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1 Disclaimer

These are roughly written notes for my lecture. They may contain errors, misattributions, and
grammar I would be ashamed to publish in a journal. I hope you find them useful anyway.

2 Overview

In this talk, I am going to describe recent results from a paper by myself and Teng [ST04] on graph
partitioning, graph sparsification, and the solution of linear systems. As our main motivation was
the solution of linear systems, I will describe our work on that problem first. The algorithms that
I will describe solve diagonally dominant linear systems in time nearly-linear in the number of
non-zero entries in their defining matrix. In terms of worst-case complexity, these are the fastest
known solvers for these systems.

In the second two parts of my lecture, I will describe some of the combinatorial machinery we use
in this work. In the first of these, I will discuss the problem of graph sparsification—the problem
of replacing an arbitrary graph by a functionally equivalent sparse graph. Our algorithm for
sparsifying graphs will use two tools: a graph partitioning algorithm, and some random sampling.
The analysis of the random sampling will use an extension of a technique of Füredi and Komlós
for bounding the eigenvalues of random symmetric matrices.

In the last part of my lecture, I will discuss the problem of graph partitioning. Our graph par-
titioning algorithm leverages a graph partitioning algorithm implicit in the work of Lovasz and
Simonovits [LS93]. I will spend most of my time explaining the remarkable analysis technique
introduced in their work. It is a potential function argument. But, unlike most potential func-
tions that take Real values, the value of their potential function is a concave curve! The potential
function can be said to decrease when one of these curves lies under another.

3 Solving Linear Systems

I’ll begin by describing our approach to solving linear systems, both because this is probably the
most alien topic to the audience, and because it is the motivation for all that follows. I’ll begin by
reviewing a little bit of what is known about the complexity of solving linear systems. I’ll divide
the algorithms into direct methods, which yield an algebraic procedure that gives the exact answer,
and iterative methods, which produce answers of greater accuracy the longer they run.

3.1 Direct Methods

The algorithm with the lowest asymptotic complexity for solving arbitrary linear systems of the
form Ax = b is based on fast matrix inversion, related to fast matrix multiplication, and has
complexity O(n2.376) [CW82]. However, if the matrix A is sparse and positive semi-definite, then
much faster algorithms exist. These are quite useful because many of the matrices encountered in
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many application domains are sparse and positive semi-definite. If A is an n-by-n positive semi-
definite matrix with m-nonzeros, then the Conjugate Gradient algorithm, used as a direct solver,
will solve for x in time O(mn) (See [BT97, Theorem 38.4]). If the matrix is very sparse, by which I
mean m = O(n), then this algorithm takes time O(n2)—just as much time as it would even take to
write down the inverse! However, sometimes there are ways of implicitly representing the inverse
in much less space than it would take to write it explicitly In these situations, one can often find
faster algorithms.

Faster algorithms exist if the non-zero entries of the matrix have special structure. To every
symmetric matrix A, we will associate the graph in which nodes u and v share an edge if Au,v 6= 0.
Many of you will have seen a proof that if this graph is a path, then one can solve Ax = b in
linear time. This fact extends to the case when the graph is a tree. The idea is to write A as
PLDLT P T where P is a permutation matrix, and L is a sparse lower-triangular matrix with 1’s
on the diagonal, and D is a diagonal matrix. The permutation just exists to provide an ordering
of the vertices. In this case, we want to order the vertices so that, for every k, if one removes
vertices 1, . . . , k the remaining graph is still a connected tree. Given such an ordering, the process
to compute L and D looks a lot like Gaussian elimination, but we perform eliminations both in
rows and columns. Assuming A is in the proper order, we know that its first vertex has degree
1. Let the non-zero entries in column 1 be a1,1 and au,1. We will use the diagonal entry a1,1 to
eliminate au,1. Note that this changes the value of au,u, but of no other entry. We then use the
first column to eliminate entry a1,u from the uth column. This leaves the other entries of the uth
column unchanged. If we let A′ denote the resulting matrix, and set L to be the matrix with ones
on the diagonal and the non-zero entry l1,u = au,1/a1,1, we have

A = LA′LT .

One can show that if A is positive definite, then A′ is as well, and so we can keep going until we
have expressed A = LLT , Moreover, each row of L will have only 2 non-zero entries. Once we
have finished, we can solve the system in A by solving systems in P , L, and D, which take time
proportional to their number of non-zeros. Let’s do an example

This idea was applied to a much broader family of matrices in a paper entitled “Generalized Nested
Dissection” by Lipton, Rose and Tarjan [LRT79]. One of their results is that if G is a planar graph,
then one can solve Ax = b in time O(n1.5). Moreover, the number of non-zeros in L under their
ordering is at most O(n log n).

3.2 Iterative Methods

If the matrix A is positive definite, one can apply the conjugate gradient as an iterative method
to solve Ax = b. The running time of this algorithm will depend upon the condition number of A,
denoted κ(A), and defined to be the ratio of the largest eigenvalue of A to the smallest eigenvalue
of A. If A has m non-zero entries, then in time O(m

√
κ(A) log(1/ε)), this algorithm will output

an ε-accurate solution to Ax = b (See [BT97, Theorem 38.5]). By ε-approximate solution, I mean
an x such that

‖Ax− b‖A ≤ ε ‖b‖A ,
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where
‖y‖A

def=
√

yT Ay.

For those unfamiliar with the A-norm, ‖·‖A, let me point out that for every vector y,

‖y‖A ≤ κ(A) ‖y‖ , and
‖y‖ ≤ κ(A) ‖y‖A .

So, if we are willing to run for log(κ(A)/ε) iterations, we can reduce the error to ε in the standard
Euclidean norm.

At each iteration, the conjugate gradient only needs to multiply a vector by A, and perform a
constant number of vector operations. So, it takes time O(m + n) per iteration, and produces the
above-mentioned output after at most O(

√
κ log(1/ε)) iterations. While it might seem strange to

state the error of the algorithm in terms of the A-norm, it turns out that this is often the best and
most useful way to state it.

The Conjugate Gradient method can often be sped up by preconditioning. This amounts to solving
a system

B−1Ax = B−1b,

where B is chosen so κ(B−1A) is small, and it is easy to solve systems of the form Bz = c. Do not
worry that B−1A is not necessarily symmetric. If B is positive definite, then this matrix also has
all real eigenvalues. The in each iteration, the Preconditioned Conjugate Gradient will multiply a
vector by A, solve a system in B, and perform a few vector operations. After

√
κ(B−1A) log(1/ε)

iterations, it is guaranteed to output an ε-approximate solution. So, all we need to do is find a
matrix B such that κ(B−1A) is small, and systems in B are easy to solve. Such matrices B are
called preconditioners.

There are many ways to constructing preconditioners, few of them analyzable. One of the most
popular is the incomplete Cholesky preconditioner. To obtain this preconditioner, we proceed as
if we are going to factor A = LLT , but we drop most of the entries from L. One common rule
is to only keep entries of L that are non-zero in A, or to only keep large entries in L. If A is the
Laplacian matrix of a regular grid (to be defined in later), then one can prove this preconditioner
will allow one to solve the system in time O(n5/4).

3.3 Graphs and Diagonally Dominant Matrices

It is now time to explain what all this has to do with graphs. First, I should say that we are only
going to solve a limited family of linear systems: those in which the matrix A is symmetric and
diagonally dominant. Formally, A is diagonally dominant if, for all i,

Ai,i ≥
∑
j 6=i

|Ai,j | .

That is, each diagonal is at least the sum of the absolute entries in its row. It is easy to show
that all diagonally dominant matrices are positive semi-definite. They are one of the simplest

4



families of matrices to study, and many approaches to solving linear systems, including Multigrid
and Incomplete Cholesky preconditioners, were first studied for these matrices.

Every graph is naturally associated with a diagonally dominant matrix: its Laplacian. For a
weighted graph G on n vertices, its Laplacian L is the n-by-n matrix in which Li,j is the negative
of the weight of the edge from node i to node j, and the diagonal Li,i is the sum of the weights of
the edges connected to vertex i. Thus, all diagonals are non-negative, and all the off-diagonals are
non-positive.

Another way to define the Laplacian is as a sum of elementary matrices. Let (1, 2) denote the
graph on two vertices with one edge. We define

L(1,2)
def=
[

1 −1
−1 1.

]
Note that

xT L(1,2)x = (x1 − x2)2. (1)

In general, for the graph with n vertices and just one edge between vertices u and v, we can define
the Laplacian similarly. For concreteness, I’ll call the graph (u, v) and define it by

L(u,v)(i, j)
def=


1 if i = j and i ∈ u, v

−1 if i = u and j = v, or vice versa,

0 otherwise.

For a graph G with edge set E, we now define

L(G) def=
∑

(u,v)∈E

L(u,v).

Many elementary properties of the Laplacian follow from this definition. In particular, we see that
LG1,2 has eigenvalues 0 and 2, and so is positive semidefinite, where we recall that a symmetric
matrix M is positive semidefinite if all of its eigenvalues are non-negative. Also recall that this is
equivalent to

xT Mx ≥ 0, for all x ∈ Rn.

It follows immediately that the Laplacian of every graph is positive semidefinite. One way to see
this is to sum equation (1) to get

xT LGx =
∑

(u,v)∈E

(xu − xv)2.

It is known [Gre96] and [BGH+, Lemma 2.5] that if one wants to precondition any diagonally
dominant matrix, it suffices to find a preconditioner for a related Laplacian. So, for the rest of
this section, we will just concern ourselves with Laplacian matrices. Do not worry that the system
Lx = b may be degenerate; we can solve it as long as b is orthogonal to 1.
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Diagonally dominant matrices arise in many applications, including the analysis of resistor networks,
heat flow, and random walks on graphs. Recently Boman, Hendrickson and Vavasis [EBV] have
proved that the problem of preconditioning the matrices that arise when applying the finite element
method solving elliptic partial differential equations can be reduce to the problem of preconditioning
diagonally dominant matrices.

One final note before we proceed: if A is a Laplacian matrix, then we cannot measure a condition
number by computing A−1, as this matrix does not exist. We can get around this technicality in
one of two ways. If A and B have the same span, then we can just view them as operators on
their span, and measure their condition number there. The resulting condition number is called
the finite condition number.

4 Combinatorial Preconditioners

I will now give you another definition of the finite condition number, and show how it enables
us to place combinatorial bounds on the condition number. We will begin by borrowing some
terminology from the optimization community. For a symmetric matrix A, we will write

A < 0

if A is positive semi-definite. Similarly, we will write

A < B

if A − B is positive semi-definite. If G and H are graphs, and LG and LH are their Laplacian
matrices, then I will write

G < H

if
LG < LH .

If c is a constant, then by c · G, I mean the graph in which the weight of every edge has been
multiplied by c.

Since the set of positive semi-definite matrices forms a convex cone, it follows that

• for all c > 0 and A < B, cA < cB, and

• if A1 < B1 and A2 < B2, then A1 + A2 < B1 + B2.

The connection to the condition number is given by the following lemma. [BH]

Lemma 4.1. Let G and H be connected graphs. Let σ1 be the least number such that

G 4 σ1H

and let σ2 be the greatest number such that

σ2H 4 G.
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Then,
κf (G, H) = σ1/σ2.

Corollary 4.2. If
c2H 4 G 4 c1H,

then
κf (G, H) ≤ c1/c2.

So, to bound the condition number, it suffices to prove that some constant times one graph is
less than another. I refer to such an inequality as a Graphic Inequality. Our constructions of
preconditioners will essentially rely on three graphic inequalities. The first two are straightforward,
and will be given in the next section. The third is an inequality between a graph G and a graph
H obtained by randomly sampling G, and is the subject of Section 6.

4.1 Graphic Inequalities

Here’s the simplest graphic inequality. If G is an unweighted graph, and H is a subgraph, then

H 4 G.

A simple generalization says that if G is weighted and H contains the same edges as G, but with
lower weights, then H 4 G. To prove it, let we denote the weight of edge e in G, and let w′

e ≤ we.
Then, we have ∑

e

w′
eLe 4

∑
e

weLe.

We will now introduce a more interesting inequality. It’s simplest version is

L(1,k) 4 (k − 1) ·
(
L(1,2) + L(2,3) + · · ·+ Lk−1,k

)
.

This is roughly equivalent to the statement that if one puts k unit resistors in serial, the chain has
resistance k. To prove this inequality, we will prove the more general weighted version. In this
version, the weights should be interpreted as the reciprocal of the resistance.

Lemma 4.3. Let c1, . . . , cn−1 > 0. Then,(
1

1/c1 + 1/c2 + · · ·+ 1/ck−1

)
L(1,k) 4

(
k−1∑
i=1

ciL(i,i+1)

)
.

Proof. We first note that if we can prove this lemma for k = 3, then we can prove it for all k. To
see this, observe that we could then prove

k−1∑
i=1

ciL(i,i+1) <

(
1∑k−2

i=1 (1/ci)

)
· L(1,k−1) + ck−1 · L(k−1,k) (assuming proved for k − 1)

<

(
1∑k−1

i=1 (1/ci)

)
· L(1,k),
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where in this last inequality, we use the case for k = 3.

In the case k = 3, it suffices to prove the inequality in the case 1/c1 + 1/c2 = 1. If we now let

a = (x1 − x2), and
b = (x2 − x3),

then the inequality reduces to
c1a

2 + c2b
2 ≥ (a + b)2,

which is Cauchy’s inequality.

4.2 Graphic Inequalities with Trees

If H is a tree1 with the same set of vertices as G, then there is a very natural way to apply
Lemma 4.3 to prove an inequality of the form G 4 c ·H. For every edge (u, v) ∈ G, there is unique
path in H between vertices u and v. Let P(u,v) denote this path, and let lu,v denote its length. For
each edge (x, y) ∈ H, let s(x,y) be the sum of the lengths of the paths Pu,v that use it,∑

(u,v)∈G:(x,y)∈Pu,v

lu,v,

and let s be the sum of the lengths of all paths,

s =
∑

(u,v)∈G

lu,v,

Note that s(x,y) ≤ s. The quantity s is called the total stretch of the spanning tree H.

For simplicity, let’s assume that G and H are unweighted. By inequality 4.3, we have

(u, v) 4 lu,vP(u,v),

and so

G =
∑

(u,v)∈G

(u, v) ≤
∑

(u,v)∈G

lu,vP(u,v) =
∑

(x,y)∈H

s(x,y)L(x,y) ≤
∑

(x,y)∈H

sL(x,y) = s ·H.

That is, G 4 s ·H where s is the sum over all edges of G of the lengths of their paths in H. This
inequality was proved in [BH]. . . , A year later, Boman and Hendrickson [BH01] observed that Alon,
Karp, Peleg and West [AKPW95] found an algorithm for constructing trees H that were subgraphs
of G and that have total stretch n2O(

√
log n log log n). Thus, these subtrees are preconditioners with

condition number at most n2O(
√

log n log log n). These can immediately be used to find ε-accurate
solutions to diagonally-dominant linear systems in time mn1/2+o(1). We note that Elkin, Emek,
Spielman and Teng [EEST05] have recently found fast algorithms for constructing subtrees of
average stretch O(n log2 n log log n).

1A tree is a connected graph on n vertices with n− 1 edges. Alternatively, it can be defined as a connected graph
with no cycles.
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4.3 Augmented Tree Preconditioners

Vaidya [Vai90] used maximum spanning trees to precondition graphs. However, these did not
immediately produce faster algorithms, and the best bound one can prove on their relative condition
numbers is O(mn). This led Vaidya to consider adding edges to the spanning trees to improve the
condition number. By adding just a few edges, he was able to greatly reduce the condition number.
On the other hand, adding a few edges to a tree does not greatly increase the time it takes to solve
the linear system.

Spielman and Teng [ST03] devised a way to add edges to a low-stretch spanning tree to reduce
maxu,v su,v. I will now explain a simplification of their technique that will appear in the final
version of [ST04]. We begin by observing that our derivation before was very weak. We could have
obtained the inequality [ST03, Theorem 2.1]

G 4

(
max

(x,y)∈H
s(x,y)

)
·H.

The constant in this inequality bounds the maximum over edges in H of the sum of the lengths of
the paths that go over that edge. By adding some edges to the tree, we create new paths that can
be used to route edges of G, and thereby reduce this sum.

Our rule for adding edges to the tree will be quite simple. First, we will partition the nodes of the
tree into sets S1, . . . , St so that the induced graph on each set Si is a tree. Then, for each pair of
sets Si, Sj such that G contains an edge between a node in Si and a node in Sj , we will add one
edge to H. Now, I need to tell you how we choose the sets and how we add the edge.

For each vertex v, set
cost(v) def=

∑
(u,v)∈G

lu,v.

Note that
∑

v cost(v) ≤ 2s. For a set S of vertices, define cost(S) =
∑

v∈S cost(v). Using a greedy,
DFS-based, algorithm, it is possible to find at most t sets so that for all i, either

a. cost(Si) ≤ 4s/t, or

b. |Si| = 1.

If you want to see the details, look at [ST03, Lemma 3.6].

Warning 4.4. I have lied a little bit here. To prove a bound this good, you have to allow the trees
to overlap slightly. But, you’ll get the correct intuition from this argument.

For each pair of sets (Si, Sj) that are connected by an edge in G, we will select the edge between
these sets of minimal stretch, and add that edge to H. (in the weighted case, we minimize the
stretch divided by weight). Let ui and uj be the endpoints of this edge. Now, for every other edge
(vi, vj)in G between these two sets, we will imagine routing this edge locally: from vi to ui in Si,
over the bridge edge (ui, uj), and from uj to vj in Sj . Formally, this becomes a graphic inequality
proving that the edge from vi to vj is less than some constant times a path that lies entirely in Si,
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Sj , and (ui, uj). In this way, we can make sure that no edge of H is used too many times in the
inequalities we prove.

To get a feel for how good the overall inequality is, note that the length of the path from vi to ui

plus the length of the path from uj to vj is at most

lvi,vj + lui,uj ≤ 2lvi,vj .

So, the length of the path in H from vi to vj is at most 2lvi,vj + 1. If we now fix i and sum over j
of all such inequalities between edges between Si and Sj , we will find that the sum of all such path
lengths is at most 3 times cost(Si). As these are the only inequalities involving edges of Si, we find
that each edge in Si will have a coefficient of at most 3cost(Si) ≤ 12s/t. So, we have

G 4 (12s/t) ·H.

This is a very strong result: it says that by dividing H up into t sets, we can reduce the relative
condition number by a factor of t. Now, it remains to consider how many edges we have added to
the tree.

If H were planar, then we would have added only O(t) edges. This would be ideal.

On the other hand, it is possible that might have to add edges between all pairs of subsets, for
a total of

(
t
2

)
. In this case, the running time of our linear system solver will be no better than

m1.31+o(1), as it was in [ST03]. However, it is never necessary to really add this many edges–there
is always a set of t logO(1) t edges that suffice, and we can find them in time t logO(1) t + O(m). We
do this by sparsifying the graph induced by G on the clusters S1, . . . , St. To form this graph, we
treat the clusters S1, . . . , St as vertices, and put an edge between each pair that has an edge in G.
A sparsifier for this graph is a sparse graph that is functionally equivalent. Most of the work of
our paper [ST04] is devoted to an algorithm for sparsifying graphs.

4.4 Sparsifying

We say that a weighted graph H κ-approximates a weighted graph G if

H ≤ G ≤ κH.

Our main sparsification theorem says that for every weighted graph G, there exists a weighted
graph H that 2-approximates G and has at most n logO(1) n edges. This notion of sparsification
is sufficient to reduce the number of intercluster edges in the construction of the previous section.
We then obtain a graph H with n + t logO(1) t edges such that (n/t)-approximates G.

The notion of sparsification was introduced in the papers . . . . The sparsifier that inspired ours
was a construction of Benczur and Karger [BK96]. They gave a nearly-linear time algorithm that
produced for every graph G a graph H with n log2 n edges (check!) such that for every set of
vertices S, the sum of the weights of edges leaving S in G is approximately equal to the sum in H.
In matrix notation, this says

∀x ∈ {0, 1}n : xT LHx ≤ xT LGx ≤ (1 + ε)xT LHx.
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This is quite similar to the statement that we need to prove, except that we require these inequalities
for all x ∈ IRn. While we cannot use sparsifiers constructed by Benczur and Karger, we can use
some ideas from their work. In particular, we note that for some graphs we can obtain a sparsifier
by random sampling.

Before explaining how we construct sparsifiers, let me begin with three examples.

• The complete graph: Let G be the complete graph on n vertices. One can show that
LG only has two eigenvalues: 0 with multiplicity 1 and n with multiplicity n − 1. Let H be
a Ramanujan expander graph [Mar88, LPS88]. So, H will have degree d, and all non-zero
eigenvalues of LH will lie between d − 2

√
d− 1 and d + 2

√
d− 1. The graph (n/d) · H is a

good approximation of G. We have

G 4
d

d− 2
√

d− 1
(n/d) ·H,

and
d

d + 2
√

d− 1
(n/d) ·H 4 G.

• The dumbbell: Let G be the disjoint union of two cliques, each on n/2 vertices, with one
edge added between them. Note that if H ⊂ G and H does not contain the edge between
the two cliques, then H will be disconnected. In that case, there would be no true inequality
of the form G 4 c · H. So, however we sparsify G, we need to be sure to include the edge
between the cliques.

• Grid plus edge: Let G be the graph on a m-by-n grid, with vertices indexed by (i, j) for
1 ≤ i ≤ m and 1 ≤ j ≤ n, plus one edge from node (1, 1) to node (m, 1). If m = n2, then any
subgraph H that does not contain the edge (m, 1) will have κf (G, H) ≥ n. To see why, let H
be the graph consisting of all edges of G besides (m, 1), and consider the vector x(i,j) = i. To
evaluate xT LHx, note that each edge from a node (i, j) to a node (i + 1, j) will contribute 1
to the sum, and that there are n(m− 1) such edges, so

xT LHx = n(m− 1).

On the other hand, the edge from node (1, 1) to (m, 1) contributes (m − 1)2 to this sum in
G. So,

xT LGx = (n + m− 1)(m− 1),

and so
κf (LG, LH) ≥ m + n− 1

n
≥ m

n
= n.

This example also shows how our notion of sparsification differs from that studied by Benczur
and Karger, as

∀x ∈ {0, 1}n : xT LHx ≤ xT LGx ≤ (3/2)xT LHx.
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4.5 Proving sparsifiers exist

To begin, I’ll convince you that it is possible to sparisfy any graph. I’ll then explain how we do
it quickly. The key to it all is a quantity called conductance, which I will formally define in a few
moments. Roughly, the conductance of a graph is the minimum over cuts of the number of edges
cut divided by the smaller side. Conductance is my favorite graph parameter, because every value
it has is useful. If a graph has high conductance, that means it is an expander—one of the most
useful types of graphs around. If it has low conductance, then it can painlessly be cut into two
pieces.

In our case, we will prove that every graph of high conductance can be well approximated by
a sparse random subgraph. On the other hand, we will prove that the vertices of every graph
can be partitioned into sets V1, . . . , Vk so that at most half of the edges cross the partition, and
the induced graph on each vertex set Vi has high conductance. These two observations suffice to
prove the existence of sparsifiers: we sparsify the induced graphs by random sampling, and then
recursively sparsify the graph consisting of the edges crossing the partition. As at most half of the
edges cross the partition, the depth of the recursion is at most log2 m.

Now, let me define conductance formally. I will define it in terms of the adjacency matrix of a
graph, A, and I will let au,v denote the weight of the edge from node u to node v. For each vertex
u, I define its degree, du, by

du
def=
∑

v

au,v.

For a set of vertices, S, I define its volume by

vol(S) def=
∑
v∈S

dv,

and I define the volume of a set of edges F by

vol(F ) def=
∑

(u,v)∈F

au,v.

Finally, I define the boundary of a set of vertices S by

∂(S) def= {(u, v) ∈ E : u ∈ S, v 6∈ S} .

We now define the conductance of a cut S ⊂ V by

Φ(S) def=
vol(∂(S))

min(vol(S), vol(S̄))
.

And, we define the conductance of a graph by

ΦG
def= min

S⊂V
Φ(S).

I will call a partition V1, . . . , Vk of the vertices of a graph a φ-partition if the induced subgraph on
each Vi has conductance at least φ. The following lemma tells us that, assuming one could find the
largest set of conductance less than φ, it is possible to find a φ-partition:
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Lemma 4.5. For any φ ≤ Φ(G), let S be the set of vertices satisfying Φ(S) ≤ φ maximizing vol(S),
subject to vol(S) ≤ vol(V )/2. If vol(S) ≤ vol(V )/4, then

ΦG(S̄) ≥ φ/3,

where G(S̄) denotes the graph induced on the vertices not in S.

That is, if vol(S) ≤ vol(V )/4, then we can make all the vertices not in S a set in a our partition.

Using this lemma, it is easy to prove that, for every φ ≥ 1/m, a φ-partition exists in which the
sum of the weights of the edges crossing the partition is at most O(φvol(V ) log n): let S be the
largest set of vertices with at most half the volume and conductance less than 3φ. Partition the
graph into (S, S̄). Now, recursively apply the same procedure on each part of the partition. In the
unweighted case, it is easy to see that this procedure will have recursion depth at most log4/3 m. In
the weighted case, we observe that every set that occurs after 2 log4/3 m steps down in the recursion
can have at most a 1/m2 fraction of the volume. So, whatever edges are cut by dividing these sets
up can contribute at most a n/m2 fraction to the total.

Of course, finding the cut required by Lemma 4.5 is a hard problem. So, we will apply an algorithm
that satisfies a weaker guarantee. In the next section, I will explain how we can find maximal cuts of
approximately minimal conductance in nearly-linear time, for the case φ = 1/ logO(1), which is the
case we care about here. Kannan, Vempala and Vetta [KVV04] have analyzed how a partitioning
algorithm like the one above behaves if one uses any algorithm that can find cuts of approximately
optimal conductance. Their analysis is more complicated as the recursion depth is no longer
bounded, as Lemma 4.5 does not hold for approximately maximal cuts or cuts of approximately
minimal conductance. This also poses problems for us, as a recursion depth greater than logO(1) n
would make our algorithm take too long. However, in the paper we are able to show that, for the
purpose of sparsification, it suffices to cut the recursion at depth logO(1) n, regardless of whether
or not the partition at that depth is a φ-partition ([ST04, Theorem 4.1] and [ST04, Lemma 6.1]).

4.6 History of Combinatorial Preconditioning

Vaidya [Vai90] was the first to suggest preconditioning Laplacians of graphs by Laplacians of their
subgraphs. He proved that by augmenting spanning trees with a few edges, one could find ε-
approximate solutions to SDD linear systems of maximum valence d in time O((dn)1.75 log(κf (A)/ε)),
and of planar linear systems in time O((dn)1.2 log(κf (A)/ε)). While Vaidya’s work was unpublished,
proofs of his results as well as extensions may be found in [Jos97, Gre96, GMZ95, BGH+, BCHT,
BH]. By recursively applying Vaidya’s preconditioners, Reif [Rei98] improved the running time
for constant-valence planar linear systems to O(n1+β logO(1)(κf (A)/ε)), for every β > 0. Boman
and Hendrickson [BH01] used low-stretch spanning trees to improve the running time for general
linear systems to m1.5+o(1) log(κf (A)/ε). Maggs, et. al. [MMP+05] to O(m/

√
ΦG log4(nκf (A)/ε)),

after some preprocessing. Their algorithm follows an approach introduced by Gremban, Miller and
Zagha in which vertices are added to the graph.

By augmenting low-stretch spanning trees, by Spielman and Teng [ST03] obtained a running time
of m1.31+o(1) log(1/ε) logO(1)(n/κf (A)).
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5 Cheeger’s Inequality

Before I explain how to analyze the quality of random subsamples of graphs as preconditioners, I
should explain why conductance should be related to preconditioning at all. The explanation comes
from one of the most important theorem in Spectral Graph Theory: Cheeger’s Inequality [Che70].
The inequality that Cheeger proved concerned manifolds. The version of Cheeger’s inequality for
graphs that we use here was proved by Jerrum and Sinclair [SJ89].

Cheeger’s inequality establishes a relationship between the conductance of a graph and the smallest
non-zero eigenvalue of its normalized Laplacian. To obtain the normalized Laplacian, let let L
denote the Laplacian of a graph, and let D be the diagonal matrix with diagonal entries (d1, . . . , dn),
where di is the degree of node i. Then the normalized Laplacian (See [Chu97]), often written L is
D−1/2LD−1/2. All the diagonal entries of this matrix are 1, it’s smallest eigenvalue is zero, and we
will write λ2 for its second-smallest eigenvalue. It’s largest eigenvalue is at most 2.

Cheeger’s inequality says:
1
2
Φ2

G ≤ λ2 ≤ ΦG. (2)

The upper bound on λ2 is easy: one proves it by constructing a test vector from a set of minimum
conductance. The other direction is non-trivial. It would be very interesting if someone could
come up with a novel proof of the other direction. I put quite a bit of effort into this, but only
found a somewhat different proof, which is in the lecture notes from my course Applied Extremal
Combinatorics (see http://www-math.mit.edu/ spielman/AEC/lect5.ps).

Cheeger’s inequality tells us that if ΦG is big, then all of the eigenvalues of the normalized Laplacian
lie in a small range.

Finally, let me note that Cheeger’s inequality is sometimes stated in different forms. Sometimes,
the matrix D−1L appears instead of D−1/2LD−1/2; but, these have the same eigenvalues.

Sometimes, Cheeger’s inequality is stated in terms of the normalized adjacency matrix, D−1/2(A+
D)D−1/2/2, where the adjacency matrix is the matrix with zero diagonals and entry Ai,j equal to
the weight of the edge from i to j. This is the matrix that arises when studying random walks on
the graph. In this case, the theorem concerns the second-largest eigenvalue. All these formulations
are equivalent.

However, there are times when it is legitimately more convenient to work with one of these matrices
as opposed to another.

6 Randomly Sampling Graphs

Let A be the adjacency matrix of a (possibly weighted) graph G. In a few moments, we will give
a procedure for randomly sampling G to obtain a graph with adjacency matrix Ã such that all the
eigenvalues of D−1(A − Ã) are small, where D is the diagonal matrix of the degrees of A. If we
let L and L̃ be the Laplacian matrices of these graphs, it is pretty easy to also show that all the
eigenvalues of D−1(L− L̃) are small.
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To make this statement more useful, we observe that the matrices

D−1(L− L̃) and D−1/2(L− L̃)D−1/2

have the same eigenvalues, and so all the eigenvalues of the later matrix are small. However, only in
special circumstances does this imply that D−1/2L̃D−1/2 is a good preconditioner for D−1/2LD−1/2.
One such circumstance is when the largest eigenvalue of D−1/2(L− L̃)D−1/2 is much smaller than
the smallest non-zero eigenvalue of D−1/2LD−1/2. For example, assume

λmin

(
D−1/2LD−1/2

)
≥ α, and

λmax

(
D−1/2(L− L̃)D−1/2

)
≤ ε.

We would then have for all x orthogonal to the nullspace of D−1/2LD−1/2,

xT D−1/2L̃D−1/2x

xT D−1/2LD−1/2x
=

xT D−1/2LD−1/2x + xT D−1/2(L̃− L)D−1/2x

xT D−1/2LD−1/2x

= 1 +
xT D−1/2(L̃− L)D−1/2x

xT D−1/2LD−1/2x

≤ 1 +
ε

α
.

So, if α > 2ε, D−1/2L̃D−1/2 is a good preconditioner for D−1/2LD−1/2. By Cheeger’s inequality,
we know that the case when α is not too small is exactly when G has high conductance.

But, you might be wondering how this helps us. After all, we want to precondition L by L̃, without
the D−1 interfering. Let me quickly point out that the D−1 term does not interfere. That is,

D−1/2LD−1/2 4 κ ·D−1/2L̃D−1/2 ⇐⇒ L 4 κ · L̃.

I recommend proving this as an exercise.

6.1 The Sampling Procedure

To build Ã, we will independently flip a coin for each edge of A and, based on the outcome, decide
whether or not to keep that edge. The coins will be biased, and if we decide to keep an edge, we will
assign it a weight inversely proportional to our probability of keeping it. We apply these weights
so that the expectation of Ã is A. In particular, this means that the expected weighted degree of
each node remains approximately the same. We need to make sure that the expected number of
neighbors of each node is large enough that with high probability no node becomes isolated. On
the other hand, to reduce the total number of edges we must make sure to get rid of most edges
from high degree nodes. To meet both of these objectives, we choose a parameter δ that will govern
the number of edges in Ã, and decide to keep an edge between nodes i and j with probability pi,j ,
where

pi,j =

{
δ

min(di,dj)
if δ < min(di, dj), and

1 otherwise.
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We then set

Ãi,j =

{
Ai,j/pi,j with probability pi,j and
0 with probability 1− pi,j .

In [ST04] we prove

Theorem 6.1 (Random Subgraph). For all α ≥ 1, and even integers k,

P

[
λmax

(
D−1(Ã−A)

)
≥ 2αkn1/k

√
δ

]
< α−k.

This theorem is particularly helpful when we choose k to be approximately log2 n, in which case
n1/k becomes 2. If δ is then larger than log2 n, the bound becomes meaningful.

Our proof of this theorem applies a modification of techniques introduced by Füredi and Komlós [FK81]
(See also the paper by Vu [Vu05] that corrects some bugs in their work). However, they consider
the eigenvalues of random graphs in which every edge can appear. Some interesting modifications
are required to make an argument such as ours work when downsampling a graph that may already
be sparse. In this lecture, we will just consider unweighted graphs, as the proof for this case already
contain all the interesting details. We will allow the graphs to be irregular.

Remark 6.2. A good problem would be to find a sampling scheme under which one can improve
upon this bound. Perhaps one can do it by forcing each node to have at least some minimal number
of neighbors.

6.2 Analysis

Let’s first observe that Ã is probably sparse.

Lemma 6.3. The expected number of edges in Ã is at most δn.

Proof. Let Xi,j be a random variable that is 1 if we keep the edge between nodes i and j, and 0
otherwise. Then, the expected number of edges is

E

 ∑
(i,j)∈E

Xi,j

 =
∑

(i,j)∈E

δ

min(di, dj)
≤

∑
(i,j)∈E

(
δ

di
+

δ

dj

)
= δn.

One can also use a modified Hoeffding inequality to prove that the number of edges is highly
concentrated around its expectation.

To simplify our notation, let’s define

∆ = D−1(Ã−A),
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so

∆i,j =

{
1
di

( 1
pi,j

− 1) with probability pi,j , and

− 1
di

with probability 1− pi,j .

Rather than trying to upper bound the largest eigenvalue of ∆ directly, we will upper bound a
power of it’s trace. Recall that the trace of a matrix is the sum of its eigenvalues and also the sum
of its diagonal entries. So, for every even power k Tr

(
∆k
)

is an upper bound on λk
max, and as k

grows the relation between the two becomes tighter.

The technical part of our argument will involve proving the following bound on the trace.

Lemma 6.4. For even k,

E
[
Tr
(
∆k
)]
≤ n(2k)k

δk/2
.

From this lemma, we may immediately prove the main theorem.

Proof of Theorem 6.1. Lemma 6.4 implies that, for even k,

E
[
λmax

(
∆k
)]
≤ n(2k)k

δk/2
.

Applying Markov’s inequality, we obtain

P
[
λmax

(
∆k
)

> αk n(2k)k

δk/2

]
≤ 1/αk.

Recalling that λmax(∆k) = λk
max(∆), and taking k-th roots, we conclude

P

[
λmax (∆) > α

n1/k(2k)
δ1/2

]
≤ 1/αk.

6.3 The Combinatorial Bounds on the Trace

To bound the trace, we will use the following expression for entries of ∆k.

(
∆k
)

v0,vk

=
∑

v1,...,vk−1

k∏
i=1

∆vi−1,vi .

We obtain an analogous expression for the expectation.

E
[(

∆k
)

v0,vk

]
=

∑
v1,...,vk−1

E

[
k∏

i=1

∆vi−1,vi

]
. (3)
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The first idea in the analysis is to observe that most of the terms in this latter sum are zero. The
reason is that, for all vi 6= vj

E
[
∆vi,vj

]
= 0.

As ∆vi,vj is independent of every term in ∆ other than ∆vj ,vi , we see that the term corresponding
to v1, . . . , vk−1 will be zero unless each edge (vi−1, vi) appears at least twice. Of course, any term
involving an edge (vi−1, vi) for which ∆vi−1,vi is always zero will also contribute zero to the sum.

We will now devise a way of describing every sequence v1, . . . , vk−1 that could possibly contribute
to the sum (we will refer to such a sequence as a walk). We set S to be the set of time steps i
such that the edge between vi−1 and vi does not appear earlier in the walk. We then let τ denote
the map from [k]− S → S, indicating for each time step not in S the time step in which the edge
(vi−1, vi) first appeared (regardless of in which direction it is traversed). We let p = |S|, and note
that we need only consider the cases in which p ≤ k/2, as otherwise some edge appears only once
in the walk. To finish our description of a walk, we need a map

σ : S → {1, . . . , n} ,

indicating the vertex encountered at time i.

Let’s show that S, τ and σ are enough to reconstruct v1, . . . , vk−1. We know that the walk starts
at node v0. We will now show that if we know vi−1, then we can figure out vi. If i ∈ S, then vi is
just σ(i). If i 6∈ S, then we use τ to determine which edge we should traverse. One of its endpoints
will be vi−1, and the other will be vi.

The tuple (S, τ, σ) can encode many walks that are not realizable. We will call σ a valid assignment
for S and τ if if it corresponds to a walk on the non-zero variables of ∆. Formally, the assignment
is valid if

• For each i ∈ S, σ(i) is a neighbor of vi−1 in A, and pvi−1,σ(i) 6= 0. That is, the corresponding
entry in ∆ has some chance of being non-zero.

• For each i 6∈ S, vi−1 ∈
{
vτ(i)−1, vτ(i)

}
.

We have

E
[(

∆k
)

v0,vk

]
=
∑
S,τ

∑
valid σ

E

[
k−1∏
i=0

∆vi,vi+1

]
,where (v1, . . . , vk−1) is the sequence encoded

=
∑
S,τ

∑
valid σ

∏
s∈S

E

∆vs−1,vs

∏
i:τ(i)=s

∆vi−1,vi

 ,

where v1, . . . , vk−1 is the sequence encoded by (S, τ, σ). Each of the terms

E

∆vs−1,vs

∏
i:τ(i)=s

∆vi−1,vi
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is independent of the others, and involves a product of the terms ∆vs−1,vs and ∆vs,vs−1 . Below, we
will prove that

E

∆vs−1,vs

∏
i:τ(i)=s

∆vi−1,vi

 ≤ 1
δ|{i:τ(i)=s}|

1
d(vs−1)

. (4)

This is very useful, because there are exactly d(vsj−1) ways that we could choose σ(j) given that
the choices for σ(1), . . . , σ(j − 1) lead us to reach vertex vsj−1 at step sj − 1. Thus, the presence
of d(vsj−1) in the denominator allows us to cancel out the sum over the choices for σ. This is the
part of the argument that is special for sparse graphs A. We thereby obtain∑

valid σ

∏
s∈S

E

∆vs−1,vs

∏
i:τ(i)=s

∆vi−1,vi

 ≤ 1
δk−p

.

As there are n choices for v0, (we only care about the terms where vk = v0) at most 2k choices for
S, and at most kk choices for τ , we have

E
[
Tr
(
∆k
)]
≤ n(2k)k

ck/2
.

Let’s also observe that ∆i,j is never too big:

Claim 6.5.
|∆i,j | ≤ 1/δ.

Proof. In order for ∆i,j to not be fixed to zero, it must be the case that δ < min(di, dj). So,
1/di < 1/δ, which takes care of one case. On the other hand,

1
di

1
pi,j

=
min(di, dj)

diδ
≤ 1

δ
.

Now, subtracting 1/di from this term cannot make its magnitude exceed 1/δ because 1/di <
1/δ.

Lemma 6.6. For all edges (t, r) and integers k ≥ 1 and l ≥ 0 such that k + l ≥ 2,

E
[
∆k

r,t∆
l
t,r

]
≤ 1

ck+l−1

1
dr

.

Proof. To make life easier, we’ll just prove this in the case k + l = 2. The other cases are similar.
We note that ∆r,t = Ãr,t/dr and ∆t,r = Ãr,t/dt, so we can compute

E
[
∆k

r,t∆
l
t,r

]
=

1
dk

rd
l
t

(
pr,t

(
1− pr,t

pr,t

)2

+ (1− pr,t)

)

=
1

dk
rd

l
t

(
1− pr,t

pr,t

)
≤ 1

dk
rd

l
t

(
1

pr,t

)
=

1
dk

rd
l
t

(
min(dr, dt)

δ

)
.
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To finish the proof, we observe

min(dr, dt)
drdt

=
1

max(dr, dt)
≤ 1

dr
,

and
min(dr, dt)

d2
r

≤ 1
dr

.

7 Graph Partitioning

In this section, I will explain how our nearly-linear time graph partitioning algorithm works. It
will leverage a little-known algorithm implicit in the work of Lovasz and Simonovits. First, let me
review the better-known algorithms and their drawbacks.

• Algorithms based on linear and semi-definite programming [LR99, ARV04, AHK04]. These
algorithms provide very good approximations to the cut of minimal conductance. However,
their running times are at least Ω(n2).

• Spectral algorithms. These make a cut using the second-smallest eigenvector of the Laplacian,
an approach we will discuss more in the next section. These algorithms can be made fast
enough if we are only concerned with the case φ = 1/ logO(1). However, they cannot produce
cuts of almost optimal balance. In fact, it is very difficult to control the balance of the
cuts made by these algorithms, and we do not know how to use them to produce cuts of
approximately optimal balance in time less than Ω(n2).

• Multilevel methods. These are implemented in the packages Chaco [HL94] and Metis [KK98].
They work very well in practice. But, it has not yet been proved that these algorithms have
good worst-case behavior.

The approach indicated by Lovasz and Simonovits is based on an examination of the distributions
of random walks in the graph. While the algorithm it not necessarily fast, we will be able to modify
it to obtain a n logO(1) n time algorithm. To begin, let’s define precisely how we get a random walk
from a weighted graph. We will make our definition from the adjacency matrix of the graph, A,
and we will allow A to have self-loops, which corresponding to diagonal entries in A.

When our random walk is at a vertex u, it will go to node v with probability proportional to au,v:

mu,v
def=

au,v∑
w au,w

.

So that mu,v can be the probability of moving from v to w, I am going to have to do something
I hate: multiplying by row-vectors from the left. So, if p is a probability distribution, then pM is
the probability distribution obtained after one step.
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In matrix notation, we can form the matrix of probabilities, M , by setting

du
def=
∑
w

au,w

D
def= diag(d1, . . . , dn)

M
def= D−1A.

I will call M the walk matrix of the weighted graph.

We will want to restrict our consideration to the case when A is positive semi-definite. To guarantee
that we are in this situation, we will require that A be diagonally dominant. So, mi,i ≥ 1/2 for all
i. Under this condition, it is known that for every initial probability distribution p, the random
walk starting with probability distribution p will eventually approach the steady-state distribution,

q(u) def= du/
∑

v

dv.

This is because q is the eigenvector of the largest eigenvalue of M , and it has eigenvalue 1.

To see why some self-loops are required if we want the walk to converge, consider the graph
composed of two vertices connected by one edge. If we start at one vertex, then after the next step
we will be at the other vertex with probability 1. At each step, the walk will alternate between
vertices, and never converge to any one distribution. Putting the self-loops in prevents this from
happening.

Remark 7.1. Rather than thinking of all this in terms of random walks, one can think in terms of
diffusion of probability mass. We start with some initial distribution of mass. At each step, each
node sends half of its mass to its neighbors, and keeps half for itself. When the walk converges,
each node will have an amount of mass proportional to its degree.

There is a strong relationship between Φ(G) and the rate at which random walks converge. The
easy direction comes from letting S be a set such that Φ(S) = Φ(G) and vol(S) ≤ vol(V )/2. Then,
consider the initial distribution

p0(u) =

{
du/

∑
w∈S dw if u ∈ S

0 otherwise.

The probability that the walk will hit a vertex outside S in one step is∑
u∈S,v 6∈S

p1(u)mu,v =

∑
u∈S,v 6∈S au,v∑

u∈S du
= Φ(S).

One can show that in each successive step, even less probability mass will escape. So, we must wait
at least 1/4Φ(S) steps before even a quarter of the probability mass escapes to S̄, which should
have at least half the probability mass under q.

Lovasz and Simonovits prove a partial converse to this observation. That is, if Φ(G) is big, then
every random walk must converge quickly. Moreover, they show that if the random walk fails to
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converge quickly, then by examining the probability distributions that arise one can find a cut of
small conductance. I will devote most of this hour to proving the theorem of Lovasz and Simonovits.
If there is time remaining, I will indicate how we extend their analysis to obtain a nearly-linear
time algorithm.

Theorem 7.2 (Lovasz-Simonovits). Let A be a non-negative, diagonally-dominant matrix. Let
M be the matrix realizing the corresponding random walk. Let p0 be any initial probability distri-
bution on vertices, and let

pt = p0M
t.

For each t, let πt be a permutation such that

pt(πt(1))
dπ(1)

≥ pt(πt(2))
dπ(2)

≥ · · · pt(πt(n))
dπ(n)

.

For some T ≥ 1, let
φ

def= min
0≤t≤T

min
1≤k<n

Φ({πt (1) , . . . , πt (k)}).

Then, for all W ⊆ V , ∣∣∣∣∣∑
w∈W

pT (w)− q(w)

∣∣∣∣∣ ≤ (√x,
√

σ − x
)(

1− 1
8
φ2

)t

,

where x =
∑

w∈W dw and σ =
∑

v∈V dv.

Before I prove this theorem, let me explain how we use it to find a cut in a graph. We will always
start with a probability distribution p0 that has all its weight concentrated on one vertex. If there
is a cut S in the graph of conductance less than φ, and that vertex is chosen at random from S,
then our preceding analysis shows that, after 1/4φ steps, most of the probability mass will still be
in S. So, φ will have to be small. As φ is the least conductance of the sets {πt (1) , . . . , πt (k)}, we
can then find this set of low conductance by trying out each of these sets (in fact, this can be done
in the time required to sort). As we wish to apply this algorithm in the case φ = 1/ logO(1) n, we
can do this with some efficiency.

However, we will need more efficiency than this to make a nearly-linear time graph partitioning
algorithm. In particular, we want to make sure that our algorithm does not run for much longer
than the size of the set it cuts out. To do this, we study a truncated diffusion, in which we round all
small values in pt to zero. To choose the value of “small”, we choose a size set that we would like
to cut out, s, and then round every value less than s/ logO(1) n to zero. The much of the analysis
in Section 3 of [ST04] is devoted to showing that this rounding does not significantly decrease
the quality of the cut output by the algorithm. We prove [ST04, Lemma 3.1] that the algorithm
outputs a set C such that vol(C) ≤ (5/6)vol(V ), and that for each set S satisfying

vol(S) ≤ (2/3)vol(V ) and Φ(S) ≤ 1/ logO(1) n,

there is a subset Sg ⊆ S such that vol(Sg) ≥ vol(S)/2 that can be decomposed into sets Sg
b for

b = 1, . . . , lg m such that if the algorithm is started from a vertex v ∈ Sg
b and run with target size

2b, then it will output a set of vertices C such that

(4/7)2b−1 ≤ vol(C ∩ S).
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Now, to partition a graph, we run this algorithm starting from random nodes and with random
target set sizes. We show that, after doing this enough, one can find a cut in a graph of ap-
proximately optimal balance, and conductance 1/ logO(1) n, provided that a cut of conductance
1/ logO(1) n exists (with different constants in the big-O’s).

7.1 The Lovasz-Simonovits Theorem

I will now give a proof of Theorem 7.2 for the simple case of regular, unweighted graphs, with
the minimal necessary number of self-loops at each vertex. The proof for the more general case
is almost exactly the same, but requires more care. In the case we consider, the matrix A only
has entries 1 or 0 off the diagonal, and the each diagonal entry equals the sum of the off-diagonal
entries in its row and column.

The genius of the analysis of Lovasz and Simonovits is that it is a potential function argument in
which the value of the potential function is a concave curve. They prove that the curve from one
time step lies strictly below the curve from the previous time step by a factor depending upon φ.
The curve eventually approaches a straight line, and the closer it gets to the line the closer the
walk is to having mixed.

Now, let me tell you how they construct the curve. At time t, they let πt be a permutation such
that

pt(πt(1)) ≥ pt(πt(2)) ≥ · · · pt(πt(n)).

(Recall that we are only considering regular graphs, so the denominators go away) The curve at
time t will be described by a function

It : [0, n] 7→ [0, 1].

For all integers k between 0 and n, we set It(k) to be the sum of the k highest probabilities,

It(k) =
k∑

i=1

pt(πt(i)),

and require that It be piece-wise linear in between. We remark

• The curve contains the points It(0) = 0 and It(n) = 1.

• As pt(i + 1) ≤ pt(i) for all i, the curve It is concave.

• For every non-negative vector c such that for all i, c(i) ≤ 1, we have that

∑
i

c(i)pt(πt(i)) ≤ It

(∑
i

c(i)

)
. (5)

This follows immediately from the fact that pt(πt(i)) is monotonically increasing in i.

As the walk converges, the curve approaches the line from (0, 0) to (n, 1). We will now show that
the curve for each time step of a walk lies under the curve for the previous step.
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Theorem 7.3. For every initial distribution p0, all t, and every k ∈ [0, n],

It(k) ≤ It−1(k).

Proof. We first observe that it suffices to prove the theorem for integral k. Let S be the set
{πt (1) , . . . , πt (k)}, and let R be the set {πt−1 (1) , . . . , πt−1 (k)}. If all the edges connected to
vertices in R had endpoints in S, then we would have

It(k) =
k∑

i=1

pt(πt(i)) =
k∑

i=1

pt−1(πt−1(i)) = It−1(k).

If this is not the case, we will see that It(k) < It(k − 1).

For each vertex πt−1(i), let αi denote the fraction of edges going from this vertex to S. Note that∑
i αi = k. We then have

It(k) =
∑

i

αipt−1(πt−1(i)) ≤ It−1(k),

by (5).

That was easy, so we will push it a little further: we will prove that the curve It has to lie below It−1

by an amount depending on Φ(G). Our proof will make use of an isoperimetric property provided
to G by the self-loops.

Lemma 7.4. Let G be an unweighted graph with 2d edges at each vertex, d of which are self-loops,
for some d. Let S be a set of vertices such that |S| ≤ n/2. Then, for every set of vertices R of the
same size as S, at most a (1− Φ(S)) fraction of the edges attached to S have endpoints in R.

Proof. There are 2d |S| edges attached to S. Let S0 be the subset of vertices in S that are not in
R, and let R0 be the subset of vertices in R that are not in S. Note that |S0| = |R0|.

We know that there are at least 2d |S|Φ(S) edges attached to S that do not have their other
endpoint in S. At most d |R0| of these can have their other endpoint in R0. So, at least

2d |S|Φ(S)− d |R0|

of these edges have endpoints that are not in R0. On the other hand, the self-loops attached to
vertices in S0 do not land in R either, providing d |S0| more such edges. Thus, there are at least

2d |S|Φ(S)− d |R0|+ d |S0| = 2d |S|Φ(S)

edges with an endpoint in S whose other endpoint is not in R.

Theorem 7.5. For every initial distribution p0, all t ≤ T , and every k ∈ [0, n/2], and every t ≤ T

It(k) ≤ 1
2

(It−1(k − φk)) + It−1(k + φk)))

and for k ∈ [n/2, n],

It(k) ≤ 1
2

(It−1(k − φ(n− k))) + It−1(k + φ(n− k)))) ,

where φ is as defined in Theorem 7.2.
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Proof of Theorem 7.5. We will only consider the case k ∈ [0, n/2], and again observe that it suffices
to prove the theorem in the case where k is an integer.

Let S = {πt (1) , . . . , πt (k)}, and let R = {πt−1 (1) , . . . , πt−1 (k)}. We will now view each edge
in the graph as a pair of directed edges in opposite directions, except for the self-loops which we
view as directed self-loops in which the direction is irrelevant. For any such directed edge, e, define
pt−1(e) to equal pt−1(u)/2d, where the edge e goes from u.

Let E0 be the set of directed edges from R to S, let Ein be the set of directed edges into S, not
from R, and let Eout be the set of directed edges from R that do not go to S. We have

pt(S) =
∑
e∈E0

pt−1(e) +
∑

e∈Ein

pt−1(e).

By counting, we find that |Ein| = |Eout|. Moreover,

pt−1(ein) ≤ pt−1(eout),

for all ein ∈ Ein and eout ∈ Eout. So,

pt−1(Ein) ≤ pt−1(Ein) + pt−1(Eout)
2

,

and
pt(S) ≤ pt−1(E0)

2
+

pt−1(E0) + pt−1(Ein) + pt−1(Eout)
2

.

Setting y = |Ein| and applying (5) as we did in the proof of Theorem 7.3, we may conclude

pt−1(E0) ≤ It−1(|E0|) = It−1(k − y), and
pt−1(E0 ∪ Ein ∪ Eout) ≤ It−1(|E0 ∪ Ein ∪ Eout|) = It−1(k + y).

By Lemma 7.4, at least a φ fraction of the edges entering S do not come from R, so we may
conclude y ≥ φk. Thus, as the curve is concave, we find that

It(k) ≤ 1
2

(It(k − y) + It(k + y)) ≤ 1
2

(It(k − φk) + It(k + φk)) .

Theorem 7.5 tells us that we can draw chords below the curve It−1, below which It must lie. Now,
I claim that if I lies beneath J , then the curve underneath all the chords drawn on I will lie
underneath the curve drawn underneath all the chords on J , and that both of these curves are
concave.

Claim 7.6. For a function f defined on [0, n], let the operator chord map the function f to the
function

chord(f) : x 7→

{
1
2 (f(x− φx) + f(x + φx)) , if x ≤ n/2, and
1
2 (f(x− φ(n− x)) + f(x + φ(n− x))) , if x ≥ n/2.

Then, for all concave functions I and J defined on [0, n] such that I lies beneath J , chord(I) lies
beneath chord(J), and both chord(I) are chord(J) concave.
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We now prove

Theorem 7.7. For every initial probability distribution, p0, every k ∈ [0, n] and every time t ≤ T ,

It(k) ≤ min
(√

k,
√

n− k
)(

1− 1
8
φ2

)t

+ k/n.

In particular, for every set of vertices W ,∣∣∣∣∣∑
w∈W

pt(w)− |W | /n

∣∣∣∣∣ ≤ (√|W |,
√

n− |W |
)(

1− 1
8
φ2

)t

.

Proof. Consider the curve
R0(k) = min

(√
k,
√

n− k
)

+ k/n.

It is easy to show that
I0(k) ≤ R0(k), for all k ∈ [0, n].

While we can not necessarily reason about what happens to the curves It when we draw the chords
indicated by Theorem 7.5, we can reason about the chords under R0. If we set

Rt(k) =
1
2

(Rt−1(k − φk) + Rt−1(k + φk)) ,

for k ∈ [0, n/2], and

Rt(k) =
1
2

(Rt−1(k − φ(n− k)) + Rt−1(k + φ(n− k))) ,

for k ∈ [n/2, n], then an elementary calculation reveals that

Rt(k) ≤ min
(√

k,
√

n− k
)(

1− 1
8
φ2

)t

+ k/n.

By Claim 7.6, we have
It(k) ≤ Rt(k),

which proves the theorem.
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