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ABSTRACT

We give a triangulation of the 6-cube into 308 simplices; this is the smallest

number in any triangulation of I° presented so far.

The problem of finding the minimum number of simplices required to triangulate the
d-dimensional cube, I = [0,1]¢, has received considerable attention [1]-[6]. Results in
this arca are of interest to people developing simplicial algorithms for finding fixed points.
We consider triangulations into simplices whose vertices are vertices of the cube itself. For
d=2.3. 4.5 this minimum is known to be 2, 5, 16, 67 [4]. For d = 6 the smallest known
triangulations have 324 simplices [1], [5]. It is shown in [4] that among all triangulations
of I" which slice off corners at alternate vertices, the minimum cardinality is 324. Here we
deseribe a triangulation of I° into 308 simplices. This makes 6 the lowest dimension for
which no corner slicing triangulation has minimum cardinality.

We will first introduce 12 equivalence classes of simplices which contain all the sim-
plices in our triangulation and will then turn to a description of the triangulation. We call
rwo simplices in I% equivalent if the vertices of one can be obtained from the vertices of
the other by successive use of the following operations:

1. For some coordinate. for each vertex, if the entry is 0 change it to 1 and vice versa.

2. For some pair of coordinates. for each vertex, interchange the entries.

Equivalent simplices are congruent.



The 12 equivalence classes are the classes represented by the following matrices.

A B C D
0110017 0110017 71001107 (01100 17
000111 000111 000111 000111
110100 110100 110100 011010
110010 110010 110010 110010
001110 001110 001110 001110
101001 010110 010110 010110
Looooo0o0J L111111+ 111111 1111111

E F G H
0110017 0110017 0110017 0110017
000111 000111 000111 000111
011010 011010 011010 011010
110010 110010 110010 011111
001110 010011 010011 010011
010110 010110 010110 0101160
Looooo0o0s Lt111111J LOOOOOOJ L[111111]

1 J K L
ro 110017 0000107 0000107 O00O01O07
00011 000111 010000 010000
01101 011010 011010 011010
011111 110010 110010 110010
001110 010011 010011 010011
010110 010110 0101160 010110
L1111114 LOOOOOO)J LOOOOOOJ LO1O0O0OT1OJ

I our triangulation some pair of antipodal vertices plays a distinguished role and we
have sclected 000000 and 111111 for the realization we now describe. We start with the

convex hull of
{011001.000111.110100,110010,001110,101001,000000,111111}

which 15 triangulated by 2 simplices from class A. Then on each of the 12 facets of this
polytope we ereet a uniquely determined simplex from class B. Each of these has exactly

one facet thar has a normal which can become 111222 by taking the absolute values of its
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coordinates and permuting them. (We say 111222 is the fundamental normal of the facet.)
There are 6 nnquely determined simplices from class C' which are adjacent to our class B
simplices across these 12 facets. (We call two simplices adjacent if they have a common

facet.)

In addition each of our class B simplices has exactly two facets with fundamental
normal 111224, On these facets we erect 24 simplices of class D which become uniquely

determined by agreeing that the new vertices are among 101100, 100011, 011010, 010101.

Each of these class D simplices has exactly one of 000000 and 111111 as a vertex.
Replacing 000000 by 111111 and vice versa we obtain 24 class E simplices adjacent to our

24 class D simplices.

Adjacent to cach class D simplex across the facet with fundamental normal 111222 is

exactly one simplex in class F'and we include these 24 simplices in our triangulation.

Swapping 000000 for 111111 and vice versa in the simplices from class F yields 24

siunplices m class G for our triangulation.

Each siplex m class E or F has exactly one facet with fundamental normal 111112

and across this facet 1s exactly one simplex in class H. This gives us 48 simplices in class H.

Similarly we obtain 24 class I simplices from the 24 class D simplices across facets

with fundamental normal 111112.

Eacli simplex from elass €' or class G has exactly two facets with fundamental normal

LT1112 from which we similarly obtain 60 uniquely determined simplices in class J.

We take the 30 class L sinplices to be the corners at the vertices (z1,z2,...,x¢) of
1" with 37, € {2.4}. These uniquely determine 30 adjacent class K simplices and this
completes the definition of the simplices in the triangulation. The adjacency is more fully
desceribed by the graph in Figure 1. Here the nodes are the classes of simplices and there is
au arc between two nodes if i the triangulation there exist simplices in the corresponding
classes which are adjacent. Beside each arc we have put the fundamental normal of the

shared facet.
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Figure 1  Simplex Adjacency Graph

One can use Theorem 2.3 of [4] to verify that the collection of simplices we have

described s a triangulation. In this connection, see Table 1.

Class A B C D E F G H I J K L
Volume 9/6!|6/6!|3/6!|3/6!|3/6!|3/6!|3/6!|2/6!|2/6!|2/6!|1/6!]1/6!
Nun. used 2 12 6 24 1 24 | 24 | 24 | 48 | 24 | 60 | 30 | 30

Table 1  Data on Classes

We were led to the specific classes 4~ L and the information in the third row of Table 1
by computer solutions of linear programming problems we developed to find the minimum
cardimality of triangulations of I°. As in [4] any triangulation yields a feasible solution to
rthe lincar programming problem and the optimal objective value is a lower bound for the
mininnun cardimality. We identified 1149 equivalence classes of facets of simplices in I6.
Based on these we identified 9890 classes of simplices. There is a decision variable for each
class of simplices. Along with 5 constraints based on volume considerations as in [4], for
cach of the 1149 facet classes we have an equation balancing the simplices on the two sides
of all the facets of the given class. We have a preliminary computer aided proof that no
triangulation of 7% with fewer than 308 simplices is possible. We hope to report on this at

some future date.



For a triangulation of I with T(d) simplices the number p = (T(d)/d!)!/¢ has been
proposcd by Todd in [6] as a measure of the efficiency of the triangulation for simplicial
algorithms. In [3] Halman shows that if a particular value of p is achievable in dimension
d. it 15 also achievable in dimension kd for all positive integers k. Our triangulation
vields p 2 0.868033. This improves the smallest value of p obtainable from triangulations

previously published, p = (13136/8!)!/8 ~ 0.869196 from Bhm’s triangulation of I® [1].
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