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Abstract
A computer-assisted linear programming approach 1s used to study
minimum-cardinality decompositions of the cube. A triangulation of the
T-cube 1nto 1493 simplices 1s given and it 1s shown that this, and a previ-
ously giwven triangulaton of the 6-cube into 308 simplices, are the smallest
possible for these dimensions. A characterization is given for the num-
bers of the various types of simplices used in all minimum-cardinality
triangulations of the d-cube for d = 5,6,7. It is shown that the min-
imum of the cardinalities of all corner-slicing triangulations of I’ is
1820. For decompositions of the cube more general than triangulations,
it is shown for dimension 5 that the minimum cardinality is 67, and for

dimension 6 it 1s at least 270.
1. Introduction

We consider finite decompositions of the d-dimensional cube I, where I = [0, 1], into
simplices with disjoint interiors whose union is I¢. In this paper, all the simplices in I¢
have the property that their vertices are also vertices of I¢. Qur main interest is in tri-
angulations: special decompositions into simplices such that the intersection of any two

simplices is a face of each of them. A corner at the vertex v of I is conv{v,z1,...,z4}

! Correspondence should be directed to this author.
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where z1,...,z4 are the vertices of I? adjacent to v. A triangulation is called corner-
slicing if it includes the corners at all the vertices of I? with odd (or alternately even)
coordinate sums. Triangulations are used in simplicial algorithms for finding fixed points,
and, in general, smaller cardinality suggests greater computational efficiency. We let S(d)
(respectively T(d), T°(d)) be the number of simplices in a minimum-cardinality decompo-
sition (triangulation, corner-slicing triangulation) of I¢. Thus S(d) < T(d) < T¢(d). The
asymptotic behavior of these sequences and their values for small dimensions have been

studied by several authors. Qur goal is to further specify these sequences for small d.

It is a triviality that S(2) = T(2) = T(2) = 2. In an early paper, Mara proved that
T(3) = T%3) = 5 and T°(4) = 16 [15]. Cottle established directly that T(4) = 16 [7].
Sallee and Lee described corner-slicing triangulations of I¢ which show T°¢(d) < 67, 364,
2445 for d = 5, 6, 7 [14, 16]. The idea of using linear programming to establish lower bounds
for these sequences was introduced by Sallee [17]. His approach shows S(d) > 5, 16, 60,
250, 1117 for d = 3, 4, 5, 6, 7. Sallee then developed the middle-cut triangulations (not
corner-slicing for d > 5) of I¢ [18]. These yield the bounds T(6) < 324 and T(7) < 1962.
Working independently with similar ideas, Béhm introduced decompositions which give
improved upper bounds on S(d) for d > 7. In particular his results include S(7) < 1927 [3].
Broadie and Cottle developed some special properties of corner-slicing triangulations and
established the value T¢(5) = 67 [5]. Hughes used linear programming techniques and
showed T'(5) = 67 and T°(6) = 324 [11]. These results can be checked without a computer,
but to do so requires an extremely diligent reader. Hughes and Anderson described a
triangulation of I® with 308 simplices and thus T'(6) < 308 [13]. Verification of this
triangulation is helped by computer programs. Using linear programming and a computer
to compute exterior-facet tuples, Hughes developed lower bounds for {S(d)} as optimal
objective values of linear programming problems [12]. Actual numbers were found only for

dimensions 3-11 and include S(5) > 61, S(6) > 259, and S(7) > 1175.

Summarizing, in dimensions 3-7 it is known that 10
S3)=T3)=T%3)=5
S(4)=T(4)=T°(4) =16 <
61 < S(5) <T(5) =T°%5) =67
259 < 5(6) < T(6) <308 < T°(6) = 324
1175 < S(7) <1927, 1175 < T(7) <€ 1962, 1175 < T°(7) < 2445

In the current paper, we develop the results S(5) = 67, 270 < S(6), T(6) = 308,
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T(7) = 1493, and T°(7) = 1820. We also characterize the numbers of the various types of
simplices used in all minimum-cardinality triangulations of I°, I® and I” and describe all
such triangulations of I°. The linear programming approach used in the currem;—;;
simpler and f;zf more éystematic than that used earlier by Hughes [11]. Unfortunately, even
for the same dimension, the new approach leads to larger linear programming problems.
All our results rely on many computer programs including linear programming software.
To completely confirm our work, considerable programming would be required.

In Section 2, we introduce the concepts which are needed for our linear programming
approach. The basic linear programming problems are discussed in Section 3. Section 4
contains some comments about the computer programs used to generate the linear pro-
gramming problems, and in Section 5 we present our results. In dimensions 6 and 7, space
limitations prohibit displaying the linear programming problems or the specific data used

to generate them. The appendix displays such data for dimension 5.

2. Definitions and theorems

In this section we lay the foundation necessary for an understanding of the linear
programming problems used to obtain the results of this paper. We let ¢ denote the
centroid of T4, ¢ = (0.5,...,0.5), and let e be the row vector of 1’s in R?. The complement
of a {0,1}-matrix is obtained by replacing each 0 by 1 and each 1 by 0.

In R?% the volume of a d-simplex is
(1/d!)|det [M, eT] | (2.1)

where M is a matrix whose rows are the coordinates of the vertices.

We let g, be the maximum of the determinants of all n x n {0,1}-matrices. It is
known that g, =1, 2,3,5,9,32for n =2,3,...,7 [4, 6, 10 ,19]. (See especially [10] for
an extensive list of references.) It is easily seen that the largest of the absolute values of
the determinants of all n x n {0,1}-matrices with a column of 1’s is g,—1, and hence the
largest volume of a simplex in I¢ is ga/d!.

A facet of a simplex contained in I¢ is an exterior facet if it is contained in a facet
of I¢.

A simplex S in I¢ with exterior facet F is a pyramid with base F and altitude 1, and

consequently

(1/d)((d — 1)-volume of F) = volume of S. (2.2)
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Let S be a d-simplex in I¢ with d > 3. Let S; be the set of exterior facets of S and
note that each of these is a (d — 1)-simplex in a facet of I¢, which is a copy of I, Then,
considering the facets of I? to be disjoint, we let S, be the set of exterior facets of the
(d — 1)-simplices in .5;. Continuing in this manner, let S3,...,S4_» be similarly defined.

Then the (d — 2)-tuple (|S1],...,|Sa—2|) is the exterior-facet tuple of S.

One of the authors has introduced linear programming problems, with a variable for
each volume-exterior-facet-tuple (f)di;};, whose optimal objective values provide lower bounds
for the S(d)’s [12]. These problenié were solved only for d < 11. The constraints reflect
the volumes of the k-faces of I¢ for k = d,d — 1,...,2. In addition to being concerned
with all three sequences {S(d)}, {T'(d)}, and {T°(d)}, instead of just {S(d)}, the current
paper differs largely by having the variables depend on more information and including

constraints which take advantage of the additional structure.

We turn to the key definition of a configuration class of simplices in I¢. Our definition
uses mappings in R? of a special form; each is the composition of a mapping which permutes
the coordinates followed by reflections across the hyperplanes {z; = 1/2:7 € J } for some

subset J of the coordinates of R¢. These mappings are of the form
1
Alz) = é(e —eD)+zPD (2.3)

where x = (21,...,24), P is a d X d permutation matrix, and D is a d x d diagonal matrix
whose diagonal entries are in {—1,1}. They are affine isometries. Applied to vertices
of I, such a mapping permutes the coordinates and then, for all i in some subset J of
{1,2,...,d}, replaces the possibly new i'" coordinate by its complement. If S is a d-simplex
in I with vertices vq,...,v441, then the image of S under a map A of the form (2.3) is
the congruent simplex A(S) with vertices A(vy),..., A(vay1). The set of such ordered
pairs (S, A(S)) is an equivalence relation and we call the equivalence classes configuration
classes. If S and T are simplices in the same configuration class, then they have the same
volume, the same exterior-facet tuple, and the barycentric coordinates of ¢ relative to the

vertices of S are the same as those relative to the vertices of 7.

There are four configuration classes for I*® and these classes can be distinguished by

their volume-exterior-facet-tuple pairs: (1/3!, f) for f € {1,2,3}, and (2/3!,0). We note,
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however, that in I*, the simplices described by the matrices

1010 1011
0101 0100
0010 and 0010
0001 0001
0000 0000

are in different configuration classes even though they both have volume 1/4!, exterior-

facet tuple (2,4), and the sequence barycentric coordinates of ¢ relative of the vertices of

either is (0.5,0.5,0,0,0).

Theorem 2.1. Let F be a facet of a simplex whose vertices are vertices of I¢. Then the

hyperplane H in R? containing F' has a normal vector with all integer components.

Proof. Let F' = conv{vy,...,v4}. An equation for H is

fop 17
V2 1
det | © | =0,
vy 1
Lax 1.
where 2 = (21,...,z4). If we write this in the form nyz; +nozy +- - -4+ ngzq = b, then the
normal vector (n1,...,n4) has all integer components. Moreover |b| < g4 and Ini| < ga—1
for:=1,....,d.
0
Definition. If a normaln = (ny,...,nq) for a hyperplane H that contains a facet of a sim-
plexin I?has 0 < n; < ng < --- < ng with all integer components and gcd(ny,...,nq) =1,

then we call n a fundamental normal for I and H a fundamental hyperplane for I¢.

Definition. A hyperplane H is called central or noncentral for I¢ according as the centroid

cof I*isin H or is not in H.

Definition. Suppose H is a noncentral hyperplane for I¢. The half-space of R¢ determined

by H which contains ¢ is the long half-space determined by H, and the other half-space is
the short half-space.

Definition. In R? the nonzero normal vector n is equivalent to the vector m in case the
coordinates of n can be permuted and then, perhaps, the signs of some of the coordinates

changed to arrive at a real multiple of m.



This is an equivalence relation, and any hyperplane containing a facet of a simplex in I¢

has a normal equivalent to a fundamental normal for I%.
Definition. The hyperplanes n-z = g and m -z = h containing facets of simplices of I
are called equivalent for I¢ if n and m are equivalent normals and the ratios

((maxn-x) —g) : (g— (minn-:c))

zeld zerld

and

((maxm-:c) —h) : (h— (minm-x))

zeld z€ld
are the same or reciprocals.
Intuitively, equivalent hyperplanes cut the cube in symmetric ways. The hyperplanes
x1 + z3 + 23 =1 and —2zy 4 225 — 223 = 0 in R® are equivalent for I3,
We turn to the concept of a base which plays an important role in our linear program-

ming problems.

Definition. A set of d vertices of I is called a base for I if it is affinely independent. A

base is central if the hyperplane it determines is central for I¢.

Thus a base for I¢ is the same as the set of vertices of a facet of a simplex in I¢. If the
base B consists of the vertices of a facet of the simplex S, we often refer to B as a base of
S.

Suppose S = conv{vi,...,v441} is a simplex in I with facets Fy, Fy, ..., Fy4q where
vi ¢ F;. Let Aq,...,Aa41 be the sequence of barycentric coordinates of ¢ relative to the
vertices of 5. Then F; determines a central hyperplane for I? if and only if \; = 0. Also
S is in the short (respectively long) half-space determined by F; if and only if \; < 0
(Ai > 0). We call the sign of \; the half-space indicator of S for F;. Thus if the common
facet F' of two adjacent simplices in I is contained in a noncentral hyperplane for I¢, then

the simplices have opposite half-space indicators for F.

Definition. The bases By and B, for I are called equivalent if there is a mapping of the

form (2.3) which carries By onto B,.

This is an equivalence relation and we refer to the equivalence classes as base classes.
Clearly all bases B in the same base class have the same value for the (d — 1)-volume
of conv(B). Later we will note a helpful connection between this volume and |det(Mp)|

where Mp is a matrix whose rows are the elements of B.



Lemma 2.2. Suppose the vertices v!...,v* of I? satisfy n-v* = f for i = 1,...,k.
Suppose w', ... w* are obtained from these vertices by complementation in coordinate p:
thus .
=7 g2,
, v, =0;

andw}:v;« for j #p. Thenfori=1,...,k

Y

(nl,...,np_l,—71][,,TL‘,,+1,...,nd)-wz = f—ny,

where n = (ny,...,nq). Moreover, if v!,... v*

wh, . wk.

are affinely independent, then so are

The proof is straightforward and is left to the reader.

Theorem 2.3. Suppose the bases By and B; for I? lie in the fundamental hyperplane
H given by n -2 = f with fundamental normal n = (ni,...,n4). Suppose M; and M,
are d x d matrices such that the rows of each M; are the vertices of B;. Then B; and
B; are equivalent if and only if M can be obtained from M; by successive use of matrix

operations of the following types (only 1, 2, and 3 in case H is noncentral for I%):

) Permute the rows of the matrix.

(1
(2) If n;, =ni41 = -+ = niyg, then permute columns ¢,: + 1,...,% + k of the matrix.
(3) For some 7 with n; = 0, replace column 7 of the matrix by its complement.

{

4) For all ¢ with n; # 0, replace column 7 of the matrix by its complement.

Proof. (=) Suppose By and B; are equivalent. Then M, can be obtained from M; by first
permuting the rows of M; to obtain M ; then using some permutation P on the columns
of M to obtain M . and finally, for some subset C of the set of d columns of M , replacing
each column of C by its complement. Then n is a normal for the hyperplane containing
the rows of M and some permutation of its coordinates, say m = (m,...,mg), is a normal

for the hyperplane containing the rows of M. Also by Lemma 2.2, (sym1,...,84mq) where

. — 1, if:¢C;
Yl -1, ifieC:

is a normal for H. There are two possibilities:

(1) Fori e C, m; =0 and m = n.



(i) Form; # 0,7 € C and (s;my, ... ,84mg4) = —n. In this case, according to Lemma 2.2,

H 1s also given by
d
-n-z=f-— Z n;
=1

which implies 2f = 2?21 n;; thus, H is a central hyperplane for I¢.

In both cases m = n, and consequently P can be expressed as a composition of permuta-
tions of type 2.

(<) The rest of the proof now follows easily by showing that each of the four matrix
operations (three if H is noncentral for I?) applied to a matrix M representing a base

contained in H yields a matrix representing a base which is also contained in H.

O

Matrices representing equivalent bases may have determinants with different abso-
lute values. We show this is not possible for bases contained in the same fundamental

hyperplane for I¢.

Theorem 2.4. Suppose the bases By and B, for I? are equivalent and are contained in
the fundamental hyperplane H given by n-z = f where n = (ny,...,n4) is a fundamental
normal. Suppose M; and M, are d x d matrices such that the rows of each M; are the
vertices of B;. Then |det(M;)| = |det(My)].

Proof. It suffices to show that each of the operations 1-4 (1-3 if H is noncentral) of
Theorem 2.3 does not change the absolute value of the determinant of a matrix whose
rows are a base in H. This is clear for operations 1 and 2. The proofs for 3 and 4 are
similar and we consider only 4 with H central.

It is enough to show |det(N7)| = |det(NNz)| where N5 is the complement of N, and the
rows of Ny form a base in H. Since the simplices described by []\eh ] and []\62 ] are in the

same configuration class, we have

ldet(Nz)| =

0 1

e

T
det [NZ € ]

T
det [Nl € ]

Jeprae [ (0N )

To the last column of this last matrix, for all 7 € {1,...,d}, we add n; times column i.
Using f = (Z?:l n;)/2, we thus have

der() = =gyt | (00 ]| = baescv.
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O

Suppose the set of rows of the d x d matrix M is a base B which is contained in the
fundamental hyperplane n - & = f where f > 0. Letting Vg be the (d — 1)-volume of

conv(B) and S be the simplex conv(B U {0}), we compute the volume of S in two ways to

obtain

M

jay et | || = asavas v,

Consequently

Vg = <F_“%> |det(M)|, (2.4)

which we record for later use in developing constraints for our linear programming problem
for S(d).

There is a natural one-to-one correspondence between the configuration classes of
simplices for I? and the base classes for 9! which have representatives on the hyperplane
rg41 = 0.

Every base class has a representative which is contained in a fundamental hyperplane
for I, in fact a hyperplane with equation n - ¢ = f where 0 < f < (E?:l n,)/2 and n is
the fundamental normal. We will single out one of these representatives as our canonical
representative for the base class. Toward this end we agree on an ordering for {0,1}-
matrices of the same size. We define [r{,...,rT]T < [s¥,... sT]|T, where the r;’s and s;’s
are row vectors, to mean that the row concatenation riry - - - rg, as a nonnegative binary

number, is not larger than that for s;sg - - - sg.

Definition. Let [B] be a base class for I¢. Let the hyperplane H given by n-z = f, where
n is a fundamental normal and 0 < f < (22-1:1 n;)/2, contain a representative of [B).
Let M be the maximum of all d x d matrices whose rows constitute a base in [B] and are

contained in H. The set B* of rows of M is our canonical representative of the class [B].

We include some information about the bases in dimensions 3 and 4 to help the reader
confirm his or her understanding of these concepts.

There are three base classes for I® and they have representatives on the three hyper-
planes x3 =1, 23 + z3 = 1, and 21 + 22 + 23 = 1.

In I* there are five fundamental normals: 0001, 0011, 0111, 1111, and 1112. There

are 15 base classes. For each of these we give the maximum matrix whose rows thus form
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the canonical representative of the base class:

1110 1110 1110 1110 1110
1100 1100 1100 1000 1101
1010 1010 1010 0100 1010
0110 0100 0000 0010 0110
1 2 3 4 )
1110 1110 1110 1110 1110
1101 1101 1101 1010 1001
1010 1010 1010 0110 0101
0101 0010 0001 0001 0010
6 7 8 9 10
1100 1100 1000 1100 1100
1010 1010 0100 1010 1010
0100 1001 0010 1001 0110
0001 0100 0001 0110 0001
11 12 13 14 15

The canonical representatives of base classes 1-4 lie on z4 = 0 which intersects I* in
a copy of I*, and these base classes correspond to the four configuration classes for I®. For
5-10, they lie on the central hyperplane z3 + 4 = 1 which intersects I* in a parallelepiped
having squares for two facets and nonsquare rectangles for the other four. The canonical
representatives of base classes 11 and 12 lie on the hyperplane z2 + 23 + z4 = 1 which
intersects I* in a prism having two equilateral triangles as opposite facets. For base class 13,
the canonical representative lies on 1 +22+23+4x4 = 1 which intersects I* in a tetrahedron.
For base class 14, it lies on the central hyperplane 21 + z5 + 23 + 74 = 2 which intersects
I'* in a regular octahedron. Finally, for base class 15, it lies on o1 + 9 + 23 + 224 = 2
which intersects I* in a tetrahedron.

If Sy and S, are simplices in I which are in the same configuration class, then there
1s a one-to-one correspondence between the facets of S; and the facets of S, such that
each pair of corresponding facets determine the same base class. Moreover if F and G are
corresponding facets of S; and Sy respectively, then S; is in the short (respectively long)

half-space determined by F if and only if S, is in the short (long) half-space determined
by G.

Theorem 2.5. Let By = {vq,...,v4} and By = {wy,... ,wq} be equivalent bases for I¢.
Let H; and H, be the hyperplanes containing By and Bs, respectively. Let U and V be the

open half-spaces determined by H;. Let C; be the set of configuration classes of simplices
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conv{vy,...,vg,u} with u a vertex of I¢ in U and let Cs be similarly defined for V. Let
D, and D, be similarly defined for H,. Then {C1,C2} = {D1, D, }.

Proof. Let A be an affine isometry of the form (2.3) with A(B;) = B. The result is easily
seen since A carries the simplex conv{vy,...,vg,u} to a simplex in the same configuration
class and if the vertices u; and uy of the cube are on the same side of Hy, then A(ug) and

A(uy) are on the same side of Ho.

O

Of course, for noncentral bases, the sets of configuration classes on the long (short) half-
spaces correspond. In the notation of Theorem 2.5, for some central bases we have Ci =0C,y
and for others C; # C. We turn to the development of a concept which allows us to build

constraints exploiting C; # Cy when possible.

Definition. The central bases By and B; whose elements lie on a fundamental hyperplane
H with fundamental normal (ny,...,n4) are called superequivalent if B, can be obtained

from B; by applying to all the elements of By, in the same order, the same operations of

the following types:

(2") If ni =nip1 =+ = nijk, then permute coordinates i,i + 1,...,7 + k.

(3') For some 7 with n; = 0, replace coordinate i by its complement.

For bases whose elements lie on a central fundamental hyperplane, this is the same as
equivalence except that here complementation of all coordinates with nonzero normal co-
efficients is not allowed. If some operations of type 2’ or 3' are performed on a vertex of

I, w, not in H, the resulting point is on the same side of H as w.

Consider a hase class [E] relative to equivalence which has representatives contained
in the central fundamental hyperplane H. Let [ﬁ] # be the set of such representatives.
Either [ﬁ] H 15 a single equivalence class under superequivalence or it is the union of two
such classes. To learn if the former obtains, it suffices to take any B € [ﬁ] o and see if B

is superequivalent to the set B of complements of elements of B.

Definition. Let [B] be a central base class, determined by equivalence, with representa-
tives contained in the fundamental hyperplane H. If any two bases in [B] whose members

lie in H are superequivalent, we call [B] and its elements selfcomplementing.
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For example, the bases in I° represented by the matrices

11100 11100
11010 11010
11001 and 11001
10110 10110
01100 01001

and contained in the central hyperplane 25 + 23 4 x4 + x5 = 2, are, respectively, selfcom-

plementing and non-selfcomplementing.

Theorem 2.6. Let B = {vy,...,v4} be a selfcomplementing base whose elements lie
on the fundamental hyperplane H. Then the set of configuration classes of the simplices

conv{vy,...,vg,u} with u € U is the same as that for conv{v;,...,vq,v} with v € V.

Proof. Let S = conv{vy,...,v4,u} where u € U. Let B be the set of complements of
the elements of B and let w be the complement of u. Then w € V. Some sequence of
operations of types 2’ and 3' from the definition of superequivalence can be applied to B
to yield B. Applied to w, this sequence yields some v € V. Then S and 7' = conv(BU{v})

are in the same configuration class and the result is clear.

Typically the conclusion of Theorem 2.6 does not hold if B is non-selfcomplementing,.

Definition. Consider a central non-selfcomplementing base class [B*] where the canonical
representative B* is contained in a fundamental hyperplane H. Let B be a base in [B*].
Let A be a mapping of the form (2.3) which carries B onto B*. Let p € R? with p not in
the hyperplane determined by B. If A(p) is on the same side of H as 0, we say p is on the

zero side of B relative to B*.

One can easily show that p being on the zero side of B relative to B* does not depend
on the choice for A in this definition. Also note that if p is on the zero side of some base B
relative to the representative B*, then p is not on the zero side of the base g, consisting
of the complements of the elements of B, relative to B*. This is in spite of the fact that

B and B are equivalent and contained in the same hyperplane.

Definition. Suppose S is a simplex in I¢. Let F be a facet of S. Let v be the vertex
of S not in F' and let B be the base determined by F. Then, relative to our canonical

representative B* for the base class [B], we define the side indicator i for the pair (S, F)
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by
0, 1if B is not central, or is central and selfcomplementing;
(S, F) = { —1, if v is on the zero side of B relative to B* :
+1, otherwise.

Thus we obtain a (d+ 1)-tuple of side indicators for S. One can show that simplices in
the same configuration class, relative to the canonical representatives of the base classes,
vield the same family of side indicators.

Suppose the simplices S; and S in I are adjacent with common facet F. Suppose
F' determines the central non-selfcomplementing base B in the base class with canonical
representative B*. Then, relative to B*, we have i(Sy, F)i(S2, F) = —1. We will use this
to form constraints for our linear programming problem for T'(d).

We now have enough groundwork for an understanding of the linear programming
problems.

One drawback of our linear programming approach is that the information it provides
about creating minimum-cardinality decompositions is very dimension specific. To the
extent we are able, we will make some more global comments about the triangulations we

produce. To set the stage for this, we close this section by mentioning some general ways

of obtaining triangulations of the cube.

The first method is that of coning off to a vertex [16, 3].

Definition. A d-complez is a finite set C of d-polytopes such that P N Q is a face of both
P and @ for all P,Q € C.

Definition. Let C be a d-complex. A triangulation S of C is a complex of d-simplices such
that for P € C there is a subset Sp of § for which P = | Sp.

One can show that if v is a vertex of a polytope P and S is a triangulation of the complex
of facets of P opposite v, then S, = {conv({v} US): S € S} is a triangulation of P. It is
the triangulation obtained by coning off S to v.

The next method is by way of convex enlargements [11]. Let P be a d-polytope
contained in a polytope Q in R?. Suppose 7 is a triangulation of P and V1,V2,...,0p IS
an ordering of the vertices of (). The first enlargement of 7 is carried out by including all
simplices conv({v;} U F') where F' is a facet of a simplex S in 7 such that two conditions
hold: (1) S and v; are on opposite sides of the hyperplane containing F, and (2) no simplex
of T is adjacent to S with common facet F. This process is continued for vs, ..., v, and

culminates in a triangulation of Q.
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Finally we mention triangulations of I arising from middle cuts [3, 18]. Let H_(d,m)
= {z ¢ R?: Z?zlx,- < m} and Hy(d,m) = {x € R? : Z?:l‘ri > m}. Then let
Al(d,m) = H_(d,m)NI* and B(d,m) = Hy(d,m)N I%. Suppose S is a triangulation of

the complex
C={F:Fisafacet of A(d,m) opposite 0} U{F : F is a facet of B(d, m) opposite e }.

Coning off the simplices of § in A(d,m) to 0 and the simplices of S in B(d,m) to e
yields a triangulation of the complex {A(d,m), B(d,m)} which is a triangulation of I*.
Sallee introduced a recursive method of obtaining triangulations of C [18]. (The middle-
cut decompositions studied by Bohm are similar [3]. The differences are that Béhm works
with decompositions which aren’t necessarily triangug‘tniéhs and that he slices’ off some of
the corners of the cube before coning off which results in fewer simplices for d > 7. Béhm’s

use of the word “triangulation” coincides with our use of “decomposition”.)

3. Linear programming problems

In this section we develop the linear programming problems whose solutions yield

lower bounds for S(d), T(d), and T°(d).
The linear programming problem for T(d)

Here we introduce a linear programming problem for each dimension d such that every
triangulation of I¢ determines a feasible solution whose objective value is the cardinality
of the triangulation. Thus the minimum objective value provides a lower bound for T(d).

We first describe the variables of the problem. For each configuration class, we select
a representative and compute the d + 1 bases, the exterior-facet tuple, and the volume.
Then, for some ordering of the facets, we compute the corresponding side indicators;
and, for the induced ordering of the vertices, we compute the signs of the barycentric
coordinates of the centroid of the cube relative to these vertices. Another representative
of the same configuration class, possibly by reordering its bases, would produce the same
information. We associate a problem variable with all the configuration classes which
produce the same such information disregarding differences in selfcomplementing bases
and bases with fundamental normal (0,...,0,1). (Here we are motivated by wanting to
eliminate the situation where two or more variables enter into the linear programming
problem in exactly the same way.) As an example, consider the dimension-6 configuration

classes represented by the simplices
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10000 07 10000 0
011000 100010
011010 010101
011011| and 101110
101111 101111
111111 111111
(000000 (000000

As is easily checked, these simplices are metrically different and hence in different config-
uration classes. For each of these the base obtained by deleting any one of the first five
vertices is selfcomplementing. Deleting either of the last two vertices from either simplex,
yvields a base from the same base class. Both simplices have volume 1 /6!, exterior-facet
tuple (0,0,0,0), zero side indicators, and in both cases the sequence of barycentric coordi-
nates of ¢ relative to the vertices is 0, 0, 0, 0, 0, 0.5, 0.5. Thus both configuration classes
are represented by a common problem variable.

The objective function is just the sum of the variables. Associated with each triangu-
lation 7 of I* is the assignment of values to the variables where the value of a variable z; 18
the number of simplices of 7 which are in the classes represented by z;. Note that for this
assignment, the objective value is the cardinality of the triangulation. All the constraints
of our problem will be satisfied by such assignments. There are d — 1 constraints based
on volume considerations for I% and its k-faces for 2 < k < d. There are other constraints
corresponding to central non-selfcomplementing base classes and to noncentral base classes
which don’t have bases contained in facets of I¢.

We first discuss the constraints based on volume. Let 7 be a triangulation of I? and
let 71 be the set of exterior facets of the simplices in 7. Then 77 can be partitioned into 2d
collections of (d—1)-simplices with each collection a triangulation of one of the facets of I¢.
We consider the facets of I¢ as disjoint and thus consider two simplices in 77 as disjoint if
they are not contained in the same facet of I¢. Then we let 75 be the set of exterior facets
of the simplices in 77. 73 can be partitioned into triangulations of the 22d(d — 1) facets of
the 2d facets of I?. We continue in this manner until the set Tq—2 of 2-simplices is defined.
Let the problem variables be z;, i = 1,2, ..., mq, representing sets of configuration classes
of simplices with volumes v;/d! and exterior-facet tuples (fi,..., fi_,). Then, making use

of (2.2) and the fact that the k-volume of any k-face of I is 1, we are led to the constraints
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mq

Z UV, T = d'

=1
mgq ) .
Y vifle; =210 j=1,2,... d—2
i=1

which must be satisfied for assignments of values to the variables coming from triangula-
tions.

We next turn to the constraints corresponding to the base classes. Let [B*] be a
noncentral base class for I¢ with canonical representative B* where B* is not contained
in a facet of I4. If B € [B*] and 7 is a triangulation of I, then 7 has a simplex with
base B with the simplex in the short half-space determined by B , if and only if 7 has a
simplex with base B with the simplex in the long half-space determined by B. Hence, for
any triangulation 7, the number of occurrences of B in [B*] as the vertex set of a facet
of a simplex in 7 in the short half-space determined by B, must be matched by the same
quantity for the long half-space. We use this fact to form a constraint corresponding to [B*].
For each problem variable «;, for some simplex T in a configuration class represented by
v, let s; (respectively ;) be the number of facets F of T such that F determines a base in

[B*] with T in the short (long) half-space determined by F. The constraint corresponding
to [B*] is

mq

Z(ll — S,‘)Z‘,‘ = 0.

=1

For a central non-selfcomplementing base class [B*], with canonical base B*, we have
a constraint which is similar but differs in that the definitions of s; and I; are modified. For
example, in defining s;, the short half-space determined by the base B in [B*] is replaced
by the zero side of B relative to B*. Thus here we use side indicators instead of half-space
indicators. Notice that, since all terms in the equation refer to the same base class, all side
indicators are relative to the same canonical representative.

This, along with non-negativity conditions on all the variables, completes the descrip-
tion of our problem for T'(d).

We illustrate this problem for d = 4. Here the pertinent information is in Table 3.1.
In this and lower dimensions, all the central bases are selfcomplementing. Also, it turns

out, in dimensions not larger than 5 each variable represents just one configuration class.
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variable base classes signs of barycentric exterior- | vol.
(numbers from §2) coordinates of ¢ fac.tup. x4!
X 8 8 12 14 15 |10 0 1 0 110 0 1
X 6 8 8 11 11 |0 0 0 1 110 0 1
X3 3 6 6 9 121 0 0 0 11 1 1
Xy 3 7 8 12 14 |1 0 0 1 0|1 1 1
X5 3 5 11 11 15 {1 0 1 1 -1 1]1 1 1
Xs 2 7 8 9 11 1 0 0 0 1 1 2 1
X7 1 9 9 9 15 |1 0 0 0 111 3 1
X3 3 3 12 12 13 |1 1 -1 -1 1] 2 2 1
Xo 2 3 5 11 12 |1 1 0 -1 112 3 1
X1 1 3 7 T 14 |1 1 0 0 0| 2 4 1
X1y 2 2 6 7 711 1 0 0 0| 2 4 1
X192 1 2 2 5 12 |1 1 1 0 -113 7 1
Xis 1 1 1 1 13 1 1 1 1 -1 4 12 1
X4 10 11 11 12 15 0 1 1 1 1 0 0 2
Xis 4 13 14 14 14 1 1 0 0 0 1 0 2
X6 4 12 12 12 15 |1 1 1 1 -1 71 0 2
Xi7 13 15 15 15 15 |1 1 1 1 110 0 3

Table 3.1. Linear programming variables in dimension 4.
The linear programming problem for T'(4) is then
Minimize
L1+ To+T3+T4+ T5+ Te+ T7+ Te+ T9+ Tio+ Tirt+ Tiz+  T13+ Tia+ Tis5+ Tie+ Ti7
subject to

1+ T+T3+T4+ T+ Lo+ T7+ Te+ To+ T10+ Ti1+ T12+ T13+2T14 +2T15 42216 +3217 = 24

T3+T4+ Ts+ Te+ T7+2Tg+229+2L10+2T114+3T12 + 4213 +2115 +2216 = 48
T3+&a+ T5+2T6+3T7+228+3L9+4T10+4011 47212 +12213 = 96
2x9 +2T5+ Tg - Z9 +2T14 =0
T +T3+74 -2x8+ Ty - Ty + T14 +37T16 =
+ Tg - 13 + T15 + z17=0
€ - s + T7 + T4 - Tyg+4r17 =0
all Iy Z 0.

The linear programming problem for S(d)

Here we consider decompositions of the d-cube into d-simplices that have disjoint

interiors and whose union is I¢. In contrast to triangulations, this allows the possibility
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that the intersection of two simplices in the decomposition has dimension d — 1 and yet
this intersection is not a facet of both of the simplices.

The variables, constraints based on volume considerations, and the objective function
of our linear programming problem for T(d) carry over exactly to this setting. The con-
straints corresponding to base classes are replaced by a less restrictive system of equations
corresponding to classes of equivalent noncentral hyperplanes containing facets of simplices
in I*. We do not have an equation for the class of equivalent hyperplanes which contain
facets of I? and we do not have equations corresponding to classes of equivalent central
hyperplanes.

Suppose n = (n1,...,nq) is a fundamental normal and f is a number such that
0<f< (Zle ni)/2. Let H be the hyperplane given by n -z = f. We form a constraint
corresponding to H which reflects the fact that, for any decomposition D and any hyper-
plane P equivalent to H, the total (d — 1)-volume of the facets in P of simplices of D on
one side of P matches the total for the other side. Let B be the set of base classes having
at least one base contained in H. We have the corresponding constraint

Yo > |det(Mg)| (1i(IB]) — si([B]))zi = 0.

B]EB 1<z<md

Here M|p) is a d x d matrix whose rows make up a base contained in H and in the base
class [B]. We can take Mg to be the maximum matrix representing the canonical base
in [B]. By Theorem 2.4 and equation (2.4), |det(M[B])| is proportional to the common
(d — 1)-volume of the convex hulls of the bases in [B]. Also l;([B]) and s;([B]) are the
counts of the long and short half-space indicators for simplices represented by z; as before,
but now with the relevant base class explicitly indicated.

In dimension 4 we have constraints corresponding to the hyperplanes zo + 23 + x4 = 1,
ri+re+as+ry =1, and 2y + 2o +23+224 = 2. Base classes 11 and 12 have representatives
contained in z3 +z3+ 24 = 1 and have 1 for the absolute value of the relevant determinant.
Thus constraints 4 and 5 of the problem for T'(4), which correspond to base classes 11 and
12, are replaced by their sum in the problem for S(4). Constraint 6 of the problem for
T'(4) remains the same in the problem for S(4), and constraint 7 is replaced by its double.

The objective function and the first three constraints are the same in both problems.
The linear programming problem for T°(d)
Without loss of generality, we consider only corner-slicing triangulations of I¢ which

contain the corners at all the vertices of I? with odd coordinate sums. If these corners
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are removed from I¢, the closure of the resulting solid, @4, is the convex hull of the set
of vertices of I with even coordinate sums. Brodie and Cottle showed that if m/d! is
the volume of a simplex in I¢ whose vertices all have even coordinate sums, then m is an
even integer [5]. Any corner-slicing triangulation of I¢ consists of a triangulation of Qg
along with the 247! corners at the odd vertices. The problem for T°(d) differs from the
preceding problems in that it uses only those variables representing configuration classes
which have simplices whose vertices all have even coordinate sums and, of course, a variable
for the corners. Moreover, except for the base class representing the single internal facet
of a corner of I, each base class used to generate constraints has representatives whose
elements all have even coordinate sums. We also adjoin an additional constraint reflecting
the fact that the number of corners must be 2=, There are d — 1 constraints based on
volume considerations as before and the objective function is still the sum of the variables.

The problem for T¢(4) is
Minimize T3+ T1s
subject to  z134+2z15 =24
4x13+2x15 = 48
12243 =96
r13— 15 =0
13 =8

z13,715 = 0.

For d < 4, the problem is sufficiently constrained that there is only one feasible solution

and the optimization is superfluous. In general the problem for T°(d) is significantly smaller

than the problem for T'(d).
4. Computer programs

In this section we give a brief overview of the main programs or algorithms used in
producing the linear programming problems. A serious reader wanting to verify our results
would probably need similar programs. Most are not difficult and we omit the detailed
descriptions.

We first mention a program which carries out a finite search, based on Theorem 2.1 and

its proof, to find all the fundamental normals and corresponding fundamental hyperplanes
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for I?. (The execution time for this program is reasonable for d < 7, but, without some
new insight, it is too large for d > 8.) There are 3, 5, 11, 41, 383, respectively, fundamental
normals for d = 3,4,5,6,7. Also for d = 3,4, 5,6, 7, there are, respectively, 3, 6,15, 63,623

hyperplanes n - z = f where n is a fundamental normal and 0 <f< (Ele n;)/2.

We next describe an algorithm that for a given fundamental hyperplane H as just
described produces the canonical representatives of all base classes which have bases corn-

tained in H. Theorem 2.3 provides the appropriate operational description of equivalence

for bases contained in H.

The key procedure of this algorithm transforms a d x d matrix M = [vl,..., o7
whose rows are vertices of I in H into the maximum matrix, M, which can be produced
from M using only operations of types 1 and 2 of Theorem 2.3. For p€{1,2,...,d}, let
M, be the largest matrix which can be formed using operations of type 2 on matrices made
up of p rows of M. Thus M4 = M. Let G be the rooted tree with d nodes at level 1,d(d-1)
at level 2, etc., and d! endpoints, which is commonly used to illustrate the formation of
all the permutations of 1,2, ...,d. The procedure carries out a breadth-first search of g to
find some permutation (ki,...,kq) such that some sequence of type 2 operations applied
to [’U,Z;, e ,vad]T yields M 4. The tree is pruned during the search; thus, after the current
nodes at level p have been traversed, the search is narrowed to all permutations (k1,...,ka)
such that some sequence of type 2 operations applied to [v,z; yeee ,vg;]T yields Mp. Then
M 4 is obtained after stage d.

The algorithm systematically considers all d x d matrices M whose rows are distinct
vertices of I in H. A matrix M is discarded if its rows are affinely dependent. Suppose
n = (ny,...,ng) and k is 0 or satisfies 0 = ny; = ... = ng < ng41. If H is noncentral,
the algorithm uses the above mentioned procedure on each of the 2F matrices obtained
by complementing the columns in some subset of the first k columns of M. (If H is
central, then, because a type 4 operation is allowed, 2¥*1 matrices are considered.) In this
manner, at most 2% (251 if H is central) matrices are produced, and the largest among
these maxima is noted. The set of rows of this maximum matrix gives the canonical

representative of a base class which, if new, is then given a number.

For readers contemplating the efficiency of the above algorithm, it may be of interest to
note that any algorithm which determines whether two bases on a fundamental hyperplane
are equivalent can also be used to determine whether two graphs are isomorphic. For

. =1,2 let Ay be the incidence matrix of a graph Gy with no isolated nodes. Thus, for
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example, if Gy has nodes vy,...,v, and arcs €1,...,€m, then

o 1, if v; is incident to e;:
A = ’ o 7
1(5:J) { 0, otherwise.

Embed each Ay in an (m +n + 1) x (m 4+ n + 1) matrix Ny as follows:

I, Ay 0
Ne=1(0 I, O
0 0 0
Each N represents a base for I™+"*! contained in the hyperplane (0,...,0,1)-z = 0.

Using Theorem 2.3, one easily shows that N; and N, represent equivalent bases if and
only if there are permutation matrices P and Q such that PA;Q = Ay, ie. Gy and G,
are isomorphic.

There are 3, 15, 106, 2445, 171697, respectively, base classes for d = 3,4,5,6,7. By
using the appropriate remark in Section 2 and counting the canonical forms of base classes
with fundamental normal (0,0,...,0,1), we learn there are 4, 17, 237, 9892, respectively,
configuration classes of simplices in dimensions 3,4, 5,6. As described in Section 5, there
are 1456318 variables in our problem for T(7), and thus there are at least this many
configuration classes of simplices in dimension 7.

Programs are also needed to compute the following items:
a) the volume of a simplex in I¢,
) the exterior-facet tuple of a simplex in I¢ [12],
) the barycentric coordinates of ¢ relative to the vertices of a simplex in I¢,
(d) the number of the canonical representative of a given base,
)

the fundamental normal and an equation of the hyperplane containing d given affinely

independent vertices of I¢, and
(f) the side indicator of a simplex in I for a given facet.

Using the above programs, it is now easy to produce the information needed to form
the linear programming problems. We form at least one simplex from each configuration
class and compute the relevant information. More explicitly, for each canonical represen-
tative of a base class B* and for each vertex v of I? not in the hyperplane determined
by B*, we form the simplex S = conv(B* U {v}) and record: (1) the numbers of the base
classes represented by facets of S, (2) The signs of the barycentric coordinates of ¢ relative
fo the vertices of S, (3) the side indicators of S for its facets relative to our canonical

representatives of the base classes, (4) the volume of S, (5) the exterior-facet tuple of S,
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and (6) the base and vertex used to construct S. We keep all this information only if it

differs in at least some of the items (1)~(5) from that of all previously considered simplices.

Item (6) is included in order that a simplex yielding ( 1)—(5) can easily be reconstructed.
Also a program was written to produce triangulations by the method of convex en-

largements. This was a straightforward implementation of the description in §2.

5. Results

Dimension 5
Results concerning 5(5)

The basic linear programming problem for S(5), from §3, has 237 variables and 15
equality constraints. Our computer generated optimal objective value is 65.00 which im-
plies S(5) > 65. By partitioning the decompositions into classes and using various addi-
tional constraints, we obtain the better bound S(5) > 67. This improves the best lower
bound of 61 given previously [12]. Since decompositions, actually mostly triangulations,
of I® with 67 simplices have been given 2, 3, 14, 16, 18], we conclude S(5) = 67.

Case 1: D is a decomposition which contains a simplex having ¢ in its interior. Then
no other simplex in D can contain ¢. Whether or not c is in the interior of a simplex, or
even in the relative interior of a k-face, can be determined by the signs of the barycentric
coordinates of ¢ with respect to the vertices of the simplex. For n = 2,...,6, let J, be
the set of indices 7 € {1,...,237} such that for any simplex S represented by the problem
variable z; none of the barycentric coordinates of ¢ relative to the vertices of S is negative

and exactly n of them are positive. One can easily show that J; = . The constraints

which refiect the conditions on D are

Zwizl and Z z; = 0.

1€ Js e JouJsudy

Adjoining these constraints to the basic problem for S(5) yields a problem for which the
computed objective value is approximately 66.7619, and we conclude |D| > 67.

Case 2: D is a decomposition which has two simplices each of which contains ¢ in the
relative interior of one of its facets. Clearly no decomposition can contain more that two

such simplices. The appropriate additional constraints are

Z:ci:Z and Z .’C,‘ZO.

t€J5 1€ JoUJyUJdg
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The resulting problem gives a computed integer-valued optimal solution whose objective

value is 67. Hence |D| > 67.
Four configuration classes play a central role in our additional constraints for the rest

of the cases and we introduce them now. They are the classes represented by the simplices

in turn represented by the matrices

(110107 110107 110107 001117
11100 01100 11100 01011
00110 00110 00110 01101
01001 01001 01000 01110
10000 10000 10000 00000
(111110 L1111 1) f(r11111) [11111.
vol 4/5! vol 4/5! vol 3/5! vol 3/5!
YRl — 214 YR2 — 67 XEF1-197 XEF4 — 148

The names are from an earlier paper, [11], and the numbers come from the appendix of the
current paper. For: € {1,...,5} andr € {0,1}, we let F;, be the facet {zel?:z;=r}.
Any Y R1- or Y R2-simplex has a ridge (3-face) containing ¢ and any X EF1- or X EF4-
simplex has an exterior facet.

The classes Y R1 and Y R2 are similar in many respects. Let S with vertices V..., Vg
be a simplex from either class. Then c is a convex combination, with all coefficients 1/4,
of four of these vertices, say vs,va,vs,vs. These are divided equally among two opposite
facets of I°, say vz and vy on Fj and vs and vg on Fi1, in such a way that the centers
of Fjo and F}y, cen(Fy) and cen(Fj; ), are the midpoints of the edges [v3,v4] and [vs, ve],
respectively. In particular the line segment from cen(Fj) to cen(Fj1) is contained in S.
The facets of S opposite vy and v, are orthogonal. They contain ¢ and no other facets of
S contain ¢. There are distinct coordinates j and k, different from 7, and numbers p and
¢ in {0,1} such that the open line segments { Ac + (1 — A)cen(Fj,) : 1/3 < A < 1} and
{Ac+ (1 = Ncen(Frq): 1/3 <A < 1} are in the interior of S. (For the simplices we used
to define the classes Y R1 and YR2, we havei =1, =2, p=1,k =5, and ¢ = 0.)

Next let T be an XEF1- or an X EF4-simplex. Then T has an exterior facet F
contained in some facet Fp,,. of I°. The facet F is the type of 4-simplex described by the
variable Xy7 in §2. It contains the center of F,,, in its relative interior. Moreover, the
open line segment { Ac + (1 — A)cen(Fp,r) : 0 < A < 1/2} is in the interior of T

The key point is that if a decomposition contains the simplices S and T just described,
then the facet Fp,, is not in { Fo, Fi1, Fjp, Fx, }. Moreover if Sy and S are simplices in

YR1 UYR2 and in a decomposition D with S, blocking facets Fjy, Fj, F;p, Fyq and
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Sy blocking facets F,g, Fy1, Fyy, Fy; as just described, then neither F,y nor F,, is in
{ Fio, Fi1,Fjp, Fiy } and at least 6 facets of I are blocked from containing the exterior
facet of any X EF1- or X EF4-simplex in D. Similarly three simplices from YR1IUY R2 in
a decomposition block at least 8 facets, four such simplices block all 10 facets of I®, and, by
the above mentioned orthogonality, no decomposition has more than four such simplices.
We use this information to formulate additional constraints in the remaining cases.

Case 3: D is a decomposition which has exactly one simplex that contains ¢ in the
relative interior of one of its facets and D also contains two simplices in Y R1UY R2. Three
or more simplices in ¥ 1 UY R2 are ruled out by the previously mentioned orthogonality.
Also, by this orthogonality, one can show that no other simplices from D can contain c.

The appropriate constraints are

Z zi =1, Z t; =2, and zryp +ayrr =2
1€J5 t€JoUJyUJg

where 2y ry and zy gs are the problem variables representing the classes Y R1 and Y R2.
The enlarged problem then has a computed optimal objective value of 66.90 and again
|D| > 67.

Case 4: D is a decomposition of I® which contains exactly one simplex containing

¢ in the relative interior of one of its facets and D also contains at most one simplex in
YR1UY R2. We adjoin the constraints

inzl, in:O, and zypi +2ygr2 <1
Z€J5 ZEJS

and obtain a problem with a computed optimal objective value of approximately 66.1111.
Again we conclude |D| > 67.

Case 5: D is a decomposition with exactly four simplices from yrl U yr2 and no
simplices that contain ¢ in the relative interior of a facet. We include the constraints

Ty R1 + TyRr2 = 4, Z =0, and zxgr1+2Txprs=0
teJ5UJg

where zxpry and zxprps are the problem variables representing the classes X FF'1 and
X EF4. This problem yields a computed optimal objective value of 66.80 and |D| > 67.

Case 6: D has exactly three simplices from ¥ R1UY R2 and no simplices that contain

¢ 1n the relative interior of a facet. We include the constraints

TyRri + Ty gz = 3, E z; =0, and zxgr +2xprs <2.
1€ JsUJg
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Our computed objective value is approximately 66.5810.
Case T: D has exactly two simplices from YR1 U Y R2 and no simplices that contain

¢ 1 the relative interior of a facet. We adjoin

Ty R+ TyRre = 2, Z z; =0, and zxpr +zxErs <4
1€ JsUJg
and get a computed objective value of approximately 66.3810.
Case 8: D has at most one simplex from YR1 U Y R2, no simplex that contains ¢ in

its interior, and no simplices that contain ¢ in the relative interior of a facet. We adjoin

Tyr1 +2yre <1 and Z r; =0
1€ JsUJg
and get a computed optimal objective value of approximately 66.3333.
Every decomposition of I° meets the conditions of one of our cases and thus no
decomposition can have fewer than 67 simplices.

We summarize what we have learned about S(5).

Result 5.1. The minimum of the cardinalities of all decompositions of I’ 1is 67, i.e.

S(5) = 67.

Results concerning 7'(5)

Our basic linear programming for T'(5), from §3, has 237 variables, 44 equality con-
straints, and yields a computed integer-valued optimal solution with ob jective value 67.
Since triangulations with 67 simplices exist, this confirms that T(5) = 67.

Here, mainly for the sake of completeness, we characterize the inventories of configu-
ration classes (i.e. which classes and how many simplices from each class) that correspond
to minimum-cardinality triangulations of I° and describe all such triangulations. In a less
specific framework, Bhm has described the three main classes of these triangulations and
has found the numbers of the various types of simplices used [2]. Unexpectedly, the de-
scriptions of all inventories of configuration classes that correspond to minimum-cardinality
triangulations of I¢ become progressively simpler in dimensions 5, 6, and 7.

Table 5.1 lists the matrices representing all the configuration classes which have sim-

plices in minimum-cardinality triangulations of I3. We have labeled these with both the

letters A-N, which we will use in this section, and the corresponding numbers from the
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appendix. The volumes and exterior-facet tuples are given. For each vertex of each rep-
resentative simplex, we indicate whether the opposite facet (1) is an exterior facet, (2)
determines a central selfcomplementing base, or (3) determines a noncentral base. In this
last case, the number of the base class from the appendix and the half-space indicator (+
if the simplex is in the long half-space determined by facet) are given. None of the bases
of simplices in the classes of Table 5.1 is central and non-selfcomplementing,

We first describe all the integer-valued optimal solutions and then discuss the corre-
sponding triangulations. Welet 4, g,..., 2N be the variables in our linear programming
problem corresponding to the classes A, B,..., N. After some experimentation with ad-
ditional bounds on some of the variables, we see the integer-valued optimal solutions split
into three main types.

To learn about the first type, we solve the basic problem for T(5) with all 237 variables

and with the additional constraint x4 = 1. We compute the optimal solution
ta=1 =25, zc =15, zp =15, zg =15, zF = 16. (5.1)

By solving five additional problems where in each one we attempt to lower the number of
simplices from one of the classes by one or more, we learn that (5.1) is the unique integer-
valued optimal solution to our problem for T(5) with the additional constraint z4 = 1.
Changing the additional constraint to x4 > 2 gives an infeasible problem.

For the second type we adjoin the two constraints z4 = 0 and zg = 1. Some more
experimentation leads us to the conjecture that any integer-valued optimal solution to our

problem with these constraints satisfies

SL‘D:5, .TE=5, xp—a:M=5, :CG:1, $H=5,

=9, z5=20, 2x +2r +zp =25, 21 = 1.

This conjecture is verified by solving several problems—each is obtained by adjoining one
of the last nine equations, changing it to an inequality, and appropriately perturbing its
right-hand side by +1, and thereby producing a new problem which is either infeasible or
has an optimal objective value larger than 67.
Hence every integer-valued optimal solution to our problem for T(5) with the addi-
tional constraints z 4 = 0 and z¢ = 1 satisfies
tp =95, zp =5, 2Fr =5+s, 2g=1, 2y =5, z; =5,

(5.2)
$J=20, .TCK=20—2.S, :L'LZ]., Tp = S
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for some s € {0,1,...,10}. Using information displayed in Table 5.1, one can check that
any inventory conforming to (5.2) is an optimal solution to the problem for T(5) with the
additional constraints z4 = 0 and z¢g = 1. Changing the additional constraints to z4 = 0

and rG > 2 gives an infeasible problem.

To learn about the third type of optimal solution, we adjoin the constraints x4 = 0,
rg = 0, and xy = 2. (Replacing a2y = 2 by oy < 1 gives an optimal objective of
67.5 and replacing it with zy > 3 produces infeasibility.) Carrying on as for the second
type, we learn that any integer-valued optimal solution to our problem with the additional

constraints z4 =0, z¢g =0, zy = 2 satisfies

tc=2,2zp=5,zp=4, cp=5+s, zy=4, r; =5,
(5.3)

xy =20, 2k =20—2s, xpy =3, TN =2
for some s € {0,1,...,10} and the converse also holds.
Thus an integer-valued inventory of configuration classes is an optimal solution to the
linear programming problem for T(5) if and only if it satisfies (5.1), (5.2), or (5.3). We
have justified the first part of the following result.

Result 5.2 Any triangulation of I° with 67 simplices conforms to an inventory of config-
uration classes satisfying (5.1), (5.2), or (5.8). Conversely, to any such inventory, there

corresponds a triangulation conforming to this inventory.

We turn to the justification of the last part and, moreover, will sketch a description
of all minimum-cardinality triangulations of I°.

We first consider triangulations corresponding to (5.1). Each has has a single class-A
simplex, and without loss of generality, the only such triangulations we consider are those
which contain the class-A simplex represented by the first matrix from Table 5.1. Each of
these contains 16 corners and contains the corner at the vertex 11111 and thus contains the
corners at all 16 vertices with odd coordinate sums. Let E and O be the sets of vertices of
I’ with even and odd coordinate sums, respectively. Let Q5 = conv(E). With the help of
Table 5.1, the serious reader can show that, for any triangulation 7 under consideration,
the triangulation of ()5 provided by the noncorners of 7 can be obtained by coning off to
0 a triangulation of the complex O of facets of Qs opposite 0. We pursue this point of
view to describe all triangulations corresponding to (5.1).

For: € {1,2,...,5} and j € {0,1}, let G;; = conv{v € E:v; = j}. For v € O, let

F, be the interior facet of the corner of I®° at v. The complex C of all facets of Q5 consists
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of the 10 G;;’s and the 16 F,’s, and O consists of the 5 G;1’s and the 11 F,’s for v’s with

coordinate sums in {3,5}.

Each G; is a regular 4-crosspolytope. For definiteness we discuss Gi1.
Gh1 = conv{11110,11101,11011, 10111, 11000, 10100, 10010, 10001}.

Two vertices of Gy are opposite if the midpoint of the line segment joining them is the
center of G11, (1, 0.5, 0.5, 0.5, 0.5). We leave it to the reader to show that, without extra
vertices, every triangulation of G1; consists of 8 simplices. Moreover a collection of 8 sets
of the form conv(V'), where each V is a set of 5 vertices of G11, is a triangulation of Gy, if
and only if each of the 8 sets of vertices contains a common pair of opposite vertices and
contains no other pair of opposite vertices.

Let S be the simplex conv{o;,02,v1,v2,v3,0}, with {o1,02,v1,v2,v3 } contained in
(1, where 01 and oy are a pair of opposite vertices of G;; and v1, V2, v3 are selected, one
each, from the other 3 pairs of opposite vertices. Then § is a class-B simplex, (respectively,
C', E, D) if the coordinate sums of v, vy, and v3 are all 4’s (respectively, two 4’s and a
2, a 4 and two 2’s, all 2’s). Thus any triangulation of G;; coned off to 0, contains one
B-simplex, three simplices from each of the classes C and E, and one D-simplex.

Let 54 be the class-A simplex described by the first matrix of Table 5.1. Any trian-
gulation 7 under consideration is such that across each of the five facets of S4 containing
0 is a class-B simplex of 7 in some G;;. For any facet F of S4 containing 0, there are 4
possible choices for the class-B simplex of 7 adjacent to S4 across F. For example, the
set of vertices v of I°, such that replacing the first vertex of S4 by v creates a class-B
simplex, is {11000, 10100,10010,10001}. If S is a class- B simplex sharing the facet of S4
obtained by omitting the i** vertex, then the facet of S% opposite 0 is in Gy;.

Using our earlier description of triangulations of the G;;’s, one can easily check that
any choice of triangulations for all the G;’s gives a triangulation of O (the other 11
polytopes of O are simplices), and thus, by coning off to 0 and adjoining corners, gives a
unique triangulation of I°. A triangulation of Gy, is uniquely determined by selecting a
vertex v of G;; with coordinate sum 2 which is to be one member of the pair of opposite
vertices common to all simplices in the triangulation of Gj;. (In this case, conv(G; U {v}),
where G; is the facet of S4 opposite the i** vertex, is a class-B simplex adjacent to S4.)
Thus a 5 x 5 {0,1}-matrix with 1’s on the diagonal and common row sums 2 uniquely
determines triangulations of G;;-G51 and hence uniquely determines a triangulation of

I5. Let M be the set of 1024 such matrices. We want to describe all essentially different
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triangulations of I® which arise by coning off triangulations of O to 0. We call two such
triangulations 7, and 7; equivalent if there is a permutation matrix P such that any 6 x 5
matrix S represents a simplex in 7; if and only if SP represents a simplex in 7. With
some effort the reader can show that the 5 x 5 matrices M and N generate equivalent
triangulations if and only if there is a permutation matrix P such that PTMP = N , and
we note that this is a equivalence relation in M. Then, with some more effort, the reader
can check that Table 5.2 lists matrices which generate canonical representatives of the 13

equivalence classes in M.

11000 110007 110007110100 (11000
11000 11000 11000 11000 11000
10100 10100 10100 01100 10100
10010 10010 10010 10010 01010
L1 000 14 010014 Lo0101]J L10001 00101
M, M, M, M, M
r1 10007 110007 1110007 1711000 rt11000
01010 11000 11000 01100 01100
10100 10100 00110 00110 10100
10010 00110 00110 10010 10010
L0100 1 000114 LOO1O01I4J LTOO0OO1 00011
M M- My My Mo
11000 110007 11000
11000 01100 11000
10100 00110 00110
00110 00011 00011
00101 L1000 14 00101
My, My, M3

Table 5.2. Matrices Generating Triangulations Corresponding to (5.1)

We record our progress.

Result. The matrices of Table 5.2 represent simplices which generate the 18 equivalence

classes of triangulations of I° conforming to the inventory (5.1).

The method of convex enlargements, described in §2, can be used to produce some of
these triangulations. As mentioned in §3, any simplex in Qs has volume m /5 for some even
integer m and also from §2 we have m € {2,4}. From earlier work [2, 5, 11] or our computer

generated information about dimension-5 configuration classes, among all configuration
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classes whose simplices have volume larger than 2 /5!, only class A has simplices in Q5.
And any triangulation can have at most one of these since any class-A simplex has c in its
interior. Hence the method of convex enlargements applied to the volume-4 /5! simplex S 4
in the volume-104/5! polytope Q5 with the vertices E in any order yields a triangulation
of ()5 with 51 simplices and thus extends to a triangulation of I° with 67 simplices. One
casily sees that the triangulations which arise in this manner are those determined by M;
for7 € {1,2,3,5,7,8,11}.

The triangulations corresponding to the solution (5.2) are easier to describe. Without
loss of generality, the only such triangulations we consider are those whose single class-G
simplex is S, the one represented by the appropriate matrix from Table 5.1. Then for
5 =0 (resp. s = 10), with Table 5.1 and some effort, one can show that there is a unique
triangulation 7 (710) of I° with inventory (5.2).

In 7y there are 10 pairs of adjacent simplices, (Sis,S%), from classes M and F.
As described by Bohm in a different framework [2], for each pair (Sis, S%), there is a
corresponding pair of adjacent class-K simplices from 7y, (S}‘,S_};), such that Si, U St =
St S—}\ Any inventory (5.2) with s ¢ {0,10} corresponds to triangulations which use s
of the (S, SL)-pairs and 10 — s of the (S}'(,S'_}'(.)—pairs, and only to such triangulations.

Briefly postponing additional comments on these triangulations, we turn to triangu-
lations corresponding to (5.3). Without loss of generality, the only such triangulations we
consider contain the class-N simplex, Sy, which is represented by the appropriate matrix
from Table 5.1. From this table, one can see that any triangulation under consideration
has its other class-N simplex adjacent to Sx across a central hyperplane. There are two
possibilities: S}, and S% obtained by replacing the vertex 11010 of Sy by 00111 and 01110
respectively. The complex {Sy, Sy} is not the image of {Sy, 5%} under any sequence of

mappings of the form (2.3).

The situation here is similar to that just described. For s = 0 (resp. s = 10) there
1s a unique triangulation Ry (resp. Rig) of I° with inventory (5.3) which contains the
complex {Sx, Sy} and similarly there are Sy and Sy containing {Sy, S2}. As above, the
inventories (5.3) with s ¢ {0,10} also correspond to triangulations.

Each of Ry, Sy, and 7y is a middle-cut triangulation for the cut > z; = 3.

Using a program which carries out the process of convex enlargements, one easily

shows that this method can produce Rqg, S10, and Ty9. For Rip and Syo, the starting

simplex 1s Sy and for Tig it is Sg. In all three cases, one uses the ordering of the vertices
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such that the coordinate sums appear in the order 0, 3, 5,1, 4, 2, and vertices with the
same sum are in lexicographical order except that for Ry (resp. S10) the first sum-3 vertex
should be 00111 (resp. 01110).

Dimension 5 is the smallest d for which some minimum-cardinality triangulation of
I fails to induce minimum-cardinality triangulations on all the facets of I¢. All the

triangulations corresponding to (5.2) and (5.3) are examples.

Results concerning 7T¢(5)

Our problem for T°(5) has 10 variables, 11 constraints, and has the unique optimal
solution (5.1) with an objective value of 67. We have just discussed the corresponding

triangulations. This confirms T°(5) = 67 [5, 11].
Dimension 6

Results concerning S(6)

The problem for S(6) has 9890 variables and 60 constraints. We obtained a com-
puted optimal objective value of approximately 269.24 and we conclude S (6) > 270. This

improves the best lower bound of 259 given previously [12].

Results concerning T(6)

Our linear programming problem for T(6) has 1154 constraints in 9890 variables.
Using the software package CPLEX? with the dual simplex method, this problem was
solved using 221 iterations and gave an integer-valued optimal solution with objective

value of 308. Since a triangulation of I® with 308 simplices exists [13], we have achieved

one of our major objectives.

Result 5.3. The minimum of the cardinalities of all triangulations of I% 1s 308, i.e.
7(6) = 308.

We will characterize the inventories of configuration classes (i.e. which classes and
how many simplices of each class) for all triangulations of I® with 308 simplices. We learn
which configuration classes are involved by experimenting with additional constraints which
modify inventories from previous optimal solutions. In addition to the configuration classes
A-L previously defined [13], we need the configuration classes M, N, and O represented

by the simplices which are in turn represented by the following matrices:

* CPLEX is a registered trademark of CPLEX Optimization, Inc.
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01100 17 r01100 17 (100110'
000111 011010 111110
001011 001011 110100
110010 110010 110010
001110 001110 110110
010110 010110 010110
111111} (111111 (111111
vol 3/6! vol 3/6! vol 1/6!

M N 0

We let w4,zB,...,20 be the variables in our problem corresponding to the classes

A B,...,0.

One can check that each of these variables represents only one configuration class.
This can be carried out for a particular variable z as follows. For the simplex $ used to
define a configuration class corresponding to x, find a base B of S which is not central
and selfcomplementing. For each vertex v of I* such that the simplex T' = conv(B U {v})
generates a configuration class represented by z, check that S and T are equivalent. Here
S and T are represented by the same variable if they have the same volume, the same
exterior-facet tuple, and, relative to some orderings of the vertices of S and T, the same
sequence of base classes (except for possible discrepancies in central selfcomplementing
base classes and base classes of bases contained in facets of T 4), the same sequence of side
indicators, and the same sequence of signs for the barycentric coordinates of ¢ relative to
the vertices.

We claim that any integer-valued optimal solution to our problem for T(6) satisfies
zta=2,2p=12, 2¢4+2p =30, cp—2p =0, zp —zp =0,
tp—xG =0, g =48, 21 =24, 2; =60, vx —z1 =0,
Tp taxpy =24, 2z2p +axny =48, 2rx + zo = 60.

These equations were conjectured by experimenting with additional constraints. They
are justified by solving several problems—each is obtained by adjoining one of these con-
straints, changing it to an inequality, and perturbing its right-hand side by +1, giving a
new problem which is either infeasible or has an optimal objective value larger than 308.
Hence every all-integer optimal solution to our problem satisfies

ra=2,2p=12, 2¢ =30—t, zp=ap=zp =2 =t, xg =48, z; = 24,

(5.4)
ry; =00, ax =z =5, ey =24 —t, any =48 — 2, 20 = 60 — 2s
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for some s € {0,1,2,...,30} and some t € {0,1,2, ... ,24}. Conversely, using information
about the configuration classes A-O, not all of which has been displayed in this paper,
one can check that any such inventory gives an optimal solution. It turns out that not all

these optimal solutions correspond to triangulations; ¢+ must be further restricted.

Result. Any triangulation of I® with 308 simplices yields an inventory of configuration
classes satisfying (5.4) for some s € {0,1,2,...,30} and some t € {0,2,4,...,24}. Con-
versely, to any such inventory, there corresponds a triangulation of I® which conforms to

this inventory.

Justification. The inventory of configuration classes for the previously published tri-
angulation of I° into 308 simplices [13] satisfies (5.4) with s = 30 and t = 24. We use
this triangulation as a starting point and discuss the possibility of modifying it to yield
triangulations with other inventories.

The parameter s, which is the number of corners, is treated first. The union of a
class-L simplex and an adjacent class-K simplex is a polytope which is also the union
of two adjacent class-O simplices. Thus for s; and s, in {0,1,... ,30}, any triangulation
satisfying (5.4) with s = s; and some ¢ can be modified, two simplices at a time, to be a
triangulation satisfying (5.4) with s = sy and the same t.

The treatment of the parameter ¢ is more complicated. We will first show that no
triangulation satisfies (5.4) with ¢ odd. Let B; and B, be the bases represented by the

following matrices:

11100 0" 1111007
110100 110010
110010 110001
101100 and 101010
101001 100101
(010101 (01100 1]
M1 M2

The bases By and By are central and are contained in the hyperplanes Z?;l z; = 3 and
T+ T2 + 23 + w4 + 225 + 206 = 4, respectively. Of the configuration classes A-O, only
D and E have simplices with bases in [By] U [B,]. Each of the base classes [B;] and [B;]
is represented exactly once in each simplex from class D or E. Moreover, for each of the
two base classes, the side indicator of a class-D simplex for the facet generated by a base

in this class is opposite that of a class-E simplex. Suppose SL is a class-D simplex. Then
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Sb 1s adjacent to some class-E simplex S ]13 across a class-[B;] base and one can check that
S is uniquely determined. Similarly S% uniquely determines a class-D simplex S% which
1s adjacent across a base from class [B;]. Then S% in turn uniquely determines a class-F
simplex S% across a base from class [B;]. It turns out that S} and SZ are adjacent across
a base of class [By]. It follows that if T is a triangulation of I® with 308 simplices which
contains at least one of S}, S%, Sk, S%, then T contains all four of these. We conclude
that no inventory for a triangulation of I® with 308 simplices can be described by (5.4)

with t odd.

The remaining goal is to show that any inventory of configuration classes described
by (5.4) with ¢ even corresponds to a triangulation. Suppose 7 is a minimum-cardinality
triangulation with parameters s and t with ¢ > 2. We will describe 18 simplices to be
removed from 7 and 18 to be inserted so that 7 remains a triangulation and has parameters

s and ¢ — 2. This will be sufficient to accomplish our goal.

The triangulation 7 must contain a quadruple S}, S%, S}, 5%, as described in the
penultimate paragraph. Each of ST, S%, S1., 52 has exactly one facet with fundamental
normal 111222. Across these four facets are the 7-simplices Sk, S%, SE, SZ, respectively,
with S7. and 5% in class F and S} and S% in class G. Each of Sbh, Sh, Sk, S, Sk, 5% has
exactly one facet with fundamental normal 111112 and each of S¢ and SZ has two such
facets. Across these 10 facets are the 7-simplices S}, 5%, Sk, S%, S%, S, SY, 5%, 83,
59, respectively, in the configuration classes suggested by this labeling. We have identified
the 18 simplices to be removed and we turn to the problem of defining the simplices to

replace them.

We first let S%, and S8, be the class-M simplices adjacent to the same class-B simplices
as are Sp and S%,. Bach of S, and S3, has two facets with fundamental normal 111222,
Across each of these facets there is exactly one adjacent simplex of volume 3/6! and it’s
a class-N simplex. This distinguishes four simplices and we denote them by Se., 8%, S,
S4,. Each of these has one facet not shared with S¢, or S, which has fundamental normal
111222. Across each of these facets is exactly one volume-3/6! simplex. This distinguishes
only two simplices, S& and S2, and these are in class C. We may assume S¢& is adjacent
to S% and S% while S¢ is adjacent to S$; and S%. Now each of 5S4, 8%, 5%, SY,, S, S
has exactly one facet with fundamental normal 111112 while each of S& and S& has two
such facets. For each of these facets, there is exactly one simplex of volume 2/6! which

is adjacent to the corresponding simplex across this facet. We obtain Se, S8 St S'?{,
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S, S}‘f], se, S8, S9, S%, respectively, in the classes suggested by this notation. These 18
simplices fill the cavity exactly with a facet to facet match across the part of the boundary

in the interior of the cube.

0

The minimum-cardinality triangulations of I® are middle-cut triangulations. Let 7
be a triangulation corresponding to (5.4) with parameters s and ¢. Then 7 contains the
corners at s of the 30 vertices of I°® with coordinate sums 2 and 4. Using notation from §2,
suppose the corners of A(6,3), which are in 7, are removed and the resulting set is closed

to form A(6,3). Let B(6,3) be defined similarly. Then 7 induces a triangulation on the

complex
C={F:Fisafacet of A(6,3) opposite 0} U{F : F is a facet of B(6,3) opposite ¢ }.

If s = 0 (respectively 30), 7 is similar to the dimension-6 instances of the middle-cut
creations of Sallee (Bhm) with 324 simplices—16 more than ours. A key difference is that
T induces a triangulation of I? N H(6,3) with 58 simplices while the analogous number
for Sallee and Bohm is 66. Doubling this difference for the two sides of H (6,3) gives the
difference of 16.

Triangulations of I® with 308 simplices can also be created using the method of convex
enlargements. For example, a triangulation corresponding to the inventory (5.4) with
s = 30 and t = 0 is generated by starting with the simplex S4 and using the vertices of I®
in the following order: the vertices of Se, 111111, the complements of the first 6 vertices
of §4, 011010, 010101, 101100, 100011, 010011, 011100, 101010, 100101, and then vertices
with coordinate sums 5, 1, 4, 2 respectively, using the lexicographical order within each

group with constant sum.

Results concerning T°(6)

The problem for T°(6) has 126 variables and 52 constraints. We obtained a unique
computed integer-valued optimal solution with an objective value of 324. This confirms
T°(6) > 324 [11] and, as previously announced [11], we have T°(6) = 324. The optimal
solution agrees with the unique inventory of configuration classes for minimum-cardinality

corner-slicing triangulations of I° given earlier [11]. As noted before [11], the method of

convex enlargements can be used to produce such triangulations.
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Dimension 7

Results concerning 7'(7)

Our linear programming problem for T(7) is rather large; it has 103706 constraints
in 1456318 variables. We were not able to solve this problem. We will describe a smaller
problem, specific to dimension 7, which is good enough for our purposes. As for the larger
problem, and for the same reasons, the optimal objective value of the smaller problem
provides a lower bound on the cardinalities of triangulations of I7. Among its optimal
solutions are some yielding inventories of configuration classes corresponding to triangula-
tions of I” with 1493 simplices. This will allow us to conclude that T(7) = 1493. Again
we will characterize the inventories of configuration classes for all triangulations of I with
1493 simplices. From this we will see that no minimum-cardinality triangulation of I7
induces minimum-cardinality triangulations on all the facets.

This new smaller problem has constraints corresponding to a smaller family of base
classes. Using intuition based on experience with other problems and experimentation
with the current problem, we select those base classes which correspond to constraints we
think might affect the optimal solution. Among all base classes [B] where B is neither
central and selfcomplementing nor on a facet of I”, we let By be the set of base classes
containing bases from any of the following simplices:

{(a) simplices of volume at least 10/7!,

(b) simplices with exterior-facet tuple (1,0,0,0,0) and volume k/7! for k € {6, 7,8,9},
(c) simplices with exterior-facet tuple (2,2,0,0,0) and volume k/7! for k € {4, 5},

(d) simplices with exterior-facet tuple (3,6,6,0,0) and volume 3/7!,

(c) simplices with exterior-facet tuple (2,12,24,24,0) and volume 2/7!,

(f) simplices with at least 5 exterior facets and volume 1/7!.

There are 9234 base classes in B7 and our new linear programming problem has one
constraint for each of these. As before, we will have 6 constraints based on volume consid-
erations.

If the same variables were used as in our basic problem for T(7), then the majority
would not enter into the constraints corresponding to base classes, and, within this ma-
jority, variables with common volume-exterior-facet-tuple pair would be involved in the
problem in the same way. We take advantage of these facts to significantly reduce the
number of variables. For the new smaller problem, each variable is either a variable of

the basic dimension 7 problem or a sum of such variables. More explicitly, if a simplex S
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in I” has a facet which determines a base in Bz, then the variable of the larger problem
representing the configuration class [S] is a variable of the smaller problem. In this way
we get 421487 variables. The additional variables of the smaller problem arise by lumping
together variables of the larger problem (other than the 421487 already used) with common
volume-exterior-facet-tuple pairs. There are 1378 volume-exterior-facet-tuple pairs. For
each of the 1329 of these not included in the 49 pairs described implicitly in (a)—(f) above,
we have a variable which represents all the corresponding configuration classes. Thus we
have 422816 variables.

The objective function to be minimized is the sum of the 422816 nonnegative variables.
There are 9234 equality constraints in 421487 variables corresponding to the base classes
in B7 and there are six constraints, in all 422816 variables, based on volume considerations.

Again using CPLEX’s dual simplex implementation we obtained an integer-valued
optimal solution to this problem using 3876 iterations. The optimal objective value is
1493 which means that no triangulation of I” has fewer than 1493 simplices. In order to
make sense of the values of the variables in the optimal solutions we introduce the relevant
configuration classes in Table 5.3. In each case we give a matrix representing a simplex
in the class and we append the volume and exterior-facet tuple. For the opposite facet of

cach vertex of each representative simplex, we give one of the following:

(1) an indication that the facet is an exterior facet,
(2) the number of the base class and half-space indicator in case the base is noncentral,

(3) the number of the base class in parentheses in case the base is cental and selfcomple-

menting.

For these classes, none of the bases is central and non-selfcomplementing,.

111000071+ r000111171- r000111172-
1001100 14 10011002+ 0110011|2-
10000111+ 100001 1(2+ 1000011|3+
01010101+ 01010102+ 01010103+
0100101]| 1+ 010010124 01001013+
0011001} 1+ 0011001]2+ 00110013+
00101101+ 00101102+ 00101103+
111111111+ L11 1111112+ 111111113+

vol 32/7! vol 24 /7! vol 16/7!

eft (0,0,0,0,0) eft (0,0,0,0,0) eft (0,0,0,0,0)

A B C
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00101117 ef 0111111710~ 10000007 ef
0110110 ef 1110111]|10- 0100000 ef
0110111]10- 0010111 ef 00100007 ef
0110101 ef 0110110 ef 0001000 ef
0100111 ef 0110101 ef 0000100 ef
0110011 ef 0100111 ef 0000010 ef
0111111](17) 0110011]( ef 000000 1| ef
L1 1111111 ef 1111111011+ 100000001 11-
vol 1/7! vol 1/7! vol 1/7!
eft (6,31,135,480,1320)  eft (5,20,60,120,120) eft (7, 42,210,840, 2520)
M N )

Table 5.3 The Configuration Classes for Minimum-Cardinality Triangulations of I”

Let z4,...,20 be the variables in our problem coresponding to the classes A—O. One
can check that each of these variables represents only one configuration class. As in the
case of dimensions § and 6, by solving many linear programming problems, we learn that

every integer-valued optimal solution to our 422816-variable problem satisfies

— 1, rp = 8, o = 28, rp = 168, TE = 336, Tp = 224,
rg =224, 2y =56, 1 =448 -2r, zy=r, zx =1 — 25, (5.5)

xp =8, M =8—2t, ay=1t, xo =1

for some integers r, s, and ¢ with r € {0,1,2,...,224}, s € {0,1,2,...,[r/2]}, and
t € {0,1,2,...,[s/2]}. Conversely, using information about the configuration classes
I,J,...,0, one easily checks that any such inventory yields an optimal solution.

It turns out that not all these optimal solutions correspond to triangulations; r and s

must be further restricted

Result 5.4. Any triangulation of I" with 1493 simplices yields an inventory of con-
figuration classes satisfying (5.5) with r € {0,4,8,...,224}, s € {0,2,4,...,7/2}, and
t€{0,1,2,...,5/2}. Conversely, to any such inventory, there corresponds o triangulation

of I" conforming to this inventory.

Justification. We first indicate how to construct a triangulation of I7 which corresponds
to the inventory (5.5) with r = s =t = 0. (This triangulation is relatively simple and can
be formed and checked with only moderate computer involvement. The main tool would be
a program which finds the fundamental normals of bases.) Start with any class-A simplex.

Adjacent to it are 8 uniquely determined class-B simplices. Adjacent to these, across all

40



facets not shared with the class-A simplices, are 28 uniquely determined class-C simplices.
(Each of the 28 is adjacent to two class-B simplices.) Each class-C simplices has 6 facets
generated by a base from base class 3-—a class-3 facet, for short. Across each of the class-3
tacets of our 28 class-C' simplices is a unique class-D simplex and altogether this yields 168
class-D simplices. Each class-D simplex has four class-4 facets and across each of these is
exactly one class-E simplex. Our class-D simplices give us 336 class-E simplices in this
manner. Each class-E simplex has two class-5 facets and two class-6 facets. Across each
class-5 facet is exactly one class-F simplex and across each class-6 facet is a unique class-G
simplex. Our class-E simplices yield 224 class-F simplices and 224 class-G simplices in
this manner. Each class-F simplex has one class-7 facet and across this facet is exactly one
class-H simplex. We obtain 56 class-H simplices from our class-F' simplices. Each class-F
simplex and each class-G simplex has a class-8 facet and across this facet is a unique class-I
simplex. We obtain a total of 448 class-I simplices from our simplices of classes F and G.

One can use Theorem 2.3 of [11] to verify that the collection 7 of 1493 simplices
we have described is a triangulation. To carry this out, a few simple computer programs
would be needed. We also note that 7 is uniquely determined by the class-A simplex with
which we started.

We have several comments before we consider triangulations conforming to inventories
(5.5) with some nonzero parameter values.

The following two facts can be established by routine checking. For the first, the

reader probably needs a program which finds base class numbers of bases.

(1) If 51 is a simplex from class I (K, M, respectively) and F is a facet of S; whose
vertices give a base of class 13 (15, 17), then there is a unique simplex S, from class
I (K, M) such that S; and S are adjacent with common facet F.

(2) The union of two adjacent simplices from class I (K, M, respectively) can be written
uniquely as the union of a simplex from class J and a simplex from class K (simplices

from classes L and M, simplices from classes N and O).

In the case of class-I simplices in (1), we give a rule for finding Sy from S;. Suppose
V' is a matrix whose rows are the vertices of S1 and row i gives the vertex opposite the
class-13 facet, F. Let p be the column of V such that the entry in position (3, p) appears
in exactly one other row of column p, say row r. Then let ¢ be the column such that the
entry in the (r, ¢) position does not appear elsewhere in column ¢. Then the j** coordinate

of the vertex of S, opposite F is the same as the majority of the entries in column j of V
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with the exception that for column ¢ we use the minority instead of the majority.

We are in a position to see why, for an inventory (5.5) which corresponds to a trian-
gulation 7, the parameter r must be an integer multiple of 4. Let S; be a class-I simplex
mn 7. From information displayed in Table 5.3, S; must be adjacent to three other class-I
simplices in 7. Using the above pivot rule, one can easily find these three simplices and
then continue as long as possible finding new class-I simplices in 7 adjacent to those al-
ready found. This process terminates upon obtaining 8 simplices. If we form the graph
with these 8 simplices as nodes and having { S;, S;} as an arc if S; and S; are adjacent,
then the graph is bipartite and each node has degree 3. From the uniqueness mentioned
in (1) above and the definition of a configuration class, any starting class-I simplex in T
yields the same structure. Hence the number of class-I simplices in 7 is an integer multiple

of 8 and r is a multiple of 4.

The situation is somewhat similar for the K-simplices of a minimum-cardinality trian-
gulation 7. From Table 5.3, each class-K simplex of 7 is adjacent to exactly two others.
Starting with a K-simplex of T leads to a complex of four class- K simplices in 7 which, in

graph theoretic language, is a cycle. Thus the parameter s for the inventory corresponding

to 7T 1s even.

Let C; be a complex of 8 class-I simplices as just described. We let the nodes be
S}1,5%,...,5% and assume the adjacent pairs of simplices are {51,523, {S},S1}, {5}, 8¢},
157,57}, {51,513}, {51, 51}, {51, 51}, {51, 5%}, {51, S8}, {81, 51}, {57,583, {S7, 5%},
We will describe how C; can be modified successively to yield three other complexes which

could replace C; in a triangulation so that the result continues to be a triangulation.

The first of these is the complex C; formed by replacing, as in (2), the four pairs of ad-
jacent simplices {S7,S57}, ..., {S7, 5%} with the pairs {S85,5%}, ..., {S%, 5%} of adjacent
simplices in the configuration classes suggested by the notation. The adjacent pairs of sim-
blices for Cy are (S}, 53}, (S}, 53}, {52, 54, {53, 54}, {Sk, %}, {5k, 5%}, (5%, 5%,
{5k Stk 487, Sk}, {85, 8%} {55, 5k}, {55, Sk -

Then the complex C is formed from C; by replacing the pairs {S%., 5%} and {S%, 5%}
with {S7.S},} and {S},S%} so that neither replacement affects the union. The adjacent
pairs of simplices for C3 are {S}, S%}, {53,5%}, {5%, 5%}, {S3,54}, {SY, 51}, {82,511,
(53,51}, 53,52}, (S}, S3}, (S}, Sk, {S2.5%}, (S, 5%, ).

If in C3 the pair {S},, S%,} is replaced by {S%;, SL} with the same union, we obtain the
complex C4 whose adjacent pairs of simplices are {S}, $%}, {SY, 5%}, {53,541, {S3, 541,
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15551}, {85, 51}, {85, 81}, {55, 52}, {S1, 51}, {S}. Sk}, {52, S}, {54, Sh}.
Finally we consider triangulations whose inventories (5.5) have some nonzero param-
cter values. Let r € {0,4,8,...,224}, s € {0,2,4,...,r/2}, and t € {1,2,...,5/2}. The
triangulation 7o has 56 complexes of class-I simplices with the same adjacency structure
as C;. Suppose we modify 7y by changing r/4 of these complexes to obtain: (r —2s)/4
complexes with the same structure as Ca, (s — 2t)/2 complexes similar to C3, and ¢ com-
plexes similar to C4. The result is a triangulation whose inventory satisfies (5.5) with the

prescribed parameter values.

In view of this result, we have achieved another major objective.

Result 5.5. The minimum of the cardinalities of all triangulations of I7 is 1493, i.e,
T(7) = 1493.

We were not able to generate any minimum-cardinality triangulation of I” using any
of the general methods of §2.

One might hope that a minimum-cardinality triangulation of I¢ could somehow be
formed from minimum-cardinality triangulations of all the facets of I¢. This is true for
d < 6 But every minimum-cardinality triangulation of I” has 4424 = (14)(316) exterior
facets while each minimum-cardinality triangulation of I8 has 308 simplices. Thus we have

the following result.

Remark No minimum-cardinality triangulation of I' induces minimum-cardinality trian-

gulations on all the facets.
Results concerning 7°(7)

Our problem for T(7) is relatively small; it has 1653 constraints in 8303 variables.
Our computed optimal objective value is 1820.00 which implies 7°(7) > 1820. We pro-
duced several integer-valued optimal solutions but none with fewer than 42 variables taking
nonzero values. By learning from a few failures, we found one of our computed optimal
solutions for which we were able to construct a corresponding corner-slicing triangulation

of I with 1820 simplices. We summarize our claims.

Result 5.6. The minimum of the cardinalities of all corner-slicing triangulations of I7 is

1820, v.e. T°(7) = 1820.
Justification. Here we give a concise description of the formation of a corner-slicing
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triangulation, 7, with 1820 simplices. The construction of such a triangulation by the

reader would require a computer and significant effort.

The triangulation contains the corners at all the 64 vertices of I’ with odd coordinate
sums. The remainder of the simplices have only vertices with even coordinate sums and
come from 42 configuration classes. Table 5.4 gives matrices representing simplices in
these classes. For each class the volume of the simplices and the number of simplices
in T are given. For each vertex of each representative simplex, we indicate whether the
opposite facet (1) is an exterior facet, (2) determines a central selfcomplementing base,
or (3) determines either a noncentral base or a central non-selfcomplementing base. In

this last case, we give a number for the base class and the appropriate half-space or side

indicator.

111001071 000111171+ 000111174+
1101100 1- 110110601 4-— 11011003+
10111002+ 10111060]6+ 10111007+
1000001]f1- 10000011}3- 01111003+
01000012+ 01000017+ 0100001]|8+
0001010](1- 00010101+ 0001010|4+
0000110][2+ 0000110(2+ 0000110|6+
L111101112+ 111101145+ L111101119+

vol. 10/7! vol. 10/7! vol. 10/7!

num. req. 4 num. req. 8 num. req. 4

A B C

1110010714+ 0 001111714— 0001111713+
110110010+ 1101100116+ 110110021+
1100011 2— 1100011| 6- 101110021+
1000001| 12+ 1000001 |17+ 100000 1j18+
0100001/ 12+ 010000117+ 1001110 7—
0001010] 13- 0001010]| 14— 0001010] 13+
000011011+ 000011015+ 000011011+
11111011115+ 11111011 ef 1111011120+
vol. 8/7! vol. 8/7! vol. 8/7!

num. req. 24 num. req. 12 num. req. 12

D E F

44



+ 4+ +++ 4+
RERERBR
_.|_0001000_
— OO OO O
oA - O O
L B I B e B B e S
SO A~ OO OO
O r— O - = O OO
_01100000_
+ 4+ |+ ++
SYPERRR
4-10011000_
— O OO O A - O
o= OO D
o OO O
SO —H OO OO
O+ OO O OO
O = - O
EH ]
L+ ++ | L+
SANNeX TR
“10000001“
—_ 0 O O e o
.o O~ O
— o e o = O
O H D
O O A~ OO
O H A OO OO A
i i

vol. 6/T7!
num. req. 4

vol. 6/7!

num. req. 8

vol. 6/7!
num. req. 4

I

H

G

[+ 1 1+ 1 + 4+
SRR R
n_UnUlO_I_OO_I__
—\ O = = O o
O1 O - OO0 O
O OO O
— O OO oo O
o O O
OO OO
L i
+ 4+ 1+ 4+ +
RS R S
__I._O_I.Oloo_l__
—N O = = O
= O OO O
oA O H O O
O O OO OO
OO O
_01100001

]
o + | ++ 4+ + |
TRIIISS S
cCorHHoOoOo
SO —-H OO O
O —H O OO o o O
O H O OO OO
— OO o oo
— O O O
N O OO
1 ]

<+
-— 2
~ .
S~ o
© g
3
> 5
&

<+

-— 2
~ .
~— m
© -
EN:
3
&

Ne]

-— 3
I~ .
~— a.qu..
© ot
El
-
—

L

bl ey |+ +
1D O H NN
<t Mo < < <t N
 — 1
— - O OO o~
o O v o,
“—ocorHoo ol o
100101014 m
01000001."|m..m.
O o OO =)
00100001_ H
L
Teellddd
<t <+ N HN
__|_0010000_ ~
oo oA Ao __
111011014 m
001000001mm
oOH OO OO =
S H - -0 OO =
L ]
T RS LD b
+FF N H®
— 1
OO 4O OO a1
- OO~ O, b=
crocoo—~ ol &
OIOOOOOOQ e
—oCcocoCcoCP 4
11101101VM
o O O =
L |

0

45



[ +++, +

O O == © O W

H — N <H <H <H <#

| — 1

S = O O -

e HO O — -, &

coocococo o &

000001014mR

10000001dm.

10101001vu

—HOoOH 1o OO =

L ]

F o+ 0o 0o+ | +

0 Vo B B0

™ o <H — "

| 1

OO A O O ©

—_O OO o _, ™

01000000”0.1

010001114%@

10000001dm.

11101011VU

—_— - H O O~ a

L ]

'+ 4+ | 1 | o +

© 101 0N © O b~

< <~ N < ™

| 1

—o oo oo o a

— OO =, T

—HH A Ao ool &

00110001dm.

cCHoHOo OO~ "~ 3
o]

S OO -

L 1

I+ | o | ++
BIBEYBES
__I__I_111100_I_.
— e = O
— OO OO o O
SO O OO O
oo —HOOoO A
OO0 "= -HHOoOOoO
.0010000_1_
+ 11+ ++ e
SEREBRY
__I_1111001|__
o O O
—. O OO o O
—_ OO oo O
o oo oo o
OO —HO OO —
00110001_
L
dodddd
T <H N MO M
oo oo o —
— O o o o
_—— O~ O O
— o O e e e O
jev BN el en B an Bl an Bl en Bl an B 5B
O = = — OO O
S —HH O OO
L J

vol. 2/7!
num. req. 12

vol. 4/T!

num. req. 12

vol. 4/7!
num. req. 12

U

T

+ o o+ + 4+ |
D B Bz O
Yol 10 <t 10 oM
“.10101011._ o~
—H O H A O A=, D=
11010000”%
000000011%. m
SO =
oCHA OO0 0 C A
L |
B b ob bk BT b

O 10 0 N I\
__I_OOOOOOO_ ©
— oo 0O A - —-o_, -
11111011”0...
111111012 m
00111000..“ m
OO H 4 OO0 O =
0110100ﬂw =
i
oo L+ 4+ + |
TESR]BIBBS
A_UOlOlOOO_ ~
O A A A~ O _, I~
01000010”%
01000100A &
100000001%. m
— o e - = OO ]
e — O OO o =
L i

X

46



$ildudeg
_011110011_
o = O o
oo ococ o+ o
S OO OCO O
— OO H O OO
—N O A O O
__|.010000_l_
15tiguds
_001010141_
O o O
O -H OO oo O
—_ O A O
S oo oCco oo
— o e o e O e
— OO O
L J
REE R
,“.000000_1_
— O = o o
— o= = = O D
o o = O
oo OO0 oo -
O+ =~ O O O —
S —H O DO
L ]

<
-— 2
~ .
S~ m
™ -
El:
> 3

a

o
-— 7
~ .
~ ot
[AN] (]

=1
ERE:
> 3

=

o
-— 1
T~ .
~— ‘Dlrv\l
™ -
ERE:
"3

—

AA

shddvedd
__I__I._I_.I__I_001_
o - O
— O O OO o O
—N OO oo O
O OO —H OO O
QO = = O O
_001000011__
+ o o+, + | +
BESFYELS
__I.110101_I__
— o e O o
— OO — OO oo
— O O O o
O O OO oo
S o e O
_001000011_
+ 1 I+ +
HI=-I-OC OO 4 M
<H N M O 1D M <t
_0110100.1_
— o o e O e
OO O O - O
OO —H OO A
Ll o B en B ew Rl en B oo Rl an R o
— o o = OO
— O — OO oo
[l 1

vol. 2/7!
num. req. 36

vol. 4/7!

num. req. 36

vol. 4/7!
num. req. 24

DD

cc

BB

sldtisgd
M O O O <#
.ﬂv_I__I._I__I_OOO_
S OO O
oo Ccoo o —HO
COoO oo HOO
O O OO oo o
— O - O OO
10110001.__
i
T i TT E
M O O ©
_01001000_
OO A= O
oo oo O
SO o oo OO
— OO oo o oo
—H OO OO
1000000_1_
|
siiideed
_ﬂvllOlOOO_
— o O - O
SO oo oo — O
OO OO - OO
—N O O OO oo o
— O - O O
—\ o A OO OO
L J

N
'.7
P~ .
-~ T
a R
.IO” .
g

=]

<H
<H
-—
- .
~ g

. M
d .
> g

=

=]

<t

<t
—_ T
=L
~ Z
=1
s
> g
=

a

GG

FF

EE

47



11100107 ef
0000011]{48—
0000000] 66—
100000 1]64+
010000 1]|64+
0001010 ef
00001107 ef
L1100000J42-
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num. req. 72
HH
100101 1768-
1011011]|68—
1011100 ef
100000 1| ef
1011001](68-
0001010 ef
1001000]|68-
L1 1110111 ef
vol. 2/7!
num. req. 36
KK
11100107 ef
1101100 ef
1100011 ef
0100010]|67—
100001067
1100110}69-
000011070+
L1 10000 O0Jd csc
vol. 2/7!
num. req. 72
NN

11100107 ef
0000011}41+
1100011]41+
0100010]62-
10000101} 62-
0001010 ef
0000110 ef
L1100000J ef
vol. 2/7!
num. req. 72
II
00011117 ef
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1011100]|65+
0111100]65+
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0001010] ef
0000110 ef
(0001100127
vol. 2/7!
num. req. 48
LL
(00011117 ef
0011110/|65-
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011110070+
1111110/ ef
0001010 ef
0000110]( ef
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vol. 2/7!
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00

11100107 ef
1101100 ef
1100011]|68+
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0000110 ef
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num. req. 36
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vol. 2/T7!
num. req. 64
PP

Table 5.4 The Configuration Classes for the Corner-Slicing triangulation of I7

We turn to an explanation of how 7 can be formed. First we describe the formation
of a core complex of 4 class-A simplices, 8 class-B simplices, and 4 class-C simplices. One
casily shows that, for any class-A simplex, across any facet generated by a class-1 base (a
class-1 facet, for short), there is a unique adjacent class- B simplex and vice versa. Similarly

for any class-B simplex, across any class-3 or -4 facet, there is a unique class-C simplex
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and vice versa. We start with C = {S4} where S4 is the class-A simplex represented by
the first matrix of Table 5.4. Then we enlarge C by adjoining adjacent simplices from
classes A, B, and C as long as possible. The final C is the desired core complex.

In order to save space in the description to follow, we introduce some notation. For
example, A (2)= 16 D means that across every class-2 facet of each class-A simplex
therc is exactly one adjacent class-D simplex and using the class-A simplices in 7 we
obtain 16 class-D simplices for 7 in this manner. In some cases (e.g. the creation of the
class-L simplices from the class-D simplices) the same simplex is generated by more than
one facet.

The simplices in classes D-L are created as follows:

A(2)= 16 D B (2= 8D B(6)= 8 E C(6)=4E
B ()= 8 F C(1)=4F C@B8)=4G B (5)=8H
C(9)= 41 D (15)=> 24 J E (15)=12J E(1)= 24 K
D (12)= 24 L J(32)= T2 M

In the last case, easy identification of the class-M simplices may not be clear, and we
state a pivot rule which the reader can verify. (The reader constructing 7 would likely
invent similar rules for most of the rest of the classes to be constructed.)

Suppose a matrix M reprsents a class-J simplex Sy and for S; a class-32 facet, F,
is opposite the vertex represented by the i** row of J. Let r be the row vector obtained

from the it* row of M as follows:

1) For any column where the sum for M is not 1, 4, or 7, the entry for r is the comple-
ment of the entry for the ¢** row of M.

2) For any column where the sum for M is 1 (respectively 7), use 0 (1) as the entry
for r.

3) For any column where the sum for M is 4, let r have the same entry as in the ¢**

row of M ;.

Then replacing the i'* row of M by r yields a matrix My which represents the class-M
simplex adjacent to S across F.

We continue with the definitions of the simplices in 7.

F (20)= 12 N K (35)= 12 O F (18)=> 12 P D (11)=> 24 Q
F(11)= 12 Q D (10)=> 24 R K (36)= 12 S E(16)= 12T
T (51)= 12U J (29)= 72V I(20) =4 W U@Q= 12W
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K (34)= 24 X L (34)= 48 X S (49)= 12Y X (59)= 72 Z
U (53)=>24 AA L (37)=> 24 BB O (43)=> 12CC BB (43)= 24 CC
U (52)=>12 DD  AA (52)=> 24 DD

The formation of the class-EE simplices for 7 is more complicated. The 36 class-
C'C simplices will generate 72 class-EE simplices and 72 more come from the 72 class-V
simplices. For each class-C'C simplex in 7, across each of the two class-54 facets not shared
with a class-DD simplex of 7, there are two class-EE simplices and we need to select one
of these for 7. With some effort these 72 selections can be made systematically so that

the resulting set S of 72 class- EE simplices has the following two properties:

1) There is a one-to-one correspondence between S and the set of class-Z simplices in 7
such that corresponding simplices are adjacent.
2) Each simplex in S uniquely determines an adjacent class-G'G simplex across a class-61

facet and each of these class-GG simplices is adjacent to two simplices in S.

There are four ways to accomplish this. We arbitrarily take the one which produces the

simplices represented by the matrices

01110107 000100 17
0110011 1001000
1100011 1011100
0101110 1000001
0100001| ® 1011001
0001010 1111101
0101011 1111000
(111101 1] 111101 1]

(The other three joint selections may also work but we only checked out our selection.)
Similarly there are two class-EE simplices across the single class-54 facet of each of our
72 class-V simplices. Exactly one will be adjacent to one of our class-DD simplices and
this is the one we take for 7. We get 72 class-EE simplices in this way for a total of 144
class-E'E simplices.

We continue as before.

EE (63)=> 144 FF EE (62)— 72II EE (61)=> 72 GG GG (66)=> 72 HH
V (56)=> 36 MM V (55)=— 144 JJ  JJ (68)=> 36 KK W (58)== 48 LL
FF (65)= 72 00 LL (65)=> 48 00 MM (69)= 72 NN 0O (70)=> 64 PP

In this last case, each of 28 of the 64 class-PP simplices is produced three times and each

of the remainder is produced twice.
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Finally the 64 class-PP simplices, across their class-71 facets, generate the corners at
the 64 vertices of I” with odd coordinate sums.
One can use Theorem 2.3 of [11] along with Table 5.4 to verify the collection of 1820
simplices we have described is indeed a triangulation.
O
We were not able to generate 7 with any of the general methods described in §2. The
triangulation 7 induces triangulations of cardinality 339 on 12 facets of I and triangula-
tions of cardinality 334 on the other two facets. The value d = 7 is the smallest for which
some triangulation of minimum cardinality among all corner-slicing triangulations of I¢

fails to induce triangulations with the same property on all the facets of I¢.

Higher dimensions

From the main theorem of Haiman’s paper [9], the values of T(d) for d < 7 yield upper
bounds on T'(d) for d > 7, e.g. T(8) < 11944.

6. Remarks

For a triangulation of I with T(d) simplices, the number p = (T(d)/d!)'/% has been
proposed by Todd [20] as a measure of the efficiency of the triangulation for simplicial
algorithms. Haiman [9] showed that if a particular value of p is achievable in dimension
d, then it is also achievable in dimension kd for all positive integers k. The minimum
cardinality triangulations of I7 yield (1493/7!)!/7 ~ 0.840463. This is the smallest value
of p for any triangulations of the cube published to date.

A nice feature of our linear programming approach is that the constraints are strong
enough that we obtain many integer-valued optimal solutions. This is essential in order
that the optimal solutions help in creating minimum-cardinality triangulations. Without
our notion of non-selfcomplementing bases and the corresponding constraints, this would
not have been the case, e.g., the optimal objective value for our problem for T(5) would
have been approximately 66.6667.

Our guess is that the minimum of the cardinalities of all decompositions of I® is far
closer to T'(6) = 308 than to our lower bound of 270.

Without drastic modification, our techniques have no chance of establishing good lower
bounds on T'(d) for d > 8. However we think it is reasonable that our linear programming

approach can help find minimum-cardinality triangulations of some polytopes such as
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H(6,2) N I°% H(7,3)N1I", and, perhaps, H(8,4) N I®. Then, using the middle-cut ideas,
this would lead to decompositions and better upper bounds on S(d) for d > 8. Perhaps

some technique could be devised to create triangulations instead of just decompositions.
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APPENDIX
DATA FOR DIMENSION 5

Canonical representatives of base classes in dimension 5

To conserve space, vertices of I°, viewed as binary numbers, have been converted to

octal.

Base classes with representatives on z5 = 1

Base Vertices in octal Base Vertices in octal Base Vertices in octal
1 37 35 33 27 17 2 37 35 33 27 15 3 37 35 33 27 11
4 37 35 33 27 01 5 37 35 33 25 03 6 37 35 33 25 13
7 37 35 33 25 11 8 37 35 33 21 07 9 37 35 33 21 05
10 37 35 33 21 11 11 37 35 33 21 01 12 37 35 23 13 07
13 37 35 23 13 05 14 37 35 23 13 01 15 37 35 23 11 03
16 37 31 25 23 15 17 37 31 25 15 03

Base classes with representatives on z4 + 25 = 1

Base Vertices in octal Base Vertices in octal Base Vertices in octal
18 36 35 32 26 16 19 36 35 32 26 15 20 36 35 32 26 12
21 36 35 32 26 11 22 36 35 32 26 02 23 36 35 32 26 01
24 36 35 32 25 12 25 36 35 32 25 11 26 36 35 32 25 02
27 36 35 32 22 12 28 36 35 32 22 11 29 36 35 32 22 06
30 36 35 32 22 05 31 36 35 32 22 02 32 36 35 32 22 01
33 36 35 32 21 11 34 36 35 32 21 06 35 36 35 32 21 05
36 36 35 32 21 02 37 36 35 32 21 01 38 36 35 22 12 06
39 36 35 22 12 05 40 36 35 22 12 02 41 36 35 22 12 01
42 36 35 22 11 02 43 36 32 26 21 16 44 36 32 26 21 15
45 36 32 26 21 12 46 36 32 26 21 11 47 36 32 26 21 02
48 36 32 26 21 01 49 36 32 26 16 01 50 36 32 26 15 02
51 36 32 26 12 05 52 36 32 26 11 02 53 36 32 25 15 06
54 36 32 25 15 02 55 36 32 25 15 01 56 36 32 25 11 06
57 36 32 25 11 05 58 36 32 25 06 01 59 36 31 25 22 15
60 36 31 25 15 02 61 36 31 25 15 01
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Base

Base

~]
~1

Base
79
2

Base
88
91

Base

93

Base
94
97

Base classes with representatives on z3 + 24 + 25 = 1

Vertices in octal
34 32 31 24 14
34 32 31 24 02
34 32 24 21 11
34 32 24 11 04
34 32 24 02 01

Base
63
66
69
72
75

Vertices in octal
34 32 31 24 12
34 32 24 21 14
34 32 24 14 01
34 32 24 11 02
34 32 21 11 04

Base Vertices in octal

64
67
70
73
76

34 32 31 24 04
34 32 24 21 12
34 32 24 12 01
34 32 24 04 01
34 32 21 11 01

Base classes with representatives on zy + 3 + 24 + 25 = 1

Vertices in octal

30 24 22 21 10

Base
78

Vertices in octal
30 24 22 10 01

Base classes with representatives on z9 + 23 + 24 + 25 = 2

Vertices in octal
34 32 31 26 14
34 32 31 14 06
34 32 25 12 11

Base
80
83
86

Vertices in octal
34 32 31 26 11
34 32 31 14 03
34 32 25 11 06

Base Vertices in octal

34 32 31 26 05
34 32 25 14 11
34 32 25 11 03

Base classes with representatives on zo + 3 + 74 + 225 = 2

Vertices in octal
34 32 26 21 14
34 32 21 14 06

i : 5
Base classes with representativeson ) °_, @; =1

Vertices in octal

20 10 04 02 01

: . 5
Base classes with representativeson )., , z; =2

Vertices in octal
30 24 22 21 14
30 24 12 05 03

Base
&9
92

Base Vertices in octal

95

Vertices in octal
34 32 26 21 01
34 32 21 06 01

30 24 22 14 11

54
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90

34 32 26 14 01

Base Vertices in octal
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Base

98

Base

99

Base

101

Base

102

Base

103

Base

105

Base

106

Base classes with representatives on Z?:l z; +2x5 =2

Vertices in octal

30 24 22 14 01

Base classes with representatives on Z?:l z; +2z5 =3

Vertices 1n octal Base Vertices in octal
34 32 26 21 16 100 34 32 26 21 11
Base classes with representatives on Z;l:l i +3z5 =3

Vertices 1n octal

34 32 26 16 01

Base classes with representatives on =1 + z9 + 3 + 2z4 + 225 = 2
Vertices in octal
30 24 14 02 01

Base classes with representatives on =1 + xo + 3 + 224 + 225 = 3
Vertices in octal Base Vertices in octal
34 22 21 12 06 104 34 22 21 12 05

Base classes with representatives on z1 + z2 + 3 + 224 + 325 = 3
Vertices in octal
34 22 12 06 01

Base classes with representatives on z1 + z9 + 2x3 + 2x4 + 325 = 4

Vertices in octal

34 32 21 11 06

Linear programming variables in dimension 5

Each row of the following table splits into 7 groups:

{a) The variable number.

(b) The base classes for any representative simplex.
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(c

)
(d)
(e)
)
)

(f) The volume times 5!.
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= W N

O 00 ~1 O Ot
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16
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[NVER VI VR (VA (VN
T o W N = DO

[N
(@]

The barycentric coordinates of ¢ relative to the vertices of a representative simplex.

The side indicators.

The exterior-facet tuple.

gives the vertices of a representative simplex.

N

11

S =] Ot S O NN

24

30
15
48
11

10

base classes

6 24 24

6)

4
D
2

24
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11
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45
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32
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19
48
11
28
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2
6
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27
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20
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2

ped}
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29
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45
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68
31
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o7
66
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19
68
63
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20
48
27
65
66
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63
51
70
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66
70
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51
70
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T4
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(g) A vertex of I° which, with the canonical base from the largest numbered base class,
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