calculate coefficients for at least N terms, which is

certainly exponentially many with respect to log N . Thus, for the family of quadri-

laterals QN , the Digging Algorithm cannot run in polynomial time.
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Chapter 4

Generalized Counting: Efficiently

Summing Polynomials Over Lattice

Point Sets in Fixed Dimension

4.1 A Motivation from Statistics

A large area of study and research in Statistics and Operations Research involves

contingency tables. We borrow the following definition and example provided by

Ruriko Yoshida in her soon to be published thesis:

Definition 4.1. A s-table of size (n1, . . . , ns) is an array of non-negative integers

v = (vi1,...,is), 1 ≤ ij ≤ nj. For 0 ≤ L < s, an L-marginal of v is any of the
(

s
L

)

possible L-tables obtained by summing the entries over all but L indices.

Example 4.2. Consider a 3-table X = (xijk) of size (m, n, p), where m, n, and p are

natural numbers. Let the integral matrices M1 = (ajk), M2 = (bik), and M3 = (cij)

be 2-marginals of X, where M1, M2, and M3 are integral matrices of type n × p,

m×p, and m×n respectively. Then, a 3-table X = (xijk) of size (m, n, p) with given
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marginals satisfies the system of equations and inequalities:

∑m
i=1 xijk = ajk, (j = 1, 2, ..., n, k = 1, 2, ..., p),

∑n
j=1 xijk = bik, (i = 1, 2, ...,m, k = 1, 2, ..., p),

∑p
k=1 xijk = cij, (i = 1, 2, ..., m, j = 1, 2, ..., n),

xijk ≥ 0, (i = 1, 2, ..., m, j = 1, 2, ..., n, k = 1, 2, ..., p).

(4.1)

Such tables appear frequently in Statistics and Operations Research, under names

such as multi-way contingency tables, or tabular data. Official Census data, and the

published margins thereof, provide one of many important settings where large-scale

contingency tables naturally arise.

From the definition (4.1), we see that a contingency table with particular marginals

is really nothing more than a collection of integer values assigned to a set a variables,

so as to obey certain linear constraints. Thus, given a complete particular set of

marginals, we can easily represent the set of all contingency tables that have those

marginals, as the set of lattice points inside a rational polytope. Under this identifi-

cation, the coordinates of each lattice point will equal the entries in its corresponding

contingency table.

It is often the goal to infer relationships among data in a given contingency table. To

this end, it is natural to ask what a “typical” table with the same marginals might

look like, so that we can identify any considerably atypical characteristics in our

given table. Determining what a “typical” table looks like often involves summing a

function over all contingency tables that have the particular margins.

For instance, given a particular contingency table, we could ask whether a particular

entry’s value α is unusually large. To answer such a question, we might consider the

mean and variance of a random variable X, where X is defined as the entry’s value

αT in a table T which is chosen at random from the set of all contingency tables that

have the same marginals as our given table. Note that if we know the number of
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contingency tables satisfying the particular marginals, then calculating the mean of

X is computationally equivalent to just summing the particular entry’s value αT over

all the contingency tables T which satisfy the marginals. Similarly, once this mean

E(X) is known, then calculating the variance of X is computationally equivalent to

summing the function (E(X)− αT )2 over all the contingency tables T which satisfy

the marginals.

4.2 The General Problem

More generally, we consider the problem of efficiently summing a polynomial q ∈
Q [α1, α2, . . . , αd] over the lattice points in a finite set S ⊂ Zd:

σ(S, q) =
∑
α∈S

q(α1, α2, . . . , αd) (4.2)

As usual, we will assume that d is a fixed constant. We will assume that the generating

function f(S; z) has been computed in Barvinok’s form:

f(S; z) =
∑
α∈S

zα =
∑
i∈I

Ei
zui

ni∏
j=1

(1− zvij)
, (4.3)

We will also assume that the degree of q is no more than D in any variable, where D

is a fixed constant. This is not unreasonable in the context of statistics, for example,

where often one is only interested in polynomials whose degree in any variable is at

most 1 or 2.
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4.3 An Algorithm for Efficiently Summing Fixed Degree Poly-

nomials Over Lattice Point Sets, via Partial Derivatives

of Barvinok’s Rational Functions

In search of a solution for the general problem of evaluating σ(S, q), note that the

partial derivative of the function f(S; z) with respect to zk is

∂f(S; z)

∂zk

=
∑
α∈S

∂(zα)

∂zk

=
∑
α∈S

αkz
α−ek (4.4)

Thus,

zk

(
∂f(S; z)

∂zk

)
=

∑
α∈S

αkz
α (4.5)

We can define a linear operator Lk = zk
∂

∂zk
and succinctly express (4.5) as

Lk [f(S; z)] =
∑
α∈S

αkz
α (4.6)

It is not hard to show that the operators L1, L2, . . . , Ld are linear operators that

commute, and that

(L1
m1L2

m2 . . . Ld
md) [f(S; z)] =

∑
α∈S

(α1
m1α2

m2 . . . αd
md)zα (4.7)

Thus, in the special case that the polynomial function q(α1, α2, . . . , αd) is equal to a

single monomial α1
m1α2

m2 . . . αd
md , we have that
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σ(S, q) =
∑
α∈S

α1
m1α2

m2 . . . αd
md (4.8)

= lim
(z1,z2,...,zd)→(1,1,...,1)

L1
m1L2

m2 . . . Ld
md [f(S; z)] (4.9)

We need the following lemma which states that given a function f(z) in Barvinok’s

form, we can compute Lk[f(z)] in Barvinok’s form in polynomial time, when d is

considered fixed.

Lemma 4.3. Let us fix the dimension d and a positive integer M . Suppose we are

given a function f(z) in the following form:

f(z) =
∑
i∈I

Ei
zui

ni∏
j=1

(1− zvij)
, (4.10)

where I is a finite set, and where all Ei ∈ Q, and ui, vij ∈ Zd, vij 6= 0, and ni ≤ M .

Then, for each k = 1, 2, . . . , d there is a polynomial time algorithm which computes

Lk[f(z)] in the form:

Lk[f(z)] =
∑
i∈I∗

Ei
zui

ni∏
j=1

(1− zvij)
, (4.11)

where I∗ is a finite set, and where all Ei ∈ Q, and ui, vij ∈ Zd, and vij 6= 0. Further-

more, we have max
i∈I∗

ni ≤ 2 max
i∈I

ni.

Proof. Suppose f(z) is given in Barvinok’s form (4.10). Let us consider any k ∈
{1, 2, . . . , d}. Then, because Lk is linear, we have
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Lk[f(z)] =
∑
i∈I

EiLk




zui

ni∏
j=1

(1− zvij)


 , (4.12)

We will now show that for each i ∈ I, we can compute gi(z) = Lk


 zui

ni∏
j=1

(1−zvij )


 in

polynomial time in Barvinok’s form:

gi(z) =
∑

i′∈I′
Ei′

zui′

ni′∏
j=1

(1− zvi′j)

, (4.13)

where I ′ is a finite set, and where all Ei′ ∈ Q, and ui′ , vi′j ∈ Zd, and vi′j 6= 0, and

where max
i∈I∗

ni ≤ 2 max
i∈I

ni. This will prove the lemma.

To compute gi(z) in the prescribed form, we begin with the observation that, by the

quotient rule for derivatives,

∂

∂zk




zui

ni∏
j=1

(1− zvij)


 =

(
∂

∂zk
zui

) ni∏
j=1

(1− zvij) − zui

(
∂

∂zk

ni∏
j=1

(1− zvij)

)

ni∏
j=1

(1− zvij)2

(4.14)

Because ni ≤ M , which is constant, we can completely expand the products
ni∏

j=1

(1−
zvij) appearing in the numerator, as a sum of no more than 2ni monomials, in poly-

nomial time.

Then the numerator of the right-hand side of (4.14) will have the form
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(
∂

∂zk

zui

) 2ni∑
j=1

zwij − zui

(
∂

∂zk

2ni∑
j=1

zwij

)
(4.15)

which we can easily compute (in polynomial time) as the following expanded sum of

monomials:

2ni∑
j=1

(uik − wijk) zui+wij−ek (4.16)

where uik, vijk denote the kth components of the vectors ui and vij, respectively. Thus,

in polynomial time, we can explicitly compute gi(z) as

gi(z) =

2ni∑
j=1

(uik − wijk) zui+wij

ni∏
j=1

(1− zvij)2

=
2ni∑
j=1


(uik − wijk)

zui+wij

ni∏
j=1

(1− zvij)2


 (4.17)

which can be easily expressed in the form prescribed in (4.13), thus completing the

proof of the lemma.

With this lemma, we are ready to prove the following result.

Lemma 4.4. Let us fix the dimension d and positive integers N, D. For finite S ⊂ Zd,

suppose we are given the generating function f(S; z) in the following form:

f(S; z) =
∑
i∈I

Ei
zui

ni∏
j=1

(1− zvij)
, (4.18)

where I is a finite set, and where all Ei ∈ Q, and ui, vij ∈ Zd, vij 6= 0, and ni ≤ N .
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Suppose we are also given m1,m2, . . . , md ∈ {0, 1, . . . , D} that define a polynomial

q(α1, α2, . . . , αd) = α1
m1α2

m2 . . . αd
md . Then there is a polynomial time algorithm

which computes g(z) =
∑
α∈S

q(α1, α2, . . . , αd)z
α in the form:

g(z) =
∑
i∈I∗

Ei
zui

ni∏
j=1

(1− zvij)
, (4.19)

where I∗ is a finite set, and where all Ei ∈ Q, and ui, vij ∈ Zd, and vij 6= 0. Further-

more, we have max
i∈I∗

ni ≤ N2dD.

Proof. Put M = N2dD. Note M is constant because N, d, D are constant. We claim

that given the generating function for f(S; z) in Barvinok’s form (4.3), we can apply

the algorithm of Lemma 4.3 successively (each time with the same M) to compute

the function (L1
m1L2

m2 . . . Ld
md) [f(S; z)] in the form prescribed in (4.19). Indeed,

note that since all mk ≤ D, we would successively apply the algorithm of Lemma 4.3

at most d ∗ D times. Thus, because we initially satisfy the condition that ni ≤ N

for all ni, we are assured that, each time we successively apply the algorithm, we will

satisfy the condition that ni ≤ M for all ni.

So, we can compute (L1
m1L2

m2 . . . Ld
md) [f(S; z)] by successively applying the algo-

rithm of Lemma 4.3 no more than d ∗ D times (each time with the same constant

M = N2dD). Furthermore, each time we apply the algorithm of Lemma 4.3, it runs

in polynomial time.

Thus, because d ∗ D is constant, the total computation can be done in polynomial

time. Furthermore, because we successively apply the algorithm of Lemma 4.3 at

most d ∗D times, we will have max
i∈I∗

ni ≤ 2dD max
i∈I

ni.

The proof is complete, via the identity (4.7).
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Now, with Lemma (4.4) in hand, we are ready to prove the main result of the chapter.

Theorem 4.5. Let us fix the dimension d and positive integers N, D. For finite

S ⊂ Zd, suppose we are given the generating function f(S; z) in the following form:

f(S; z) =
∑
i∈I

Ei
zui

ni∏
j=1

(1− zvij)
, (4.20)

where I is a finite set, and where all Ei ∈ Q, and ui, vij ∈ Zd, vij 6= 0, and ni ≤ N .

Suppose we are also given (D + 1)d rational numbers bm1,...,md
for m1,m2, . . . ,md ∈

{0, 1, . . . , D}, that define a polynomial q(α1, . . . , αd) as

q(α1, . . . , αd) =
∑

m1,...,md∈{0,1,...,D}
bm1,...,md

α1
m1 . . . αd

md . (4.21)

Then there is a polynomial time algorithm which computes g(z) =
∑
α∈S

q(α1, . . . , αd)z
α

in the form:

g(z) =
∑
i∈I∗

Ei
zui

ni∏
j=1

(1− zvij)
, (4.22)

where I∗ is a finite set, and where all Ei ∈ Q, and ui, vij ∈ Zd, and vij 6= 0. Further-

more, we have max
i∈I∗

ni ≤ N2dD.

Proof. For any c1, c2 ∈ Q, and any q1, q2 ∈ Q [α1, . . . , αd], we have that
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∑
α∈S

(c1q1(α1, . . . , αd) + c2q2(α1, . . . , αd)) zα (4.23)

is equal to

c1

(∑
α∈S

q1(α1, . . . , αd)z
α

)
+ c2

(∑
α∈S

q2(α1, . . . , αd)z
α

)
(4.24)

Thus, in order to compute g(z) in Barvinok’s form (4.22), we can simply compute

bm1,...,md

∑
α∈S

α1
m1 . . . αd

mdzα (4.25)

in Barvinok’s form separately for each (m1, . . . , md) ∈ {0, 1, . . . , D}d, and then add

the resultant functions. To compute each function (4.25) in Barvinok’s form, we

apply the algorithm given in Lemma (4.4) to compute
∑
α∈S

α1
m1 . . . αd

mdzα, and then

multiply the resultant function by bm1,...,md
.

Computing g(z) in this manner takes polynomial time, because there are only (D+1)d

functions of the type (4.25) that we need to compute, and each can be computed in

polynomial time by Lemma (4.4). (The quantity (D + 1)d is constant because d, D

are constant.)

Furthermore, we have max
i∈I∗

ni ≤ N2dD, because we are guaranteed as such by Lemma

(4.4).

In [2], Barvinok showed how to compute limits of the following form in polynomial

time, when d is fixed:
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lim
(z1,...,zd)→(1,...,1)

∑
i∈I

Ei
zui

ni∏
j=1

(1− zvij)
(4.26)

Thus, we immediately have the following corollary of Theorem (4.5).

Corollary 4.6. Given the same hypotheses and input as in Theorem (4.5), there

exists a polynomial time algorithm to evaluate the sum
∑
α∈S

q(α1, . . . , αd)

Proof. We can use Theorem (4.5) to compute g(z) =
∑
α∈S

q(α1, . . . , αd)z
α in Barvi-

nok’s form in polynomial time. Then, using Barvinok’s polynomial time limit calcu-

lation techniques [2], we can calculate the limit lim
(z1,...,zd)→(1,...,1)

g(z), which is precisely
∑
α∈S

q(α1, . . . , αd).

Corollary (4.6) finally provides the efficient method we were seeking, for summing

polynomials over finite lattice point sets.

4.4 A Comment on Practicality

In practice, taking just one partial derivative of a sum of rational functions will in-

crease the number of terms appearing in a formula such as (4.3) by a factor of 2M ,

where M = max ni. Thus, there will be cases where a formula for f(S; z) can be com-

puted and stored in memory, whereas evaluating a reasonable degree polynomial over

S, using Theorem (4.5) and Corollary (4.6), requires too much computation time and

memory. We have not yet implemented the algorithm of Theorem (4.5) in LattE, so

while the results of this chapter are perhaps interesting from a theoretical perspective,

we do not yet know how well the presented algorithm performs in practice.
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