OPTIMIZING GEOMETRIC TRIANGULATIONS
BY USING INTEGER PROGRAMMING
BEETENVEIC K D = AR SH O fE1t

by
Akira Tajima
M5

A Dissertation

Submitted to

The Graduate School of
The University of Tokyo
in Partial Fulfillment of the Requirements
for the Degree of Doctor of Science

in Information Science

ABSTRACT

Geometric triangulation of a point configuration (simply “triangulation” in the
following) has been studied in many fields from various viewpoints. It appeared that
the properties of triangulations in higher dimensions are quite different from those
in two dimensions, and most of these studies have focused on triangulations in two
dimensions.

As for optimization of triangulations, computational geometry has been a main-
stream so far. The bottleneck values, such as the minimum angle, are very important
to guarantee the quality of the triangulation, and have been investigated intensively
in computational geometry. Still, there are very little results in three dimensions,
compared with those in two dimensions. For example, Delaunay triangulation is opti-
mal in many respects in two dimensions, but in three dimensions, it does not lead to
optimality in most respects.

On the other hand, triangulation also has a lot of applications such as the finite
element method (FEM) and computer graphics. Combined with recent advances in the
performance of computers, they require techniques for and insights into triangulations
in higher dimensions, especially in three dimensions. Thus, optimizing triangulations,
especially in three dimensions, has significance in both theory and applications, and
algorithms in computational geometry can not cover all.

In this thesis, we examine the optimality of triangulations by using Integer Pro-
gramming (TP), another promising approach for optimization. Although the approach
is independent of the number of dimensions, we mainly focus on three dimensional
cases, because the gap of difficulties exists between two and higher dimensions and
three dimensional cases are the simplest cases above the gap and also have several
practical applications. We also give further investigations as an IP problem through
computational experiments.

First, we focus on the formulations. There are several independent studies related
to the optimization of triangulations. We generalize and examine them by classifying
them into two groups, those can be reduced to (1) the stable set problem, and (2) the
set partitioning problem.

Based on the investigations into formulations, we select one promising formulation
and present some results and observations of computational experiments. One of the
practical difficulties is that the size of the solvable instances is small. Another is that
we obtain highly fractional solutions from the linear programming relaxation when
the objective function is (1) a bottleneck value, which is popular in computational
geometry, or (2) not weighted, which is also interesting from a mathematical point of
view.

We then cope with the difficulties by investigating them as IP problems and utiliz-
ing methods in IP. We introduce column generation methods to solve larger instances.

The degeneracy of the problem and the geometrical interpretation of the dual problem

are also discussed. To cope with the bottleneck cases, we introduce a binary search
algorithm. For the non-weighted objective function, we devise two novel cutting planes
based on geometrical properties of triangulation. Computational results indicate that
these new cutting planes are practically effective; although traditional odd-cycle cuts
or clique cuts are effective only for very small instances. We also observed that our cut-
ting planes were facet-defining for a small example in three dimensions. The branch
and bound procedure is still required because we obtain fractional solutions after
adding the cutting planes, and we consider an effective way of branching by introduc-
ing lower-dimensional simplices as variables.

We finally consider several applications and derivatives of IP-based optimization
of triangulations, some are of theoretical interest, and some are of practical interest,
mainly in two or three dimensions. For each of them, we give some novel insights
by providing the optimal solution. As straight forward applications of our IP-based
approach, we look into the minimum weight triangulation and data dependent triangu-
lations. In order to address the degeneracy and symmetry of the point configuration,
we introduce the minimum and maximum cardinality triangulations of regular and
quasi-regular polytopes. Dissection, a subdivision slightly different from triangula-
tion and highly related to the degeneracy of the point configuration, is also discussed
mainly focusing on the extension of the formulation. We then consider quadrilateral
and hexahedral mesh generation, which are very important in industrial applications,
by extending the formulation. We also give some computational results.

Our work is not only theoretical; we examine our ideas through computational
experiments, and the above topics contain implementation issues and computational
results respectively. In particular, we could actually optimize middle-sized problems
both in theory and applications, which could not be solved by enumeration or other
alternatives so far, under various measures. The optimal solutions that have never
been obtained so far give us novel insights into problems and objective functions, such

as how far we can actually improve the solution, not just a theoretical bound.

il

WXEE

REGOMBAD =ZMATEHENZ DN TIE, e R AHNLZ ORI N TN D,
BRILCO ZAIBENC OV T, ZRIGOEE &R VRN R 5 2 L v b T
XTBY, BEMEOL I RICICF L LEZLOTH B,

=ATEEIDRIEIEICE U TE, TERERERM AL D7 —F R T Th o7z,
BANAIRER PRy 7 LR DT =ARSEIOREZRGET 5 L TEELRRETH Y,
HERMZOSE CHEENRER LN TWDN, “IRITICHES, ZRIeTieHFE VRN
‘o TRy, WZiE, ZRITICEW T Delaunay =578 % < ORI % 5
LTV BR, ZRILTIRITZE ALY SE2 700,

—FHT, ZABSEITARERES I VY2 —F— 05 7 4y 7 AR EOBER
ARG, EOHBEEENOmMELEH VTS T, KV EKIT, B ZRKITTO =M
BN T 2 EMTCH AN RD LN TWD, DX, ZARSEIORREl, FFiC
“Wono s — Ak, Bk, JOH ERICEETE S L RIRRD, HEEMNTFHT S a—F
DIHTIEAN—=LENRVFETH D,

AFCTIE, BB O FEE UCEEGHELEEZ & 0 B, 20 L6 =ATF5E
DR ZE LT D, FIEARBIOTIEFE L0, ZRCICEIERT L, Tt
ZRoe & =R LD =ARSBIOMIZITHEICRERBIZVRH Y, FOMI SMIT
BB T L EEARISHANFEET 2720 Th 5, bz, FHREHEE
Brhzam L C, BEGHEMEE L TOHTE1T I,

FICER b BEET 2. = AREIORBEIZE L TIZg o0l U CBEFEIT SR
Wb, TZT, MAZINOLE LU BT (1) ZEEATE, (2) £460EIE
DEAFNUCBILEND Z OO 7 V—T1Z5E L, HlRET 5,

Wiz, ERICITET D ZBRICE ST ol THEROERZMFET 5, FEEAY72R
BRO—20%, BT OHEOHEN NS W ETH D, b I —ODOMEST. BIEEM
FRINIEF VIR SR E 72 DG E NS H 2 LT, FHEEMTUELIERY BiFonsd
AN RVRy ZEORRE LR, BUFAYICEERE O E LM Lo B ABESE A Lz & 2z
Z D,

FIT, AT ALY D7 DBEEHEMEE U Toth L7z BT, BEGHH
DFEEIGHT D, L0 KBEORMEZ L =OIFVERELZEHT 5, BEREHERE
&L TORER, B DEMAU 2 ERAEWDIZOVWTHHbE TERT D, R rv
DEEAVIZIZ A BRIEL AT 5, EAELOBRBEEITIE. ZAFSEIOKMM
FMEIC B U OB = 2O Z T 2. BEFD clique, odd-cycle &\ o7z
BIBREmE A B RN TR R A S 200zt U, Hi7c 2 “REHEOUIREE AR Th
DT EEREMERICLVIET S, 29 LR TFHEREZEAL THIKA L U THER
BRIV ETH Y | RIRITTOBIRIZRHET 2EHE B AT 5 2 & THRREEZ 2%t
TLFIELRT,

BT, BEGHE Z AW = AR SBI OIS AR . B Ed D WITEM R
T, ZRICIEB W TRHAT 5, TRENIC YW TREMRE 5252 L1k, #iz
BREEPBELNT WD, Rk LIz =AEaBOFRERBEHE LT, RN =ATF
RN T = EGE=ARSEZRY LD, KBS DR L SHFMEIZ DOV T O DM

1l

BRE LT () EZmEEICER L, /RN mEESE%E 52 %, Dissection /X =AE5r
B2 ETIR LS TH Y AREORLE RERBEDLYRH L0, IOV THE
FACDILIREZE POATRFT D, EHEA~DOISH BIEFIZEE 2 R ou TCOMNMABE, B
L O=RIETOANERGEZHE L, EROIR S & bIZFREERZIT I,

2 < OB TOL TR HHEMERIC L DRFEE > TH 0, FEEB LUER
FERICET 250 A2 B de, FRIZ, BB L OICH TOFHMEOMBEIZ R U, EEICHE ~
BRREOS EREREEZ T, TNLIEBEFEOLFETIIROONRP 22D THY,

g LORATIT AR ERICEOBREREZYWETE 2 \Wolo, Rl LUHERREE
BT DT RMA /LI LN TED,

v

Acknowledgements

I would like to thank Prof. Hiroshi Imai, Department of Information Science, Univer-
sity of Tokyo, who supervised this thesis. He supported me through advises, discus-
sions and in many other ways.

Fairly large part of my work is based on and inspired by the results by Prof.
Jesus A. De Loera in University of California-Davis, and discussions with him. T also
thank Mr. Fumihiko Takeuchi for his suggestions, discussions, and information on
computational geometry.

Discussions with Prof. Kokichi Sugihara in University of Tokyo on mesh generation
technologies were very fruitful. He also invited me to the special interest group on mesh
generation, where I obtained a lot of important comments and information.

Prof. Kenji Shimada in Carnegie Mellon University spared his time for discussion
with me during the 8th international meshing roundtable that he chaired. I know he
was really busy then, and appreciate his valuable comments on meshing applications
and data dependent triangulations.

Porf. Akihisa Tamura in Kyoto University introduced me the generalized stable
set problem, and showed a great interest in my work. It really encouraged me.

I would like to thank Dr. Kenichi Asai, Dr. Mary Inaba, and other members in
Prof. Imai’s laboratory.

I thank Dr. Takayuki Itoh for fruitful discussions, and for kindly supplying us
with his experimental data. Mr. Keisuke Inoue also gave me a lot of comments and
suggestions.

I finally thank my managers and colleagues in IBM Tokyo Research Laboratory.

This work cannot be carried out without their understanding and support.

Table of Contents

Acknowledgements v

1 Introduction

1.1
1.2

1.3

1.4

2 Formulations

2.1

Triangulation and its Applications
Triangulations in Higher Dimensions
1.2.1 The cardinality of triangulations
1.2.2 Triangulatability of non-convex regions
1.2.3 Delaunay triangulation in higher dimensions
Optimalities of Triangulations

1.3.1 Related studies

Sy U Ot e W N N =

Our Contributions

o]

Stable-Set-Problem Formulations
2.1.1 The stable set problem of d-simplices 10
2.1.2 The (generalized) stable set problem of i-simplices (0 <¢<d). 10

2.2 Set-Partitioning-Problem Formulations 15
2.2.1 The set partitioning problem 16

2.2.2 Cocircuit form constraints L 16

2.3 Comparison of Formulations 18
2.4 Objective Functions 23

3 Experimental Analysis on the IP-based Optimization 26
3.1 Problem Size and Required Computation 27
3.2 Optimalities of Triangulation Properties 28
3.3 Some Special Point Configurations 28
331 10pointsinacube 31

3.3.2 Latticepoints 31

3.3.3 Cyclic polytopes 31

3.4 Observations 34

4 Coping with Difficult Cases 37
4.1 Column Generation Methods for Solving Large Instances 37

vi

4.1.1 A geometrical interpretation of column generation 38

412 SPRINT 39
4.1.3 Computational experiments: Primal cases 40
4.1.4 Column generation in dual 0L, 40
4.1.5 Computational experiments: Dual cases 41
416 Remarks 42

4.2 1P Approaches for Fractional Solutions 42
4.2.1 A binary search algorithm for bottleneck optimization 43
422 Cutting planes 44
4.2.3 Improving the branch and bound procedure 56

5 Applications and Derivatives 58
5.1 The Minimum Weight Triangulation 59
5.1.1 The minimum squared weight triangulation 60
5.1.2 Remarks 60

5.2 Regular and Quasi-regular Polytopes 63
5.2.1 Point configurations of regular and quasi-regular polytopes . . 63
5.2.2 Cutting planes and regular polyhedral groups 67
5.2.3 Computational experiments 68
524 Remarks 68

5.3 Dissections 70

5.4

5.5

5.3.1 An integer programming formulation of dissecting convex 3-

polytopes 70
5.3.2 Computational experiments 72
Data Dependent Triangulations 72
5.4.1 Optimization criteria for data dependent triangulations 74
5.4.2 An example of data dependent triangulations 75
Quadrilateral Mesh Generation 77
5.5.1 Indirect methods for quadrilateral mesh generation 78

5.5.2 Applying a matching algorithm to quadrilateral mesh generation 78

5.5.3 Integer programming formulations of quadrilateral mesh gener-

ation 79

5.5.4 Computational experiments 83

555 Remarks 84

5.6 Toward Hexahedral Mesh Generation 84
5.6.1 A procedure for topological subdivision into simple elements . 87

6 Conclusions and Remarks 89
6.1 Future Work 90

vil

List

1.1
1.2
1.3

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

5.1

of Figures

Bistellar flips in 2 and 3 dimensions 3

An example where a dissection differs from a triangulation

Schonhardt’s polytope o 4
Triangulations C the maximal stable sets in the intersection graph . . 11
Four intersections of triangles are derived from an intersection of diagonals 11

Face relations among simplices 13
Intersection of a 0-simplex and a 3-simplex 13
Intersection of a 0-simplex and a 2-simplex, a degenerate case 14
Intersections in a two dimensional triangulation 14
An example of a chamber constraint in 2D 16
Examples of cocircuit form constramnts in 2D 17
An illustration for Lemma 2.3o 21
Varieties of bad angles of tetrahedra 24
Weight of triangulations oo 29
Minimum maximum aspect ratio of triangulations 29
Cardinality of triangulations o000 30
Cardinality of Delaunay triangulation 30
The flattest tetrahedron in triangulations 32
The minimum cardinality triangulation of A(p,1,1). 33
Distribution of positive values: 30 points in 3D, bottleneck 36
Distribution of positive values: 30 points in 3D, non-weighted 36
A small sample of column generation 39
Generating a fractional example in three dimensions 45
Vertices of P(A7) and Peo(A7) oo oo 49
Equations and inequalities to define P(A7) and Poo(A7) 50
Vertices of Poo(Ar) after applying the odd-cycle cut (4.10) 52
The snub cubeo 54
The truncated octahedron 54
An example where UB cuts are effective 55
The region with no points for an edge e in the g-skeleton 59

viil

5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12

5.13
5.14
5.15
5.16
5.17

Weight of triangulations in two dimensions
Squared weight of triangulations in two dimensions
The difference between the MWT and the MSWT
The dodecahedron drawn with kaleido [41]
An example that a perturbation changes the maximum cardinality . .
An example of Von Staudt construction (addition)
Two realizations of a flat tetrahedron
FOn[26]o
Delaunay triangulation
The optimal triangulation to approximate F()
Constant F¢s for all the arcs also contribute to reducing the isolated
triangles. L
Elements in the quadrilateral mesh and the underlying triangulation .
An extended cocircuit form constrainto
ITOT3: heuristic and optimal solutions
ITOT3: a fractional solution

Non-Delaunay edges in the optimal mesh

1X

List of Tables

2.1

3.1
3.2
3.3
3.4

4.1
4.2
4.3
4.4

4.5

5.1

5.2

5.3

5.4
5.5

Size of each formulation

Size and CPU time of the minimum weight triangulation in 2D

Size and CPU time of the minimum weight triangulation in 3D

The minimum and maximum cardinalities of triangulations of A(p, ¢, r)

Primal/dual degeneracy and the effectiveness of LP algorithms

Performance of a row and column generation method
Binary search for the bottleneck value
The effectiveness of the cutting planes
(d — 2)-face cuts applied for the fractional maximum cardinality trian-
gulation of the truncated octahedron in the 1st iteration

The effect of introducing the variables for lower dimensional simplices

The minimum and maximum cardinality of triangulations of regular
and quasi-regular polytopes
The minimum and maximum cardinality dissections of regular and quasi-
regular polytopes
Input data
Comparison of the results

Size of the problems and CPU time, ..

27
28
33
35

42
44
53

55
57

69

Chapter 1

Introduction

1.1 Triangulation and its Applications

Geometric triangulation of a configuration of points has been studied in many fields,
and mainly in computational geometry from various viewpoints such as Delaunay tri-
angulation, the minimum weight triangulation, and the lexicographic triangulation.
Most of these studies have focused on triangulations in two dimensions, and less at-
tention has been paid to triangulations in higher dimensions. One reason is that it
gets much more difficult when the number of dimensions is larger than two.

As a result of the recent advances in the performance of computers, however, the
number of applications using triangulation in three dimensions is growing.

For the finite element method (FEM), a three-dimensional polyhedron has to be
divided into mesh elements. The mesh elements do not have to be triangles or tetra-
hedra. Quadrilaterals or hexahedrals are rather required in practice for numerical
stability and accuracy [37]. But mesh generation using quadrilaterals or hexahedrals
i1s much more difficult, and many of the practical systems with automatic mesh gen-
eration functions use triangular or tetrahedral meshes, especially when the region to
be meshed has a complicated form such as mechanical parts.

There are many meshing techniques and they can be classified into two categories,
direct and indirect methods [67, 55]. Direct methods generate meshes by dividing
the region into small subregions, or paving the mesh elements. On the other hand,
indirect methods first distribute points inside the region and then generate meshes
by triangulating them. The latter kind of approaches are gaining popularity because
of their simplicity and independence of dimensions [67]. Triangulation plays a very
important role within these methods.

Another major application of triangulation is volume rendering, which is a method
for visualizing the results of FEM, or semi-transparent objects such as clouds and
flames. Unlike ordinary computer graphics methods that visualize the surface of ma-
terials, volume rendering meshes the three-dimensional space [69]. Especially for vol-
ume rendering, tetrahedral meshes are often preferred because (1) APIs and hardware

for computer graphics are specialized for handling triangles or tetrahedra, and (2) the

linear interpolation is uniquely defined inside a triangle or a tetrahedron [43].
These applications require techniques for and insights into triangulations in higher

dimensions, especially in three dimensions.

1.2 Triangulations in Higher Dimensions

We first define some special terms. A d-simpler is a d-dimensional polytope that is
the convex hull of d 4+ 1 affinely independent points. For example, a line segment, a
triangle, and a tetrahedron correspond to a 1-simplex, a 2-simplex, and a 3-simplex,
respectively. An i-face of a d-simplex is an é-simplex (0 < ¢ < d) that is the convex
hull of a subset of the vertices of the d-simplex. In particular, a (d — 1)-face is called a
facet. Two d-simplices intersect when the intersection 1s non-empty and is not a face
of at least one of the two simplices. In this thesis, especially for integer programming
formulations, we consider the subdivision of the convex hull of a point configuration
A of n points in d-dimensional space into d-simplices that do not intersect with each
other, but we use the term triangulation for convenience. Especially when all the
elements of A are used in a triangulation, we say that the triangulation is spanning.
A triangulation of polytope P corresponds to the triangulation of the vertex set of P.
We say A is a configuration in a general position when no d+ 1 points lie on the same
(d — 1)-dimensional hyperplane.

When A is in a general position, minimal affinely dependent sets have cardinality
d 4+ 2, and we call them circuits. A circuit Z can be splitted into two subsets Zt
and Z~ according to the signs in its affine dependency equation. Then convex hull
of Z (conv(Z)) can be triangulated in two ways, using the d-simplices defined by
{Z\ {a},a € ZT}, or the d-simplices defined by {Z \ {a},a € Z7} [19]. A bistellar
flip in d-dimensions is defined by the interchange between these two triangulations of
conv(Z2).

As it appeared that the properties of triangulation in higher dimensions are quite
different from those in two dimensions, we will review some of the important results

in the following sections.

1.2.1 The cardinality of triangulations

Triangulations in two dimensions have an important property that “the number of tri-
angles and the number of edges are invariant”, but it does not hold for triangulations
in dimensions higher than two. Figure 1.1 shows bistellar flips in two and three di-
mensions. In two dimensions, a bistellar flip corresponds to the choice of the diagonal
to be used out of the two candidates, and the number of triangles is always two. On
the other hand, in three dimensions, the convex hull of five points in a convex position
can be triangulated in two ways, one into two tetrahedra, and the other into three
tetrahedra. Namely, with this most simple example, the cardinality of triangulations

in three dimensions can have multiple values.

()

Figure 1.1: Bistellar flips in 2 and 3 dimensions

00"

Triangulation (Proper)
Dissection

Figure 1.2: An example where a dissection differs from a triangulation

The upper and lower bound of the cardinality are important for purposes such as
obtaining the volume of a high dimensional polytope [36]. For example in [18], the cases
of three dimensional polytopes are intensively investigated. For general dimensions,
lower bound and upper bound theorems on f-vectors are available [10].

Further, we can consider cases called dissections, where the constituent d-simplices
do not share their faces with their neighbors, namely, it is a subdivision with d-
simplices but is not a simplicial complex (Figure 1.2). When A is not in a general
position, there are cases that are dissections but not triangulations. It i1s theoretically
very interesting to investigate the cases where the upper and lower bound of the

cardinality differ between triangulations and dissections [21].

1.2.2 Triangulatability of non-convex regions

When we consider applications such as FEM, it is very important to cope with non-
convex regions, not only the convex hull of a point configuration. In two dimensions,

it 1s well known that any region can be triangulated. Delaunay triangulation can also

Figure 1.3: Schonhardt’s polytope

be extended to constrained Delaunay triangulation, which aligns the edges specified
to be used in the triangulation. Tt can be obtained in O(nlogn) time, same as in
non-constrained cases [7].

In three dimensions, not all the non-convex regions can be triangulated without
additional (Steiner) points. Figure 1.3 shows Schénhardt’s polytope, which can be
obtained by twisting a prism so that three side faces become concave. Among the six
vertices of this polytope, we cannot choose any four points that constitute a tetra-
hedron inside the polytope. Therefore this polytope cannot be triangulated without
Steiner points. It means that greedy heuristics for triangulation in three dimensions
can get stuck intermediately, with regions like Schonhardt’s polytope left untriangu-
lated.

Further theoretical results on triangulatability of polyhedra are given in [63],

Theorem 1.1 [63] It is NP-complete to decide whether a given three-dimensional

polyhedron can be triangulated without using additional Steiner points.

Theorem 1.2 [63] For any fized integer k > 0, it is NP-hard to determine whether a

given polyhedron can be triangulated with at most k Steiner points.

1.2.3 Delaunay triangulation in higher dimensions

Delaunay triangulation in two dimensions i1s known to satisfy many optimalities such
as maximization of the minimum angle, minimization of the maximum circumcircle,
minimization the maximum minimum-enclosing circle [7]. Many applications, such as
meshing algorithms for FEM, depend on these properties, for example in a way that
generate mesh elements while maintaining Delaunay condition [28].

In three dimensions, however, it only proved to minimize the maximum minimum-
enclosing sphere [58]. We actually observed that some instances of Delaunay triangu-

lation in three dimensions had very flat tetrahedra on the boundary [71].

Further in two dimensions, we can obtain Delaunay triangulation from arbitrary
triangulation by applying O(n?) Delaunay bistellar flips, but we can fall into a local
minimum in three dimensions [59]. This means that local search methods cannot arrive
at the optimal solution when we see triangulation from the view point of optimization.
Recently Santos introduced an example in six dimensions with an isolated triangulation

to which we can apply no bistellar flip [64].

1.3 Optimalities of Triangulations

Delaunay triangulation in two dimensions satisfies many optimalities and is almighty
in a sense, and many applications depends on it. But we have seen in the previous
section that Delaunay triangulation is not so good in three or higher dimensions. The
bottleneck values, such as the minimum angle, are very important to guarantee the
quality of the triangulation, and have been investigated intensively in computational
geometry. Still, there are very little results in three dimensions, compared with those
in two dimensions. Further, as not all the triangulations are connected by bistellar
flips in higher dimensions, it is not so promising to design methods that start from
Delaunay triangulation and apply flips to it.

Thus, optimizing triangulations, especially in three dimensions, has significance
in both theory and applications, and algorithms in computational geometry can not
cover all.

The following indicates the difficulty of problems related to the optimalities of tri-
angulations; obtaining the minimum weight triangulation (MWT) in two dimensions
is a famous problem that is not known to be solvable in polynomial time or not [33],
although there exist algorithms that can obtain the MW'T in two dimensions efficiently
in many cases, by identifying the subset of the MWT called skeletons [23]. See Sec-
tion 5.1 for more details on the MWT. The existence of a polynomial-time algorithm
for triangulating a convex polyhedron with the minimum number of tetrahedra is also

an open problem [9].

1.3.1 Related studies
Integer programming approaches

One of the most promising methods to obtain the optimal triangulation would be
Integer Programming (IP), with objective functions such as the minimum cardinality,
the maximum minimum angle, the maximum minimum aspect ratio, and the minimum
weight! .

There are several studies on triangulation that are related to integer programming:
Takeuchi et al. gave an algorithm for enumerating triangulations in general dimen-

sions by regarding a triangulation as a stable set of d-simplices [72]. Kyoda et al.

! The weight of a triangulation is defined as the total volume of the constituent (d — 1)-simplices.

obtained the MWT in two dimensions by regarding a triangulation as a stable set of
line segments [44].

The set partitioning formulation of triangulation has been discussed in the liter-
ature of computational algebra. The term chambers is used to denote the smallest
cells obtained by introducing all the (d — 1)-simplices for dividing the convex hull.
Alekseyevskaya introduced a set partitioning formulation of triangulation by regard-
ing chambers as elements, and d-simplices as subsets [1]. De Loera et al. further
investigated and refined the formulation algebraically, based on the oriented matroid
theory [19].

Unfortunately, these studies were done independently, from different points of view.

Enumerating triangulations

Another way, and probably only the other way, to optimize triangulations in general
dimensions 1s to enumerate all the triangulations, although optimization is not the
only aim for enumeration.

Masada et al. focused on the enumeration of regular triangulations [47]. A tri-
angulation is regular when it is obtained by lifting the vertices with some coordinate
values in another dimension and taking the facets of the lower hull of the lifted ver-
tices. Given a point configuration, there exists a polytope called the secondary polytope
whose vertices correspond to regular triangulations [34]. Masada et al. applied a ver-
tex enumeration algorithm to the secondary polytope in order to enumerate regular
triangulations. There is an implementation of enumerating regular triangulations,
PUNTOS by De Loera [57], which is also based on the secondary polytope.

However, there are non-regular triangulations even in two dimensions, and we need
to enumerate all the triangulations for optimization purpose. Takeuchi et al.’s study
[72] that we referred above also belongs to this category. TOPCOM is an implementa-
tion by Rambau that can enumerate all the triangulations [73]. To enumerate all the
triangulations, it applies a depth first search by putting d-simplices together one by
one. It can also enumerate the triangulations that are connected with each other by
bistellar flips [60]. This class of triangulations includes regular triangulations, and is
a subset of all the triangulations. It is interesting how further we have to do to cope
with non-regular triangulations, and this implementation would be a good measure.

The largest drawback with enumeration is that it takes a lot of time — and some-
times space, too —, and is too inefficient to use for optimization. Actually the currently
available implementations can only handle very small instances around 10-20 points

in three dimensions.

1.4 Our Contributions

In this thesis, we examine the optimization of triangulations through the use of Integer

Programming (IP). The approach is independent of the number of dimensions, but we

mainly focus on three dimensional cases, because the gap of difficulties of triangulation
exists between two and higher dimensions as we have seen in Section 1.2, and three
dimensional cases are the simplest cases above the gap and also have several practical
applications.

We cover multiple aspects of IP-based optimization of triangulations. Starting
from discussion on formulations, we investigate into our computational experiments
and cope with the difficult cases by introducing techniques in IP. Finally we consider
applications and derivatives of IP-based optimization of triangulations. Our work
is not only theoretical; we examine our ideas through computational experiments,
and the topics contain implementation issues and computational results respectively.
In particular, we could actually optimize middle-sized problems both in theory and
applications, which could not be solved by enumeration or other alternatives so far,
under various measures. The optimal solutions that have never been obtained so far
give us novel insights into problems and objective functions, such as how far we can
actually improve the solution, not just a theoretical bound.

First, we focus on the formulations. There are several independent studies related
to the optimization of triangulations as we referred in Section 1.3.1. We generalize
and examine them by classifying into two groups: those can be reduced to (1) the
stable set problem, and (2) the set partitioning problem. Further for the former, we
give a more efficient formulation as an instance of the generalized stable set problem
by focusing on lower dimensional simplices and thus removing the redundancy. We
also consider several objective functions in both two and three dimensions, which are
interesting from a theoretical or practical point of view.

Based on the investigations into formulations, we select one promising formulation,
and give results and observations of computational experiments, including interesting
examples for which the optimal solution is given for the first time. Our observations
include the degeneracy of the problem, and the two main difficulties, namely, the
small size of the soluble instances and the fractionality of the solutions. We can solve
instances of at most 50 points in three dimensions, which is very large — ("51) rows
and (Z) columns, as we will mention in Chapter 2 — as an IP problem, but still small
if we consider applications. We obtain highly fractional solutions from the linear
programming relaxation when the objective function is (1) a bottleneck value, which
is popular in computational geometry, or (2) not weighted, which is interesting from
a mathematical point of view.

We then cope with the difficulties by investigating them as IP problems and utiliz-
ing methods in IP. We introduce column generation methods to solve larger instances.
The degeneracy of the problem and the geometrical interpretation of the dual problem
1s also discussed. To cope with the bottleneck cases, we introduce a binary search al-
gorithm. For the non-weighted objective function, we devise two novel cutting planes
based on geometrical properties of triangulations. Computational results indicate

that these new cutting planes are practically effective, although traditional odd-cycle

cuts or clique cuts are effective only for very small instances. We also observed that
our cutting planes were facet-defining for a small example in three dimensions. The
branch and bound procedure is still required because we obtain fractional solutions
after adding the cutting planes, and we consider an effective way of branching by
introducing lower-dimensional simplices as variables.

We finally consider several applications and derivatives of IP-based optimization
of triangulations, some are of theoretical interest, and some are of practical interest,
mainly in two or three dimensions. For each of them, we give some novel insights
by providing the optimal solution. As straight forward applications of our IP-based
approach, we look into the minimum weight triangulation and data dependent triangu-
lations. In order to address the degeneracy and symmetry of the point configuration,
we introduce the minimum and maximum cardinality triangulations of regular and
quasi-regular polytopes. Dissection, a subdivision slightly different from triangula-
tion and highly related to the degeneracy of the point configuration, is also discussed
mainly focusing on the extension of the formulation. We then consider quadrilateral
and hexahedral mesh generation, which are very important in industrial applications,
by extending the formulation. We also give computational results.

This thesis is organized as follows. In Chapter 2, we look into formulations of
triangulation as IP problems. In Chapter 3, we give some results and observations
of computational experiments. In Chapter 4, we cope with the difficult cases by
investigating them as IP problems, and by utilizing methods in IP. In Chapter 5,
we introduce some applications and extensions to our IP-based approach. Finally in

Chapter 6, we summarize this thesis.

Chapter 2

Formulations

In this chapter, we look into formulations and objective functions. In particular, we
consider two kinds of IP formulations; one as an instance of the stable set problem
and the other as an instance of the set partitioning problem.

In Section 2.1, we review related studies that regard triangulation as an instance
of the stable set problem. We then give an improved formulation. In Section 2.2, we
review the results in computational algebra that regard triangulation as an instance
of the set partitioning problem. In Section 2.3, we compare the formulations from
several points of view, and finally conclude which one is the most suitable in practice.
Finally in Section 2.4, we introduce several objective functions that are interesting
from a theoretical or practical point of view.

Throughout this thesis, we consider the incidence vector &* of k-simplices, of which
each dimension corresponds to a k-simplex, and has value 1 when the k-simplex ap-
pears in the triangulation and value 0 otherwise. Let =¥ denote the value of the i-th
dimension. We will use #; to refer to the i-th d-simplex, and f; to the i-th (d — 1)-
simplex unless redefined explicitly. In particular, let v; denote the volume of #;, and

¢; denote the value of the objective function for ;.

2.1 Stable-Set-Problem Formulations

In this section, we investigate formulations of triangulation as instances of the stable
set problem. There are several studies on triangulation that are related to the stable
set problem. Takeuchi et al. gave an algorithm for enumerating triangulations in
general dimensions by regarding a triangulation as a stable set of d-simplices [72]. We
obtained the minimum weight triangulation (MWT) in two dimensions by regarding
a triangulation as a stable set of line segments [44].

Based on these, we first introduce a formulation that regard triangulations as
maximal stable sets of d-simplices. As it is not efficient enough, we give an improved
formulation as an instance of the generalized stable set problem by introducing lower

dimensional simplices [71].

2.1.1 The stable set problem of d-simplices

In the intersection graph G(V,E) of d-simplices, V corresponds to the set of d-
simplices, and an arc is defined between two nodes in V when the corresponding
two d-simplices intersect. A triangulation has no pair of simplices that intersect and
thus corresponds to a stable set; further, it is maximal, because another d-simplex
surely intersects with some d-simplices that constitute the triangulation (Figure 2.1).
On the basis of this observation, Takeuchi et al. gave an algorithm for enumerating
triangulations in general dimensions [72].

As we mentioned in Section 1.2, not all polytopes can be triangulated in dimensions
higher than two. For example in three dimensions, there exist cases in which regions
like Schonhardt’s polytope (Figure 1.3) remain untriangulated inside the convex hull,
and the maximal stable set of the tetrahedra is not a triangulation. Namely, not all
the maximal stable sets correspond to triangulations.

Therefore, we have to ensure that the maximal stable set becomes a triangulation
by imposing the condition that the sum of the volume v; of d-simplex ¢; is equal to

the volume Vy of conv(A).

Formulation (SS):

minimize ca?®
s.t.
d

x;

m

{0,1}

xd + l‘;»l < 1 (for 4,7 s.t. t; and ¢; intersect)

Z vixfl = V4

i
Here, checking all the intersections among d-simplices is essentially redundant. For

example, consider triangulations of the convex hull of four points on a plane. We have
four triangles, and four pairs of triangles that intersect. On the other hand, the four
intersections are derived from an intersection of two diagonals (Figure 2.2). In other
words, if we explicitly handle lower-dimensional faces of d-simplices, the formulation

can be more efficient.

2.1.2 The (generalized) stable set problem of i-simplices (0 < i < d)

We then consider the intersections among lower dimensional simplices. In the two-
dimensional cases, we formulated the minimum weight triangulation (MWT) problem
as the stable set problem on the intersection graph of edges (1-simplices) [44]. The
MWT is a famous problem for which it is not known whether a solution can be obtained
in polynomial time [33]. In two dimensions, the maximal stable sets of edges are always

maximum too, and the number of edges M is invariant. Thus the MWT is obtained

10

Geometry Intersection Graph

&

Intersections of Triangles Arcs

\‘\"'\\\\\\\\\
g REIRE X x
\\\;\\\ SRES LT

o

%, o »
LT X i DL
&?“\}‘Y‘“*"“’S&“
\\\\\\\E\\\\\\\\\ sl \m\}&;\;\\-\\.xx\.
SR ey @ H W
&y \\\\\\\ e o RN \\\\\ 5
& N . 3
= N = *\\\‘%*“‘“\‘“\“\m\\ §, T R R
= 3 & Twae su ™
& N S R T T
Ny N =
\\\\\\ N &
¥ &
Sy \\\\\ §\\\\\\
Sy

Triangulations Maximal Stable Sets

Figure 2.1: Triangulations C the maximal stable sets in the intersection graph

Figure 2.2: Four intersections of triangles are derived from an intersection of diagonals

11

by using the following formulation when ¢; denote the length of the i-th edge e;: [44]

minimize ¢zl (2.1)
s.t.
7 € {01}
x4 x; < 1(for4,js.t. e; and e; intersect)

Zx;:M

As the number of edges M is invariant and all the maximal independent set of tri-
angles correspond to triangulations in two dimensions, we can eliminate the constraint
on the cardinality by modifying the objective function and changing it to the maxi-
mization problem. Then the problem becomes the pure maximal stable set problem.

In the following formulation, constant L is set to be larger than all the cost of the

edges. Namely, Vi 0 < ¢; < L.

maximize Z (L —é)x} (2.2)
s.t. d
7 € {01}

x4 x; < 1 (fori,jst. e; and e; intersect)

The linear programming relaxation of the pure maximal stable set problem only
has the values of (0, %, 1) [52], and Nemhauser and Trotter showed that the variables
with (0,1) values had the same values in the original integer programming problem
[63]. Based on this property, we can design an algorithm that gradually reduce the

size of the problem by fixing the integer-valued variables [44].

Extending to higher dimensions

The above formulations (2.1) and (2.2) are valid only in two dimensions, and the
cost and variables are assigned only to edges. Thus we need to extend it to higher
dimensions and assign variables to d-simplices. We first consider the simplest example
in three dimensions, a bistellar flip defined on the convex hull of five points in a
convex position. In the lattice-like structure in Figure 2.3, the ¢-th layer corresponds
to (¢ — 1)-simplices, and straight arcs among layers correspond to face relations of
simplices among different dimensions. For example, edge {01}, {04}, and {14} are
facets of, and necessary for triangle {014}. Thus, the lattice is interpreted as a poset
when we assign a variable to each simplex in such a way that the variable is equal to 1
if the simplex appears in the triangulation, and 0 otherwise. We will call the relations
defined by the poset lattice constraints.

The lattice itself is independent of the configuration, whereas information on in-
tersections depends on the configuration. In Figure 2.3, edge {04} and triangle {123}
intersect. On the other hand, point {4} and tetrahedron {0123} intersect in Figure 2.4.
If we consider a degenerate point configuration, we can observe a intersection between

a point and a triangle (Figure 2.5). Further, if we revisit the two dimensional cases

12

Figure 2.3: Face relations among simplices

Figure 2.4: Intersection of a 0-simplex and a 3-simplex

(Figure 2.6), we can see that in Formulation (2.1) and (2.2) we just considered the
special cases where intersections occur only among edges (1-simplices).

When edge {04} and triangle {123} intersect (Figure 2.3), only one of them can
appear in the triangulation. This can be represented as a constraint that the sum of
the corresponding variables is less than or equal to 1. Suppose edge {04} does not
appear in the triangulation, then it is derived from the lattice constraints that all the
simplices that have edge {04} as faces, such as triangle {014} and tetrahedron {0124},
do not appear in the triangulation, either. Thus, by combining the lattice constraints
and the intersection constraints among simplices of various dimensions, we can reduce

the number of constraints compared with Formulation (SS).

13

N

SN

RN
A/
)
\}‘m

a degenerate case

nd a 2-simplex,

Figure 2.5: Intersection of a 0-simplex a

al triangulation

a two dimension

Figure 2.6: Intersections in

14

The following statement is important to see how far we can reduce the number of

constraints:

Lemma 2.1 All the vertices of simplices are assumed to be wn a general position.
Then, two d-stmplices intersect if and only if they have a k-face and a j-face, respec-

tively, that intersect and satisfy k + j = d.

Proof: As it is obvious to be sufficient, we will show the “only if” part below.

From the assumption that all the vertices are in a general position, when two d-
simplices ¢; and t; intersect, the intersection I;; is a d-dimensional polytope, and has
at least d+ 1 vertices. When at least one of the vertices of ¢;(/¢;) is inside ¢;(/t;), this
vertex(0-simplex) and ¢;(/¢;) intersect and the sum of the numbers of the dimensions
1s equal to d. This pair satisfies the condition.

Now we assume ¢; does not contain vertices of ¢;. If all the vertices of I;; correspond
to the vertices of ¢;, t; contains ¢; inside and we can choose t; itself and a vertex of ¢;
as above. Otherwise, out of at least d + 1 vertices of [;;, there exists a vertex p that
is neither a vertex of ¢; nor ;. p is defined as an intersection of a face f(;) of ¢; and a

face f(;) of t;. We can see that dim(fy;) + dim(f(;)) = d. O

From Lemma 2.1, we obtain a set of d-simplices that do not intersect each other,
by imposing the intersection constraints only on the pairs of simplices whose sum of
dimensions is equal to d, together with the lattice constraints. The volume constraint
is again necessary as in Formulation (SS), for the set to be a triangulation. At last,
we obtain the following formulation that is an instance of the generalized stable set

problem:

Formulation (GSS):

minimize cr?

s.t.
zi e {0,1}(0<k<d)
ef i o<1 (for i,j s.t. k-simplex ¢ and (d — k)-simplex j
intersect, 0 < k < d)

0 (for ¢,j s.t. k-simplex i is a facet of (k + 1)-simplex j,

3]
=

|

3
O
+
=

v

0<k<d-—1)

Z vl = Vg

2.2 Set-Partitioning-Problem Formulations

In this section, we review related studies for formulating triangulation as an instance
of the set partitioning problem.
The set partitioning formulation of triangulation has been discussed in the litera-

ture of computational algebra. We call chambers the smallest cells obtained by dividing

15

Figure 2.7: An example of a chamber constraint in 2D

conv(A) with all the hyperplanes corresponding to (d — 1)-simplices. Alekseyevskaya
introduced a set partitioning formulation of triangulation by regarding chambers as
elements, and d-simplices as subsets [1]. De Loera et al. refined the formulation by
introducing cocircuit form constraints [19]. We will review the detail in the following

sectlons.

2.2.1 The set partitioning problem

We use the term chambers for the minimal cells obtained by dividing the convex
hull with the hyperplanes corresponding to all the possible (d — 1)-simplices. Then,
obtaining a triangulation can be treated as an instance of the set partitioning problem,
by regarding each chamber as an element, and each d-simplex as a subset [1].

Figure 2.7 is a two dimensional example. The shaded chamber can be included in
three triangles, and we can put the corresponding constraints z; + x5 + 3 = 1. Here
we do not have to enumerate the constraints for all the chambers, and Alekseyevskaya

gave a method to choose a sufficient set of chambers. The formulation is as follows:

Formulation (SP):

minimize ca?®
s.t.
zl e {0,1}
d 1 t; contains i-th chamber
Mux =1 Mij =

0 otherwise

2.2.2 Cocircuit form constraints

A large amount of geometric computation is necessary for handling chambers, and it
can derive numerical instabilities depending on the point configuration. Therefore we
consider another type of constraints instead, which are called cocircuit form constraints
in [19] as they correspond to cocircuits when we consider the oriented matroid of the

affine dependency of the point configuration A.

16

e

i

&
oy,

X tx,+x, =1 x4—(x2+x5):0

Figure 2.8: Examples of cocircuit form constraints in 2D

Let fz be a (d— 1)-simplex. Two half-spaces 7-[;; ,H;k are defined by a hyperplane
Hy, containing fr. Let fr U {a} be a d-simplex t; defined by f and an element a of
A. The following constraint holds for all (d — 1)-simplices [19].

E d E d
T, — x;

t,:fku{a},aEAﬂ’H}"k t,:fku{a},aEAﬂ’H;k
1 fi 1s on the boundary and oriented inside
= —1 fi is on the boundary and oriented outside (2.3)
0 otherwise

For (d — 1)-simplices on the boundary (Figure 2.8 left), the above equation is the
same as the set partitioning constraint for the chamber that contains the corresponding
(d — 1)-simplex. For interior (d — 1)-simplices (Figure 2.8 right), it corresponds to the
difference of the constraints between the two chambers that are on both sides and
share the (d — 1)-simplex. If the (d — 1)-simplex appear in the triangulation, both
sums are equal to one, and zero otherwise. The difference is zero in both cases.

It is obvious that the incidence vectors of triangulations satisfy the constraints.
Further, De Loera et al. proved important properties of the constraints by using
matroidal operations and inductions [19]. That is, the cocircuit form constraints are
sufficient to define the affine hull of the incidence vectors of d-simplices that constitute
a triangulation. Let P(.A) denote the convex hull of the incidence vectors of d-simplices

of all the triangulations of A.

Theorem 2.1 [19] The affine span of P(A) is defined by the cocircuit form constraints
for every interior (d — 1)-simplex, together with one non-homogeneous linear equation

valid on P(A).

If conv(A) has a simplicial facet f,, we can consider the cocircuit form constraint
for fi as the non-homogeneous constraint, otherwise we require a chamber constraint

or the volume constraint.

17

Further, when A is in a general position, the rank of the constraints is also available.

Let a* denote an element of A.

Theorem 2.2 [19]

1. The cocircuit form constraints for (d — 1)-simplices that do not have a* as a

verter form a basis. The rank of the cocircuit form constraints is (”51).

2. dim(Pa) = (75,)-

We also consider the cases where 4 is not in a general position in this thesis. Let
Ay, denote a subset of A that is located on H;, and not the vertices of f,. We can put
the non-homogeneous constraint for fi only when f; is on the boundary of conv(A)
and Ay is empty, that is, fi is a facet of conv(A).

Thus, if none of the facets of conv(A) is a (d — 1)-simplex, we need to put another
non-homogeneous constraint. One simple way is to select a chamber h .« and put the

set partitioning constraint for it.

Formulation (CO):

minimize cx?
s.t.
wo€ {01}
> W= X
t,:fku{a},aeAﬂ’H}"k ti=fru{a},a€AnH]
1 fr is on the boundary, oriented inside and Ay =
= —1 fi is on the boundary, oriented outside and .4, = §
0 fx 1s not on the boundary
Z Mz = 1 (for a chamber h-, only if conv(A) has no simplicial facet)
i

2.3 Comparison of Formulations

In this section, we compare Formulations (SS), (GSS), and (CO). We do not consider
Formulation (SP) because Formulation (CO) is proved to be equivalent to Formula-
tion (SP) if the point configuration is in a general position [19].

Table 2.1 shows the size of each formulation, and Formulation (CO) is the most
compact. On the other hand, we can observe that the number of constraints in For-
mulation (GSS) is quite reduced from that in Formulation (SS). This indicates the
effectiveness of handling lower dimensional simplices explicitly. We will further see the
significance of this approach in Chapter 4 in relation to cutting planes and the branch

and bound procedure.

Polytopes defined by the linear programming relaxations

We investigate the relations among the polytopes defined by the linear programming

relaxations of the formulations. As we generally solve the integer programming prob-

18

Table 2.1: Size of each formulation

#variables Ffconstraints #tv/c
Formulation (SS) O(ndt?) O(n?(d+1) 0(1)
Formulation (GSS) | O(n?t?) O(n?t?) 0(1)
Formulation (CO) | O(n?t?) O(n%) O(n)

Ftvariables: total number of variables
Ftconstraints: total number of constraints

#v/c: number of variables in a constraint

lems by first obtaining the relaxed linear programming solutions, the tightness of these
polytopes is an very important factor for evaluation of formulations.

Pss(A), Pass (A), and Pro(A) denote the polytopes that correspond to the linear
programming relaxation of Formulation (SS), (GSS), and (CO), respectively. The
projection of PGSS(.A) to the subspace that corresponds to the variables for d-simplices
is denoted by Pggs(A).

First we look into the relation between the two stable set formulations.

Theorem 2.3 If A is in a general position,
Pss(A) = Pgss(A)

Proof: First we show Pgs(A) C Pggs(A).
Consider a lifting procedure from the space corresponding to d-simplices to the

space corresponding to k-simplices (0 < k < d) by assigning the values as follows:

¥ = max x?"’l (s.t. k-simplex ¢ is a facet of (k 4 1)-simplex j)
J

X

A point pg , lifted with the above procedure from a point p in Psg(A), satisfies
the lattice constraints for PGSS(.A). The volume constraint of Pggs (A) is satisfied by
definition. If we consider the geometry corresponding to pe, from the lifting procedure
and Lemma 2.1, for each pair of simplices (s;, s;) (dim(s;)+dim(s;) = d) that intersect
each other, there exists a pair of d-simplices, ;) and ?;), that has the same weight
as si(/s;), has s;(/s;) as a face, and intersects each other. As pg is lifted from p in
Pgs(A), J:Eli) + J:Elj) < 1. Thus, xfim(s’) + x;“m(sj) = xfli) + J:Elj) < 1. Now pg satisfies
all the constraints for Pgsgs(A) and pg € Pgss(A). Therefore Psg(A) C Pass(A).

Next we show Pggsg(A) C Psg(A). Consider the geometry corresponding to a
point ¢ 1n PGSS(.A). From Lemma 2.1, for each pair of d-simplices t, and t; that
intersect each other, there exists a pair of simplices s,y and s(), such that s is a
face of 14, s) is a face of ¢, and dim(s(q)) + dim(s)y) = d. From the definition of
Pgss(A),

d d dlm(S(b)) dim(S(a)) dlm(S(b))
TaS Ty T TSy L Ty g <L

19

Thus =4 + l‘g < 1. As q¢g also satisfies the volume constraint, the projection of ¢¢
to the subspace corresponding to d-simplices is inside Psg(A). Therefore Pgss(A) C
PSS(.A). (]

We have seen the equivalence between the two stable set formulations. On the other
hand, the set partitioning constraints correspond to cliques in the intersection graph
of d-simplices. Namely, Formulation (SP) and (CO) may give tighter constraints than
stable set constraints. We will prove this by focusing on a situation that is slightly

perturbed from a convex sum of two triangulations.

Lemma 2.2 For any d + 3 points in d (< 3) dimensions in a convexr position, there
exists a pair of points that are not connected by an edge on the boundary of the convex

hull.

Proof: It is obvious for two dimensional cases.

For three dimensional cases, we consider the convex hull C of d42 (= 5) points. As
they are in a convex position, a bistellar flip is defined for C'. One of the corresponding
two triangulations of C' uses an interior edge (see Figure 1.1), and we can take the

both end of the edge as the pair. ad

It 1s still open if we can choose two points that are not connected by an edge, in

dimensions higher than three.

Lemma 2.3 For the conver hull of d43 points in d (< 3) dimensions and in a general
position, there exist two triangulations that share no d-simplex. Further, there exists
a d-simplex that lies inside the convexr hull and does not belong to either of the two

triangulations.

Proof: If the points are not in a convex position, we can consider flips and easily
generate the situation. Thus, we assume that the d+ 3 points are in a convex position.
Let €' denote the convex hull of the points. We show below how to construct two
triangulations that share no d-simplex. See Figure 2.9 for a two dimensional example.

We choose two points p and ¢ that are not neighbors based on Lemma 2.2. Let C),
denote the convex hull of the d+2 points except p. There are exactly two triangulations
of Cp, which correspond to a bistellar flip. There is a d-simplex ¢ that does not contain
g as a vertex. We call one of the two triangulations that contains ¢ as 77, and the
other as 7.7.

Triangulations of C' can be obtained from the triangulations of €}, and a d-simplex
obtained by coning from p. 7¢ and 77 are thus generated from 7, and 7;,‘7, respectively.

Here, tUC'\ G, is the convex hull of d+ 2 points except ¢ and can be flipped from
T9. Then we obtain 7¢. 79 and 79 share no d-simplex. and ¢ does not belong to
T4 nor 74. 0

20

p
g g
T1
N
\\\\\%
&
o8
o
p A

q No common triangle
Both do not contain ¢

Tq

Figure 2.9: An illustration for Lemma 2.3

21

Theorem 2.4 If A is in a general position,
Pco(A) C Pss(A)
Especially when the number of points n > d+ 3 and d < 3,

Pco(.A) C Pss(.A)

Proof: TFirst we show Poo(A) C Pss(A). We choose an arbitrary point peeo in
Pss(A). As A is in a general position and pco satisfies the chamber constraints,
pco also satisfies the volume constraint. For each pair of d-simplices (¢;,¢;) that
intersect with each other, there exists a chamber that belongs to both of them. From
the chamber constraint for it, =& + xf < 1 holds. Now p¢o satisfies the volume
constraints and all the intersection constraints for Pgg(A), and pco € Pss(A). Thus,
Pco(A) C Psg(A).

Then we show Pco(A) C Pss(A) when the number of points n > d+ 3. We choose
d + 3 points out of n points in 4, and obtain two triangulations of the convex hull
C' of the d 4+ 3 points that share no d-simplex based on Lemma 2.3. We can extend
from a triangulation of C' to a triangulation of conv(A) by using coning. We call T4
and 7g, the two triangulations of conv(.A) that are thus generated and are the same
except the interior of C'.

Let ¢ a d-simplex which is in €' and an element of only 74, and ¢,, a d-simplex
which is in C' and is not an element of neither 74 nor 7p. Let ep(/em) denote the
incidence vector of #;(/t,,) — which is also a unit vector — respectively. Also let
x% (/x%) denote the incidence vector of T4 (/7g), respectively.

We consider an incidence vector az‘}:,TB which is slightly perturbed from the convex

d d ...
sum of 9% and x4 as:

1 1 1
2hrp = 5% + 505 —cen T e(vp/vn)em (¢ < 35)

az‘}:,TB satisfies the volume constraint from the definition above. All the d-simplices

in C has the values less than or equal to %, and az‘}:,TB also satisfies the stable set
constraints. Thus, az‘}:,TB € Pgs(A). Here, for some of the chambers in t,,, the chamber
constraints are not satisfied and az‘}:,TB g€ Poo(A). Therefore Poo(A) C Pgs(A) if

n>d+ 3. 0O

Extendabilities of the formulations

In the previous section, we showed that Formulation (CO) is the most compact both
in size and the polytope obtained by the linear programming relaxation. We can say
that Formulation (CO) is the best choice for the optimization of triangulations of a
point configuration.

However, if we consider the triangulatability of non-convex polytopes which is

important from the viewpoint of applications, or the minimal or maximal dissections

22

which are theoretically very interesting and we will further discuss in Section 5.3,
Formulation (CO) can not cover all the situations.

On the other hand, Formulation (SS) and (GSS), which are based on the stable set
problem, can give some insights into the triangulatability of non-convex polytopes by
maximizing the volume to be triangulated. By loosing the definition of intersections
and allowing the situation that d-simplices intersect but do not share interior points,
we can easily cope with dissections.

Thus, the stable set formulations are flexible, and suitable for various extensions.

Spanning triangulations

All the formulations above allow triangulations that do not use points inside the convex
hull. However, triangulations are often assumed to use all the points: we call them
spanning triangulations. In order to avoid non-spanning triangulations, we eliminate
non-empty d-simplices in advance. With Formulation (GSS), we have an alternative
way that fixes the variables for O-simplices (points) to be 1. For random point sets,

the expected number of empty d-simplices is O(n?) [4], which is significantly smaller

n
d+1

convex hull. The lower bound is (,",) [4].

than the upper bound () achieved when all the points are on the boundary of the

2.4 Objective Functions

In this section, we introduce some objective functions that are interesting from a
theoretical or practical point of view. Objective functions can be categorized into
two types. One is simple summation, which only requires us to solve IP on the basis
of one of the formulations we introduced in this chapter. The other is bottleneck
optimization, such as minimization of the maximum. If we try to solve such problems
solely by using IP, the branch and bound procedure just goes progressively deeper
and the lower bound never improves, and thus we cannot obtain a solution as we will
introduce more details in Section 3.4. Binary search is one way to avoid this numerical
instability as we will present in Section 4.2.1.

Some of the following will be further investigated with computational experiments

in Chapter 3.

Minimize the maximum aspect ratio. In applications such as FEM, we should
avoid flatness of triangles or tetrahedra for the sake of computational stability
and accuracy. The most straightforward index of the flatness i1s the aspect ra-
tio (AR), which is defined as the ratio of the radii of the circumscribing and

inscribing spheres.

Maximize the minimum angle. Delaunay triangulation in two dimensions maxi-
mizes the minimum angle. In three dimensions, the angle itself has two varieties;

the dihedral angle and the solid angle. We have two kinds of bad angles, large

23

Large dihedral angle
Large solid angle) Small solid angle

Small dihedral angle

==
S.S. S.S.+ S.D.
/\
_ ‘
\‘:/
SS.+L.D. SS.+S.D.+L.D. SS.+SD.+LD.+LS.

Figure 2.10: Varieties of bad angles of tetrahedra

(> 1/2 — ¢) ones and small (<) ones. They have relations as shown in Fig-
ure 2.10. For example, if a tetrahedron has a small dihedral angle, it surely has
a small solid angle, and if it has a large solid angle, it also has all the kinds of
other bad angles. Thus, tetrahedra are classified into 6 kinds as in Figure 2.10
[8].

There are several meshing algorithms that avoid some of the bad — too large
or too small — angles (see [8], for example), but none for triangulating a point
configuration. We can obtain a solution by specifying the min-max/max-min

angle as the objective function, using our IP-based approach.

Maximize “a tetrahedron shape measure” [25]. Dompierre et al. suggested tetra-
hedron shape measures [25] to be used to measure the quality of a tetrahedron

and therefore a tetrahedral mesh, together with some benchmark test cases.

Definition 2.1 [25] A tetrahedron shape measure is a continuous function that
evaluates the quality of a tetrahedron. It must be wnvariant under translation,
rotation, reflection and uniform scaling of the tetrahedron. It must be marimum
for the regular tetrahedron and it must be minimum for a degenerate tetrahe-
dron. There is no local marimum other than the global maximum for a reqular
tetrahedron and there is no local minimum other than the global minimum for
a degenerate tetrahedron. For the ease of comparison, it should be scaled to
the interval [0,1], and be 1 for the regular tetrahedron and 0 for a degenerate

tetrahedron.

Some researchers in the meshing community started to base their studies on
it. For example, Freitag and Knupp gave an algorithm to improve the quality of

mesh according to one of tetrahedron shape measures by moving the vertices [30].

24

It is also interesting how far we can improve such tetrahedron shape measures

with the given point configuration.

Minimize the number of tetrahedra. The number of tetrahedra varies in three
dimensions, and is an interesting objective function related to the following open

problem:

Open Problem 2.1 [9] Is there a polynomial-time algorithm for triangulating

an arbitrary convex polyhedron with the minimum number of tetrahedra?

A problem to obtain a spanning triangulation of a point configuration with the
minimum number of tetrahedra would have the same or more computational

complexity. Maximization of the cardinality is also an interesting problem.

Minimize the weight. The minimum weight triangulation(MWT) in two dimen-
sions is a famous and interesting problem included in Garey and Johnson’s list
of problems that are neither known to be solvable in polynomial time or not [33].
We will further discuss on the MW in Section 5.1. In three dimensions, the
weight is extended from the edge length to the surface area of the triangles used

in the triangulation.

25

Chapter 3

Experimental Analysis on the IP-based

Optimization

This chapter gives the results of computational experiments, and some observations
and investigations on them. All the experiments were carried out on an IBM RS/6000
model F50 (PowerPC 604e 332 MHz, 768 MB Memory) using IBM Optimization So-
lutions Library (OSL) Ver.2.0 [54] for solving mathematical programming problems.
In particular, for linear programming, we applied the dual simplex algorithm with-
out pre-/post-processing unless explicitly stated. For handling geometric objects, we
used the library CGAL Ver.1.2 [12]. For obtaining Delaunay triangulation, we used
the program Triangle [74] for two dimensions, and the program DeWall [22] for three
dimensions.

Throughout the experiments, we limited triangulations to be spanning, in other
words, to use all the points.

In Section 2.3, we investigated and compared the formulations and concluded that
the formulation using cocircuit form constraints is the most compact way of describ-
ing the problem, and the most efficient way of solving it. Therefore, the following
discussions in this thesis are based on Formulation (CO) in page 18.

From a geometrical point of view, optimizing the bottleneck such as minimization

of the largest aspect ratio, is often required. In such cases, we introduce another

26

Table 3.1: Size and CPU time of the minimum weight triangulation in 2D

No. of points 10 20 30 40 80 160 240 320
No. of rows 45 190 435 780 3160 12720 28680 51040
No. of columns 71 482 1220 2328 11209 47837 109998 197883
IP (sec.) 0.24 072 1.78 4.25 45.91 727.99 3956.20 13801.49
Others (sec.) 0.31 189 6.21 14.24 131.35 1345.19 5283.15 13770.27

[P: CPU time for solving the IP problem
Others: CPU time for the rest

variable z as the upper bound! :

minimize z (3.1)
s.t.
e e {01}

cixf < z (for eacht;)

E d E d
T, — x;

t,:fku{a},aeAﬂ’H}"k ti=fru{a},a€AnH]

1 fi is on the boundary, oriented inside and A, =

—1 fx is on the boundary, oriented outside and .4, = §
0 fx 1s not on the boundary

Z Mz = 1 (for a chamber h-, only if conv(A) has no simplicial facet)

For example, Delaunay triangulation in two dimensions lexicographically maxi-
mizes the minimum angles. But this formulation focuses only on the largest(/smallest)
value, and not in a lexicographic way. It is very difficult to cope with lexicographical
optimization under integer programming framework, but it is still not a large draw-
back, because the lexicographic order is meaningless when the cardinality varies in

higher dimensions.

3.1 Problem Size and Required Computation

We measured the size of the IP problem and the CPU time for obtaining the mini-
mum weight (spanning) triangulation of uniformly distributed point sets in two and
three dimensions (Table 3.1 and 3.2). The size of solvable instances is quite small
in three dimensions. Further, if the point set were in a convex position, all the tri-
angles/tetrahedra would be non-empty, the number of columns would become larger,

and the size of solvable instances would become smaller.

IMax-Min problems can be solved by replacing ¢; with C' — ¢; where C is a constant larger than

max; ¢;

27

Table 3.2: Size and CPU time of the minimum weight triangulation in 3D

No. of points 10 20 30 40 50
No. of rows 120 1140 4060 9880 19600
No. of columns | 194 3771 19638 57735 139982
IP (sec.) 0.42 9.08 148.27 6374.83 66798.32
Others (sec.) 0.69 10.29 48.67 145.28 372.84

3.2 Optimalities of Triangulation Properties

Figures 3.1, 3.2, and 3.3 show the cardinality, the sum of the weight and the maximum
aspect ratio, respectively, of triangulations in three dimensions. We used 10 instances
of cardinality 10, 20, and 30 randomly generated in a unit cube with different seeds.
The figures were drawn with boxplot of MAPLE, which shows 1) a box with a central
line showing the median and a lower(/upper) line showing the first(/third) quartile
respectively, 2) 2 lines extending from the box of maximal length 3/2 the interquartile
range but not extending the range of the data, 3) points that lie outside the extent
of the previous elements. D, W, C, and AR in these figures represent Delaunay trian-
gulation, the minimum weight triangulation, the minimum cardinality triangulation
(MWT), and the triangulation with the minimum maximum aspect ratio, respectively.

Figure 3.1 shows that Delaunay triangulation is not at all close to the MWT in
three dimensions. It is interesting because there are studies to approximate the MWT
with Delaunay triangulation in two dimensions [46].

Figure 3.2 shows that Delaunay triangulation avoids flat tetrahedra quite well.
There 1s still a gap between Delaunay triangulation and the optimal triangulation,
which is obtained by the triangulation with the minimum maximum aspect ratio. We,
however, can say that Delaunay triangulation is good enough if we consider that it
can be obtained efficiently (in O(nlogn) time) and can handle very large instances.

From Figure 3.3 we can observe that Delaunay triangulation tends to contain more
tetrahedra than the other triangulations. However, the maximum cardinality triangu-
lation is quite different from the above four types of triangulations. We can see that it
contains far more tetrahedra than others from Figure 3.4, which shows the distribution
of the minimum, maximum, and Delaunay triangulation’s cardinality with the input

of 10, 20, and 30 points uniformly distributed in a unit cube.

3.3 Some Special Point Configurations

In this section, we introduce some point configurations and their optimal triangulations

that we found interesting.

28

407

301
¢
D
20+ AR
D ¢
AR
10t w
D w € &R
0 0 20 EQ 70
Number of points
Figure 3.1: Weight of triangulations
500000 T
4000001
300000+
2000001
100000+
lm| é T [i = T ,

=

o T W C AR By W C A0
Number of points

Figure 3.2: Minimum maximum aspect ratio of triangulations

29

1407

40

120+
100+
D
801
I? AR
W
601 %I
T]
401 l%l . AR
W LT
¢
20+ #
: =
= oy
P Lg‘ AR
0 0 20 EQ ‘
Number of points
Figure 3.3: Cardinality of triangulations
200+
M%IX
150+
1001 Delalnay
MAX
=
501 Delaunay MIN
=
- MIN
MAX
E3 Delaunay
MIN
0 10 20 30

Number of points

Figure 3.4: Cardinality of Delaunay triangulation

30

3.3.1 10 points in a cube

We first illustrate a simple example of 10 points in a cube, one instance of those we used
in the previous section. In Figure 3.5, the one in the top is Delaunay triangulation. Its
largest aspect ratio is 3112.9, and the tetrahedron is almost a line when we view it from
the side as in the figure. When we minimize the maximum aspect ratio, the flattest
tetrahedron in Delaunay triangulation is splitted into two tetrahedra by introducing
another point as in the bottom-left one in Figure 3.5, and the flattest tetrahedron has
aspect ratio of 79.8. The bottom-right one in Figure 3.5 is the side view of the flattest

tetrahedron. We can see that it is much thicker than in the Delaunay case.

3.3.2 Lattice points

We consider lattice points obtained by aligning unit cubes. Let A(p,¢,7) denote a
point configuration corresponding to the vertices of p x ¢ x r unit cubes that are
aligned and form a hexahedral in total. For example, A(1,1,1) denote 8 points that
correspond to the vertices of a unit cube.

We calculated the minimum cardinality triangulations of some instances of A(p, ¢, r).
The maximum cardinality for A(p, ¢, r) is always equals to 6pgr, because the smallest
possible volume of a tetrahedron is equal to %, which means the upper bound is 6pgr.
We can easily obtain a triangulation of cardinality 6pgr just by triangulating each unit
cube into 6 tetrahedra, of which Delaunay triangulation is an instance.

Table 3.3.2 shows the minimum cardinalities for several A(p,q,r)s. As is well
known, the minimum cardinality triangulation of a cube has 5 tetrahedra, one of
which has the volume of %, and the others have the volume of %. For special cases of
A(p,1,1), we can observe that the minimum cardinality triangulation has one large
tetrahedra corresponding to the one with volume % in the unit cube case, and with
other four tetrahedra with % divided into p tetrahedra (Figure 3.6). Thus we conjecture

as follows:

Conjecture 3.1 The minimum cardinality triangulation of A(p,1,1) has 4p+1 tetra-
hedra.

We can also observe from Table 3.3.2 that As ¢ and r become larger, the gap between

the minimum cardinality and (4p 4+ 1) x ¢ x r becomes larger.

3.3.3 Cyclic polytopes

A cyclic polytope can be constructed by taking the convex hull of the points on the

d

moment curve, namely, with the coordinate (z;, z7,..., z¢), and has the same face

lattice independent of the values of z; [38].

In three dimensions, the lower bound of the number of tetrahedra in a triangulation

n—1

5) —n'+2 (n: points on the convex hull). Cyclic

is n — 3 and the upper bound is (

polytopes are known to have both the triangulations that realize the upper/lower

31

Maximum CircumscriGé

Maximum Min_Enclosi

Total number of tetra:

19

Total Surface area: 7.8093554
Maximum Aspeact Rat\@\\jl 12881

S
$

Minimum Zolid Angy 2\] E-4

Masximum Circums

N zzoade

Maximum Min_Encihsige: L

\

Dela

Total number of tetra: 14

Total Surface area: 7.1248074
Maximum AspectRatioc 7350843
Minimum Solid Angle: 0002215

Triangulation

Zz
W

////
iy,

=

uriay triangulation

Taotal number of tetra:

N \
Total Surface area: 7. 124&\}74\\
- \
Maximum AspectRatio: \3 el]

&

Jooz

///

Minimum Solid Angle:

Masimum Circumscrlb@: 24
- 05

i,

&

72
m

Maximum Min_Enclosj

g

L

iy, -

”
iy,

with the min-max aspect ratio

Figure 3.5: The flattest tetrahedron in triangulations

32

Table 3.3: The minimum and maximum cardinalities of triangulations of A(p, ¢, r)

Point configuration | Minimum Maximum
A(1,1,1) 5 6
A(2,1,1) 9 12
A(3,1,1) 13 18
A(4,1,1) 17 24
A(b,1,1) 21 30
A(2,2,1) 18 24
A(2,2,2) 35 48
A(2,2,3) 49 72

Tetrahedron with volume 1/3
is extended p times.

\-\\\-\\\m\\\»\\\\\\'\\\\\\.\\\

N
oy

\\\
=
R

e
-

Tetrahedron with volume 1/6
is subdivided into p tetrahedra.

Figure 3.6: The minimum cardinality triangulation of A(p, 1,1)

33

bound, respectively [27]. We confirmed this fact by minimizing and maximizing the
cardinality of triangulations of n points on a moment curve {p; = (z;, z%, 23) | z; =
i+1(i=0,...,n—1)}, and looking into the output. We observed that the minimum
cardinality triangulation consisted of n — 3 tetrahedra {(po, pi,pit1,Pn-1) | (1 <i <
n — 3)}, and the maximum cardinality triangulation consisted of (";2) tetrahedra
{(pi,piv1, P pira) [(0 < i< j <m—3)}.

With this point set, Delaunay triangulation is also the maximum cardinality tri-
angulation. But it is just a special case and we can easily generate a counter example
where Delaunay triangulation is not the maximum cardinality triangulation, by mov-
ing the z-coordinates of the points. The maximal cardinality triangulation is known
to be the lower hull of the four dimensional cyclic polytope obtained by lifting the
above point set with the fourth coordinate of z} [27], where Delaunay triangulation

corresponds to the lifting with the fourth coordinate value of (z;)? + (z7)? + (23)? =

2
x?—i—x?—l—x?

3.4 Observations

Through computational experiments based on Formulation (CO) in page 18, we ob-

tained the following observations:

1. Optimizing the bottleneck by using the formulation of (3.1), namely, by intro-
ducing another variable for the upper bound, does not work. We obtain too
many highly fractional variables (Figure 3.7), the branch and bound procedure

just goes down deeper, and the lower bound never improves.

2. For summation-style objective functions such as the minimum weight and the
minimum sum of aspect ratio, we always obtain integer solutions just by solving
the linear programming relaxation except for the minimum cardinality triangu-
lation, in other words, the non-weighted case. Thus, practically we do not have

fractional solutions with two dimensional instances.

3. The problem is highly primal degenerate. While the rank is (";1) (See The-
orem 2.2), the number of d-simplices in a triangulation, namely, the number
of positive coordinates in a integer feasible solution is O(n%—_l) which is much
smaller than the rank. Table 3.4 shows the primal/dual degeneracy and the
time consumed to solve the problem. In the weighted cases, the problem is only
primal degenerate and the dual simplex method is very effective. On the other
hand, in the unweighted cases, it 1s also dual degenerate, and it takes time even
with the dual simplex method. We can observe that the interior point method is
robust against degeneracy, but still it is not fast with our instances. We should

also note that the interior point method requires more memory than the simplex

methods, and the size of soluble instances are smaller.

34

Table 3.4: Primal/dual degeneracy and the effectiveness of LP algorithms

No. of points in 3D 20 30
Cost Weighted Non-weighted | Weighted Non-weighted
Primal degeneracy 814 919 3088 3221
Dual degeneracy 1 357 1 266
CPU-P (sec.) 25.57 40.95 3000.19 3916.51
CPU-D (sec.) 5.36 8.49 139.56 1065.45
CPU-I (sec.) 22.90 19.08 1396.91 1575.72

Primal degeneracy: No. of basic variables with 0 value
Dual degeneracy: No. of non-basic variables with 0 reduced cost
CPU-(P/D/I): CPU time consumed by

the (primal/dual simplex and interior point) method

4. Addition of cutting planes can break the integrality of the solution. Even in
the cases with weighted objective functions, a cut specifying the cardinality re-
sulted in a highly fractional solution. This means that an algorithm that specify
the cardinality then minimize the weight to obtain the minimum(/maximum)

cardinality, does not work in practice.

5. The size of the solvable instances is at most 50 points in three dimensions, and
320 points in two dimensions with the current computer performance and the

naive use of Formulation (CO).

35

12071

100t 2663 fractional variables

min: 0.000101

801 max: 1.000000

601

40

20

0 0.2 0.4 0.6 0.8 1

Figure 3.7: Distribution of positive values: 30 points in 3D, bottleneck

12071
1004 1172 fractional variables
min: 0.000137
801 max: 0.560223
[S10X ¢
401
20
0 0.2 0.4 0.6 0.8 1

Figure 3.8: Distribution of positive values: 30 points in 3D, non-weighted

36

Chapter 4

Coping with Difficult Cases

In Chapter 3, we investigated the IP-based optimization of triangulations of a point
configuration mainly in the three-dimensional space through computational experi-
ments. Although Formulation (CO) in page 18, which uses cocircuit form constraints
introduced by De Loera et al., is a good choice, we observed that there still remained
difficulties to solve practical instances. One is that the size of instances we can solve
is small. Another is that we obtain highly fractional solutions with certain objective
functions.

In this chapter, we face the difficulties by investigating them as IP problems, and
by utilizing methods in IP. In Section 4.1, we introduce column generation methods
to solve larger instances. In Section 4.2, we cope with fractional solutions. First we
apply a binary search algorithm focusing on the cases of the bottleneck optimization.
We then focus on the cases with the unweighted objective function. Based on the
observations of fractional examples, we introduce two kinds of new cutting planes
which utilize the geometrical aspect of triangulations. We also look into the branch
and bound procedure, for we still have fractional solutions after adding the cutting

planes.

4.1 Column Generation Methods for Solving Large Instances

If we consider applications such as FEM, the size of currently soluble instances that we
reported in Section 3.1 is not enough. In this section, we investigate column generation
methods in order to solve larger instances. Although the number of columns is not
exponential (O(n?t!)), and the number of rows is not so small (O(n?)), we believe
there still be an advantage for considering only candidates that can improve the current
solution.

In column generation methods, we start with a subset of columns, and iteratively
add columns that have negative reduced costs and therefore can improve the current

solution, until we can find no more candidates.!

ITo be precise, we have to switch to the branch and bound procedure if the final solution is not

integral, and also generate columns at each node. This procedure is called branch and price.

37

4.1.1 A geometrical interpretation of column generation

First we consider the dual of the linear relaxation of Formulation (CO) in page 18.
Each d-simplex has d + 1 vertices, and within it we can consider d + 1 pairs of a vertex
and a facet. Let coefficient s(i,j) be 1 if the j-th (1 < j < d+ 1) vertex of d-simplex
t; is on the positive side of the counterpart facet, and —1 otherwise. Also let n(é, j)
denote the suffix of the j-th (1 < j < d+1) facet of t;. We assign a variable y;, as the
dual variable that corresponds to the cocircuit form constraint for (d — 1) simplex f
in the primal problem, namely, Formulation (CO). b is the right hand side value of

the constraint.

Formulation (DualCO):

maximize by
s.t. da+1

Z s(4,7)Ynij) < ¢ (for each d-simplex t;)
j=1
Here, the reduced cost corresponding to ¢; is defined as

d+1

é;» = C; — ZS(ZaJ)yn(%])
j=1

This ¢; is the difference between the right hand side and the left hand side of the
constraint in Formulation (DualCO). Only when some of these values are negative,
the current solution becomes dual infeasible and the primal objective function can
have a way to improve.

Thus, starting with a subset of columns, and iteratively solving the current problem
and introducing a set of new columns with negative reduced cost, we can gradually
obtain better feasible solutions. Finally when there is no column with negative reduced
cost, we can say that the current solution is optimal.

Figure 4.1 shows a small sample in two dimensions. We have triangles {;,{5 as the
current solution, t3 and ¢4 are not introduced yet, and ¢1 = ¢1 — (y1 + y2 + y3) =
0,62 = ¢ca — (—ys + ya + ys) = 0 hold. We can safely set ys to zero, and assume
és=c3—(y1+ya+ys) < éa=ca— (y2+ys — ys) without loss of generality. Then we

can consider following four cases:

1. c3<0,¢3 <0
Both ¢3 and t4 are added, and the objective function is improved (¢; 4+ ¢2 >
c3 + 64).

2. ¢3>0,63>0
Neither ¢35 nor ¢4 1s added.

3. C~3 < 0,C~4 Z Oacl +ca>ce3tey
t3 is added, yg is updated to be negative. Then ¢4 < 0. t4 will be added in the

next iteration, and the objective function is improved at that time.

38

Figure 4.1: A small sample of column generation

4. c3< 0,64 >0,c1+c2>e3+ 04
t5 is added, ys becomes negative, but still ¢; > 0 holds. ¢4, will not be added.

When we newly introduce a facet that has never been used by the d-simplices
already took into account, the solution will never be improved until at least one d-
simplex is introduced on both sides, as in Case 1 and 3. In Formulation (DualCO),
taking d-simplex ¢ with ¢; < 0 into consideration corresponds to adding a cut

d+1
Z s(ky) Un(r,g) < ck

j=1

which is violated by the current y. When d-simplices are introduced only on one side
of (d — 1)-simplex f,, which is not on the boundary, the constraints on y,, are one-
sided, and the feasible region of y,, is unbounded. Then y,, can take arbitrary value
and satisfy the constraints without changing the values of other coordinates, and the
objective function never improves.

Thus, we can say that applying bistellar flips is an efficient way in the early stage
of column generation, because it always introduces d-simplices on both sides of the

newly introduced (d — 1)-simplices.

4.1.2 SPRINT

SPRINT is a method to solve large instances of the linear programming problem,
especially when it has many columns, which was applied to practical airline crew
scheduling problems [2]. The idea is similar to column generation, but it takes a
fixed number of candidates with small or negative reduced cost into account in each

iteration. Namely, sometimes candidates with positive reduced cost can be introduced.

39

4.1.3 Computational experiments: Primal cases

We did some computational experiments using small instances of 30 points in three
dimensions. We used simplex methods in each iteration of the column generation. As
we mentioned in Section 3.4, the problem is highly primal degenerate, and it caused
two difficulties.

One is that the primal simplex method is very slow with our problem as we have
shown in Table 3.4. In each iteration, we start from a primal feasible solution that we
have obtained in the previous iteration, and to use the primal simplex method seems
a reasonable way. We however observed that actually it was often slower than solving
with the dual simplex method from scratch.

Another difficulty is that the procedure does not easily terminate; the optimal
solution can often be obtained in early iterations, but still there are several candidates
with slightly negative reduced costs, and it took hundreds of iterations to prove the
optimality. Anbil et al. noted that perturbing the right hand side of the constraints
could reduce the difficulty [2], but we could not observe the improvements in our
experiments.

As we mentioned in Section 4.1.2, SPRINT approach can give a good performance
practically. According to our experiments, it terminated in less than 20 iterations with
SPRINT, while it took more than 100 iterations with the naive column generation.
Still the slowness of the primal simplex method in each iteration remains.

Interior point methods are known to be robust against the degeneracy (e.g. [49]),
and we observed it in Table 3.4. We actually observed that the column generation
procedure terminated soon after the optimal solution was obtained if the interior point
method was used for solving the LP problems. Unfortunately, interior point methods

require more memory than simplex methods, and we cannot solve large instances yet.

4.1.4 Column generation in dual

We have observed that the column generation did not work well because of the primal
degeneracy of the problem. As the column generation corresponds to the primal
simplex method in essence, problems that cannot be solved with the primal simplex
method efficiently also cannot be solved efficiently with the column generation.

On the other hand, our problem can be solved efficiently with the dual simplex
method. Thus, we investigate the column generation in dual, in other words, we are
going to add constraints gradually. As there are much more variables than constraints,
we cannot reduce the total problem size if we take all the variables into account in
advance. We need to increase both variables and constraints gradually during the

procedure. The criteria for variables and constraints to be newly added are:

Constraints (in primal) To be violated by the current solution (*). As a constraint
corresponds to a facet, it means the situation where the sum of d-simplices on

one side of the facet 1s different from that of the other side.

40

Variables (in primal) To have negative reduced cost that is calculated using the

current dual variables (**).

We now introduce a procedure of column and row generation.

1. Initialization: A triangulation which can be obtained efficiently such as Delaunay
triangulation.
Variables: All the d-simplices in the triangulation.
constraints: All the (d — 1)-simplices in the triangulation.

Go to Step 3.

2. Column generation: Add variables according to Condition (**)

If no variable is added, go to Step 4.
3. Solve the linear programming relaxation. Go to Step 2.

4. Row generation: Add constraints according to Condition (*)

If no constraint is added, terminate.

5. Solve the linear programming relaxation. Go to Step 2.
Proposition 4.1 The procedure above gives the optimal triangulation.

Proof: Repeating Step 2 and 3 until no variable is added, is a simple column genera-
tion procedure and gives the optimal solution with the currently available constraints.
Thus, every time we add constraints in Step 4, we obtain the exact solution to the
current problem by calling Step 2 and 3. This is equivalent to the cut generation with

all the columns available, and gives the optimal solution to the original problem. 0O

As it 1s not efficient to loop until there is completely no candidate to be added, we

repeat column generation and row generation in turn in practice.

4.1.5 Computational experiments: Dual cases

We looked at the performance of the row and column generation with sets of points
uniformly distributed in a unit cube as input, and with the sum of the weight as the
objective function to be minimized (Table 4.1). All the linear programming problems
were solved with the dual simplex method.

It terminates at about 40 iterations, and it is faster compared with the primal
column generation method that requires more than 100 iterations. But still it is much
slower than naively solving the whole problem at once. The final size of the matrix 1s
smaller with the row and column generation and it can be useful when we try to solve

large instances exactly.

41

Table 4.1: Performance of a row and column generation method

Points Naive method Column and cut generation
Rows Cols Pivotings | Rows Cols Iterations Pivotings(total)
30 3654 19638 3826 2508 5706 36 61282
40 9139 57735 21702 7209 18822 38 394687
50 18424 139982 105242 | 13631 37938 42 1602016

4.1.6 Remarks

We have observed that the column generation methods both in primal and dual re-
quired smaller number of columns and rows than solving the whole problem naively,
but took much more time and pivotings. Further, the method in dual was better in the
convergence. It indicates that we can solve larger instances than the current largest if
we spend enough time.

On the other hand, the column generation in primal can be regarded as an approx-
imation procedure. As it always maintains the current best feasible solution, we can
stop the iteration intermediately and take it as an approximated solution. We do not
have to solve the whole problem, and can handle larger instances than in Table 4.1
with the current computational power. With the dual method, we go through the
primal infeasible region until the optimal solution is obtained, and we cannot obtain
a triangulation (feasible solution) until the end of the procedure.

Thus, as far as we use the dual simplex method to solve LP problems, we should
apply the column generation in dual when we require an exact solution, and apply the
column generation in primal when we require an approximate solution. If more com-
putational power becomes available and interior point methods and their implemen-
tations further improve, the column generation in primal using interior point methods
would become the best choice for following two reasons: (1) interior point methods
are known to be able to successfully utilize a feasible solution even with primally de-
generate problems, in other words, the warm start works fine, and (2) the iterations
of column generation converge fast with interior point methods as we observed in

Section 4.1.3.

4.2 IP Approaches for Fractional Solutions

In this section, we cope with one of the difficulties we observed in Section 3.4, that is,
we obtain a highly fractional solution from the linear programming relaxation when
the objective function is a bottleneck value, or unweighted.

For bottleneck type problems, we introduce a binary search algorithm. For the
unweighted objective function, we further look into the problem as an IP problem.
Based on the observation of fractional instances, we introduce two kinds of novel

cutting planes which are based on the geometric aspects of triangulation, and specific

42

to the optimization of triangulation. As fractional values can remain even after adding
the cutting planes, we look into the improvement of the branch and bound procedure

by introducing variables correspond to lower dimensional simplices.

4.2.1 A binary search algorithm for bottleneck optimization

As we observed in Section 3.4, when we optimize the bottleneck value of triangulations,
introduction of the additional variable as in Formulation (3.1) does not work at all.
The branch and bound procedure just goes deeper and we cannot solve even small
instances such as 20 points in a cube.

We here introduce a binary search method for bottleneck optimization. We assume
the problem to be the minimization of the maximum, such as obtaining the triangu-
lation with the minimum maximum aspect ratio. Suppose there are N d-simplices,
to,...,tn, and they are sorted in ascending order of their cost. Let U denote the suf-
fix of the d-simplex with the largest cost in a currently available triangulation, and L
denote the suffix such that there is no triangulation only using a subset of d-simplices

{t;]0 < ¢ < L}. The procedure is as follows:

1. Initialization: Set U to the suffix of the d-simplex with the largest value of a

known triangulation (such as Delaunay triangulation). Set L to 0.
2. If L+ 1="U, terminate. Otherwise, set 7 = L—'g—U
3. Solve the minimum-sum-cost problem with {¢;]0 < i < Z}.

4. If the problem is infeasible, set L = Z. Otherwise, set U to the largest suffix of

the d-simplex appeared in the solution.
5. Go to Step 2.

The above procedure does not address the degenerate cases where multiple d-
simplices have the same cost, but it can easily be coped with by grouping the d-
simplices as one. The procedure terminates in O(log n) iterations, because N < (dil).
In Step 3, we solve a weighted summation-style problem. As we mentioned in Sec-
tion 3.4, we only have to solve the relaxed LP problem to obtain an integral solution
in practice. Further, Step 3 turns out to be infeasible in most of the iterations, and
we can stop the calculation in the early phase of the simplex method.

Table 4.2 shows the results of the computational experiments. We used points ran-
domly distributed in a cube as input. To obtain the triangulation with the minimum
maximum aspect ratio, we did solve the corresponding minimum-sum aspect ratio
problem to the optimality only once for each instance. Further experiments would be
necessary to investigate whether we should obtain the optimal solution or stop when

we have found a feasible solution.

43

Table 4.2: Binary search for the bottleneck value

No. of points No. of No. of No. of variables Final U value
iterations feasible itr.

10 8 1 192 163

20 12 1 3732 3419

30 14 1 18799 18097

40 14 1 55241 52118

50 15 1 137757 135785

Thus, by using the above procedure, we can solve instances of bottleneck opti-
mization as large as the instances with the summation-style objective function we can

solve.

4.2.2 Cutting planes

First we investigate small examples of the fractional solutions, then based on the

observation, we introduce two kinds of cutting planes.

Small fractional examples

De Loera et al. introduced an fractional example in two dimensions [19]. A set of
vertices 1,...,5 of a regular pentagon and its center 0 is a point set in two dimensions
and has 20 triangles and 16 triangulations. p € R?° with P{123] = P{234} = P{3a5} =
P{145} = Pli25} = P{013] = P{o24} = P{o3s} = P{o14} = P{o2s] = & satisfies all the
cocircuit form constraints, namely, is a feasible solution of the linear programming

relaxation. It is important to refer De Loera et al.’s result

Theorem 4.1 [19] Let A € R? be a configuration of n points. Pco(A) is equal to
P(A) (the convex hull of the incidence vectors of triangulations of A) in the following
cases:

(i) d = 2 and all points lie on the boundary of a convex polygon.

(ii)d=1.

(iii) n < d+ 3.

This theorem means that the fractional example above is the smallest one in two
dimensions.

The subgraph of the intersection graph of triangles, induced by the nodes corre-
sponding to the triangles of value % that do (/do not) contain vertex 0, constitutes an

odd-cycle of size b, respectively. Both of the corresponding constraints
P{123) + P{234) + P{345) + P{145) + P{125) < 2 (4.1)
P{o13} + P{o24} + P{035} + P{o14) + P{oz5) < 2 (4.2)
cut off p. Namely, traditional odd-cycle cuts can be effective for Formulation (CO) in

page 18.

44

Figure 4.2: Generating a fractional example in three dimensions

From a geometrical point of view, the number of triangles around a point inside

the convex hull must be equal to or larger than 3;

P{o13} + P{o24} + P{o3s} T P{o14}
+pjo2s) + Pio12} + P{o23) + P{o34) + P{oas} + Plo1s) > 3 (4.3)

This also cuts off p.

In three dimensions, we can easily consider the same situation as above; A set
of vertices 1,... 5 of a regular pentagon on # — y plane, and two points 6,7 on z
axis with a positive(/negative) coordinate, respectively (Figure 4.2). Let A7 denote
this point configuration. This corresponds to the lift used to obtain the Lawrence
polytope [78]. The polyhedral cone obtained by just lifting vertex 0 to the third
dimension corresponds to a point configuration of 5 points in a convex position in two
dimensions, and Formulation (CO) gives a integral polytope for it. Thus we need to
use 7 points as above. Again, Theorem 4.1 shows that this is the smallest example in
three dimensions.

q¢c R3Y with {1367} = {2467} = {3567} = {1467} = 9{2567} — 9{1236} — {2346} —
{3456} = 4{1456} = 9{1256} = {1237} = {2347} = 4{3457} = q{1457} = {1257} = % is a
feasible solution, and can be cut off by odd-cycle cuts. Different from the case in two
dimensions, we focus on the number of tetrahedra around the interior edge 6-7. The

sum must be larger than 3 again, and ¢ does not satisfy it.

Convex polygon cuts

As cutting planes for Formulation (2.1) to obtain the MWT in two dimensions, Ky-
oda et al. applied clique cuts and odd-cycle cuts, both of which are well known for
the stable set problem, and convex polygon cuts which use geometric information on
triangulations [44]. Formulation (SS) in page 10 and Formulation (GSS) in page 15,
which are the generalization of Formulation (2.1), are based on the stable set problem
and these cutting planes can cut off fractional solutions of their linear programming
relaxations. We have observed in the previous section that odd-cycle cuts could be

effective for Formulation (CO) in page 18. Here, we investigate the effectiveness of the

45

convex polygon cuts with respect to Formulation (CO).

The convex polygon cut is based on the property that the number of edges is
invariant for triangulations in two dimensions. Thus, this cut i1s valid only in two
dimensions. Although it was originally given as a constraint on the number of edges,

it can also be described as a constraint on the number of triangles as follows:

Definition 4.1 [44] Let V denote a configuration of points in two dimensions, and
My, denote the cardinality of the spanning triangulations of V. Further let x denote
the incidence vector of a spanning triangulation of a point configuration A (A D
V, (A\V) N conv(V) =), and let Dy denote the dimensions of @ whose corresponding

triangles only have the elements of V as thewr vertices. The following inequality holds:

Convex polygon cut for V Z x; < My
i€Dy

Proposition 4.2 A convex polygon cut forms a face of P(A).

Proof: It is obvious that the inequality is satisfied by a triangulation. Further, the
equality holds when the spanning triangulation of V is a subset of the triangulation of

A. O

As we have seen in the previous section, the odd-cycle cuts could cut off the frac-
tional solution obtained using Formulation (CO). On the other hand, we cannot find
a convex polygon cut that is violated by p, namely the convex polygon cuts are redun-

dant. We give a theoretical background to this observation.

Proposition 4.3 A convexr polygon cut forms a face of, and therefore is redundant
for Poo(A).
Proof: If A=V, obviously
Z x; < My.
i€Dy
Thus we assume below A D V.
We consider a point p in Peo(A). For a chamber ¢ inside conv(V), let S, denote
the set of triangles that contains ¢. As p satisfies the chamber constraints,
Z pi <1
i€DyNS,
If the equality holds for all the chambers inside conv(V), we can ignore the region
outside conv(V) and the situation is the same as the case of A =V.
If there exists a chamber for which the inequality holds strictly, we can surely find
a triangle that contains the chamber; whose vertices are elements of V', and within
which the inequality holds strictly. By repeatedly adding the triangle so that the
inequality becomes equality until we have no chamber with strict inequality, we obtain

the situation above where the equality holds for every chamber, and still ZiEDV x; <
My, holds.

46

Thus, a convex polygon cut is always satisfied by a point in Pz (A). From Propo-

sition 4.2 and P(A) C Pco(A), a convex polygon cut is also a face of Poo(A). a

(d — 2)-face cuts

We have shown that the convex polygon cuts, which are based on geometric infor-
mation on triangulation, were not useful. Although we observed that the traditional
cutting planes such as odd-cycle cuts were effective; we can seldom find ones that
cut off the fractional solution when the instance is large and the fractional values are
very small. In other words, the traditional cutting planes for the stable set and set
partitioning problem are not useful in practice.

Figure 3.8 shows that, even in the case of 30 points, the intersection graph is very
large, and the weight of each node is very small. The largest positive value is 0.56 (no
1s in the solution), most of the values are less than 0.1, and we can not find a cutting
plane of the above-mentioned type that cut off the fractional solution.

The lower dimensional simplices, however, have fractional values too, and the situ-
ation changes if we consider the relative values. Further, the cutting planes that were
effective to the fractional examples in the previous section were around a point in two
dimensions, or around an edge in three dimensions. We will generalize them into cuts
around (d — 2)-simplices.

2

We introduce variable xf»l_ corresponding to the i-th (d — 2)-simplex e; which is

d—2

not on the boundary of the convex hull of A.]

takes value 1 if e; appears in
the triangulation, and 0 otherwise. Let S; denote the set of all the d-simplices which
contain e; as a (d—2)-face. Let a;; denote the angle? of d-simplex t; around e;, which

is normalized so that the perigon is equal to 1.

Proposition 4.4 The following equation holds for each (d—2)-face not on the bound-
ary of the convexr hull of A:

xf_z = Z aijx;l (4.4)

JES:

Proof: If ¢; appears in the triangulation and xf_z = 1, the variables corresponding
to the d-simplices that appear in the triangulation and that have e; as a face, are all
equal to 1, and the sum of the dihedral angles around e; of the d-simplices is equal to
the perigon. As angles are normalized so that the perigon is equal to 1, (4.4) holds.
Otherwise, all the variables are equal to zero and (4.4) holds. a

We consider the intersection graph of a set N;(C S;) of d-simplices around e;. Let

C; denote the cardinality of the maximum independent set of N;.

?The dihedral angle in three dimensions. In general dimensions, the d simplex has two (d — 1)-faces
neighboring the (d — 2)-face, and the angle corresponds to the angle between the normal vectors of

the two (d — 1)-faces.

47

Proposition 4.5 The following inequality is valid for any triangulation:

Upper Bound (UB) cut Z l‘;»l < Cad=? (4.5)

JEN:
Proof: If e; appears in the triangulation, at most C; d-simplices out of N; can appear
in the triangulation, namely, ZjeN, l‘;»l < (%, which is identical to the inequality
obtained by substituting J:f»l_z = 1in (4.5). Otherwise, all the variable must be equal
to zero, and (4.5) holds. a

We revisit the two dimensional example, then the variable corresponding to vertex
(= (d—2)-face) 0 is equal to 1 (= % X % x b), the maximum cardinality of the odd-cycle
of size 5 is 2, and (4.2) is the special case of this inequality.

The inequality (4.3) can also be generalized as follows:

Proposition 4.6 The following inequality is valid for any triangulation:

Lower Bound (LB) cut Z J:;»l > 32 (4.6)

JES:
Proof: If e; appears in the triangulation, at least three d-simplices must exist around
e;, namely, ZjeS, xf > 3, which is identical to the inequality obtained by substituting
27?2 =11in (4.6). Otherwise, all the variable must be equal to zero, and (4.6) holds.

K3

O

Not only that the (d — 2)-face cuts can cope with quite small fractional values, but

n

d—l)) and the calculation for finding

also the number of candidates are small (at most (

violated constraints is not expensive.

(d — 2)-face cuts in the example We here revisit the example of 7 points in three
dimensions in Figure 4.2, A7, to see how good (d — 2)-face cuts are. There are 30
tetrahedra and we assign variables to them as x;: {1236}, xo: {1237}, 23: {1246},
xy: {1247}, 250 {1256}, @e: {1257}, a7 {1267}, wg: {1346}, ag: {1347}, x14: {1356},
x11: {1357}, 2190 {1367}, a15: {1456}, @ya: {1457}, w15 {1467}, w16: {1567}, 217:
{2346}, 15: {2347}, x19: {2356}, wog: {2357}, @o1: {2367}, waa: {2456}, o3 {2457},
@oa: {2467}, xa5: {2567}, @as: {3456}, awa7: {3457}, @as: {3467}, 2g9: {3567}, and
x3g: {4567}.

We first compare polytope Poo(A7) defined as the linear programming relaxation
of Formulation (CO) and polytope P(A7) defined as the convex hull of the incidence
vectors of triangulations, by using PORTA, a collection of programs to analyze poly-
topes [56]. Figure 4.3 and Figure 4.4 are the output of PORTA. Figure 4.3 shows the
vertices of P(A7) and Poo(A7). We can see that Poo(Az7) has only one fractional
vertex that corresponds to ¢ in page 45, and both of the polytopes are 10 dimensional.
Figure 4.4 shows that P(A7) and Pco(Ay) differ in only one inequality:

—T21 + Tas5 — T30 S 0 (47)

48

Vertices of P(Ax):

DIH = 30

Foooocooo-d—dd—-—-0co0Oo

SEC
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0

EID

: 10

DIMENSION OF THE POLYHEDROD

Vertices of Po (Ar):

DIH = 30

000 1/21/2 1/2 1/2 0 1/2 0

cocococoooco--d—-—HoO0OCO

: 10

DIMENSION OF THE POLYHEDROD

Figure 4.3: Vertices of P(A7) and Pco (A7)

We observed that this inequality was satisfied with equation by 10 vertices of P(A7),
and the convex hull of the 10 vertices was a polytope of dimension 9. Namely, P(A7)

has an additional facet defined by this inequality.

We then check by using PORTA whether (d — 2)-face cuts are facet-defining or

Let S, (/Sp) denote the indices corresponding to the tetrahedra congruent to

not.

{7,16,21,28,30}, S, =

tetrahedron {1267} (/{1367}), respectively. Namely, S,

E £
3 z .8
P}
[5s] —
-
—_ ©
1~PJ —
2 5
o
— el
— o
= g
— =S
o S
[\l a3
—
— =) —_
o = $z
o ~ o~ 0
= = b
2 c K
= R
< /M
= = +
s) Py
..)
Gy — [
o & had .
[}
= m o ZE
(3} = 5] — =
g - N] bl
© 'z 0 ™ ™
[
M W 3 VI VI
~ . [}
T @ 8T
o 9 ~Nho Wd
b=
= g C% [
g G e = -
o 5] 5]
- &t - -
n - - m %) 1)
- 8 w w
o= ho L
T < 2
o vo=
2 2
g el g
2] — o
N2
-0 S T
N - 2
S © s}
-
—)
-~ © 0
o & :
~ O <

i€Sy

1€S,
The LB cut (4.6) around edge {67} is:

> 3zt

Li

D

i€SLUS,

49

Equations and inequalities to define P(A7):

DIH = 30

VALID

00000010000011100000100000010°0

INEQUALITIES_SECTION

1)

2) +x1-x2
3)
4)
5)
6)
7
8)
9)
10)
11)
12)
13)
14)
15)
16)
17)
18)
19)
20)

+x2

1)
2)
3)
4)
5)
6)
7
8)
9)
10) -x18
11)
12)
13)
14)
15)
16) +x18

+X
-X!

EID

-x4

+x3-x4

20
20
-x21

+x12 -x15-x16
+x13-x14
+x5-x6
+x10-x11
+x14-x15
+x17-x18
+x8-x9
-x9 -x11-x12

+x6 -x12 +x14

+x14

+x16 -x18
+x16

+x11 +x15+x16

+x12 -x15-x16
-x14+x15

+x15+x16

+x18

-x28
-x30
-x25
-x29

-x27 +x29

-x24
+x25
+x23+x24

-x29-x30

-x28 +x30

-x24+x25
+x25 -x30
-x28-x29

+x27+x28

mrooocooOCcoCOOCOOOO O

Equations and inequalities to define Po o (A7):

DIH = 30

VALID

00000010000011100000100000010°0

INEQUALITIES_SECTION

1)
2)
3)
4)
5)
6)
7
8)
9)
10)
11)
12)
13)
14)
15)
16)
17)
18)
19)
20)

+x1-x2

1)
2)
3)
4)
5)
6)
7
8)
9)
10)
11)
12)
13)
14)
15) +x18

+X

-X!

-x18

EID

+x3-x4

20

20

-x21

+x21

-x21

Figure 4.4: Equations

+x12 -x15-x16
+x13-x14
+x5-x6
+x10-x11
+x14-x15
+x17-x18
+x8-x9
-x9 -x11-x12

+x6 -x12 +x14

+x14

+x16 -x18
+x16

+x11 +x15+x16

+x12 -x15-x16
-x14+x15

+x15+x16

+x18

-x28 <=
-x29 <=
-x23

+x29

-x30

+x25 -x29-x30

-x28-x29

+x23+x24
-x24+x25
-x24 -x28

+x27+x28

+x30

roococoococoOoOCcOoOOO OO

50

+x19-x20

+x19-x20

0
0

0

0

0

0

0

0

0

0

-x20-x21 0
+x23 +x27 +x30 == 1

+x25 -x29-x30 == 0

+x20 -x244x25 -x27-x28 0
+x26-x27 0

0

+x22-x23 0

+x21 +x24-x25 0
-x23-x24 0

-x24+x25 -x28-x29 0

== 0

0

0

0

0

0

0

0

0

0

-x20-x21 0
+x23 +x27 +x30 == 1

+x25 -x29-x30 == 0

+x20 -x244x25 -x27-x28 0
+x26-x27 0

0

+x22-x23 0

+x21 +x24-x25 0
-x23-x24 0

-x24+x25 -x28-x29 0

and inequalities to define P(A7) and Poo(A7)

Thus, the UB and LB cuts are identical in this case and can be rewritten as:
—21‘7 —|— 19 —|— 15 — 2l‘16 — 2l‘21 —|— Lo4g —|— Lo — 2l‘28 —|— Log — 2l‘30 S 0 (49)

We observed that all the vertices of P(A7) satisfied (4.9), 10 of them satisfied (4.9)
with equation, and the 10 vertices were the same as in the case of (4.7). Thus, (4.9)
defines the one and only facet that is unique to P(A7) and is not valid for Peo(A7).

We should consider two practical issues; (1) the dihedral angles are not always
rational, and (2) the cuts can vary according to the point configuration even if the
situation is combinatorially the same. For the former, we can safely perturb the
dihedral angles so that the values are rational, provided that the range of perturbation
is enough smaller than the smallest positive dihedral angle.

To investigate into the latter, we consider a situation where pentagon {12345} is
not regular and the dihedral angles around edge {67} of tetrahedra {1267}, {2367},
{3467}, {4567}, and {1567} are &% 22 20 2L and 2Z yegpectively. In this case,

100> 100> 100’ 100> 100>
the LB cut and the UB cut are:
6 112 34 B 0T
——z — — 15 — ——T16 — —7 —
10071007 1007 T 1007 1007 % T 1007
O R L . LI
10072 1007 " 1007 1000 T
36 26 MM 22
—T7— ——Ti12— —T — —T — —T
100010002 100" " 1007 " T00"* T 100"
20 40 15 42 e 0
——= —Tg — —T — =
10072 " 1007 100" % " 100 ¢

We confirmed by using PORTA that both of them were satisfied with equation by the
same 10 vertices of P(A7) as in the case of (4.7), and therefore the cuts above were

facet-defining.

The odd-cycle cuts in the example We should also look into the odd-cycle cuts
for comparison. We can consider two odd-cycle cuts corresponding to (4.1), one using

point {6} and the other using point {7}:

IA

1+ x5+ 213+ T17 + T2 2

To+xe+ 14+ T18+ 20 < 2

Both of them were satisfied with equation by the same 10 vertices of P(A7) as in the
case of (4.7), and were facet-defining.

The odd-cycle cut corresponding to (4.2):
T12 + 15 + T2a + Tas + Tag < 2 (4.10)

was satisfied with equation by only 5 vertices, the convex hull of them was a polytope

of dimension 4, and (4.10) just defined a face and did not define a facet of P(A7).

51

DIH = 30

CONV_SECTION

C 1) 2/5 2/5 0 03/53/50 0 0 0 0 2/5 2/5 2/5 2/5 0 2/5 2/5 1/5 1/5 0 0 0 2/5 2/5 3/5 3/50 2/50
(2) 2/5 2/5 0 03/53/50 0 0 0 0 2/5 2/5 2/5 2/5 0 3/5 3/5 0 00 1/51/5 2/5 2/5 2/5 2/5 0 2/5 0
(3) 2/5 2/5 1/5 1/5 2/5 2/5 0 0 0 0 0 2/5 3/5 3/5 2/5 0 3/5 3/5 0 00 0 0 2/5 2/5 2/5 2/5 0 2/5 0
(4) 3/5 3/5 0 02/52/50 0 0 1/5 1/5 2/5 2/5 2/5 2/5 0 2/5 2/5 0 00 0 0 2/5 2/5 3/5 3/50 2/50
(5) 3/5 3/5 0 02/52/50 1/5 1/5 0 0 2/5 3/5 3/5 2/5 0 2/5 2/5 0 00 0 0 2/5 2/5 2/5 2/5 0 2/5 0
« 6) 0 0 0 0 0 01 0 0 0 0 0 0 0 01 0 0 0 01 0 0 0 0 0 01 01
« D 0 0 0 0 0 01 0 0 0 0 0 0 0 01 1 1 0 00 0 0 1 0 0 00 01
« 8) 1 1 0 0 0 00 0 0 0 0 1 0 0 01 0 0 0 00 0 0 0 0 0 01 01
« 9 0 0 0 0 1 10 0 0 0 0 0 0 0 00 1 1 0 00 0 0 1 1 0 00 01
(10) 1 1 0 0 0 00 0 0 0 0 1 0 0 01 0 0 0 00 0 0 0 0 1 10 10
1) 1 1 0 0 0 00 0 0 0 0 1 1 1 10 0 0 0 00 0 0 0 0 0 01 00
(12) 0 0 0 0 0 01 0 0 0 0 0 0 0 01 0 0 0 01 0 0 0 0 1 10 10
(13) 0 0 0 0 1 10 0 0 0 0 0 0 0 00 0 0 1 10 0 0 0 0 1 10 00
(14) 0 0 0 0 1 10 0 0 0 0 0 0 0 00 1 1 0 00 1 1 0 0 0 00 00
(15) 0 0 0 0 0 01 0 0 0 0 0 1 1 10 0 0 0 01 0 0 0 0 0 01 00
(16) 1 1 0 0 0 00 1 1 0 0 0 1 1 00 0 0 0 00 0 0 0 0 0 00 00
17) 0 0 0 0 1 10 0 0 0 0 0 0 0 00 0 0 0 01 0 0 0 1 0 01 01
(18) 0 0 1 1 0 00 0 0 0 0 0 1 1 00 1 1 0 00 0 0 0 0 0 00 00
(19) 1 1 0 0 0 00 0 0 1 1 0 0 0 00 0 0 0 00 0 0 0 0 1 10 00
(20) 0 0 0 0 0 01 0 0 0 0 0 1 1 10 1 1 0 00 0 0 1 0 0 00 00
21) 0 0 0 0 1 10 0 0 0 0 0 0 0 00 0 0 0 01 0 0 0 1 1 10 10

EID

Figure 4.5: Vertices of Poo (A7) after applying the odd-cycle cut (4.10)

Further, we added (4.10) to Pco(A7) and obtained another polytope with 5 fractional
vertices (Figure 4.5).

If we afford to spend more time for computation, we can tighten (4.10) by lifting
(see [51], for example). The lifting procedure for an odd-cycle is; (1) find a variable
that is connected to all the variables of the inequality in the intersection graph, in other
words, find a tetrahedron that intersects all the tetrahedra in the cut, and (2) set the
coefficient for the variable to be equal to the right hand side value of the cut. The
procedure should be repeated until we can find no additional variable. The resulting
cut can vary according to the order we introduce additional variables. For (4.10), we
can add the 5 tetrahedra that have vertex {6} and intersect edge {67}, such as #3:
{1246}.

T12 + L15 + Toa + Tas + Bag + 203 + 205 + 2210 + 2210 + 2002 <2 (4.11)

This lifted inequality was satisfied with equation by the same 10 vertices of P(A7) as
in the case of (4.7), and was facet-defining.

Fractional cut

When the objective function is unweighted, we can also add a cutting plane that cut

off the fractional part of the current value of objective function C';:

St x> [Cy] for minimization problems (4.12)
St af <|Cy] for minimization problems .

We can update this constraint if the lower bound (/upper bound) is updated during
the branch and bound procedure. It can further bring additional (d — 2)-face cuts to
be applied.

52

Table 4.3: The effectiveness of the cutting planes

points NONE UB LB UB&LB UB,LB&FRAC

Cuts(UB) - 7 - 5 3
Cuts(LB) - - 20 20 8
iterations 20 - 5 3 2 1
Lower Bound (Optimal:38) | 37.286 37.361 37.688 37.688 38.000
fractional 131 187 80 85 0
Nodes in B&B 12 15 4 4 1
Cuts(UB) - 0 - 1 17
Cuts(LB) - - 61 62 102
iterations 30 - 0 3 4 14
Lower Bound (Optimal:61) | 58.801 58.801 59.310 59.311 60.000
fractional 1172 1172 1271 1256 1407
Nodes in B&B 326 326 155 159 289

Computational results

We investigated the effectiveness of the two kinds of (d—2)-face cuts with the instances
of 20 and 30 points randomly generated in a unit cube, which gave fractional solutions
under the non-weighted objective function. As the objective function is unweighted,
we also add the fractional cut in (4.12).

We first repeated solving the relaxed LP and adding cuts, until we could find no
additional cuts, then transferred to the branch and bound procedure. We used the
mixed integer programming module of (OSL) [54] for the branch and bound. Table 4.3
shows the results. Each row corresponds to the number of the UB cuts, the number of
the LB cuts, the number of iterations of adding cuts, the lower bound of the objective
function obtained after adding cuts, the number of fractional variables after adding
cuts, and the number of nodes investigated during the branch and bound, respectively.
Each column corresponds to the result with the pure branch and bound, the UB cuts,
the LB cuts, both of the two kinds of cuts, and both of them plus the fractional cut,
respectively.

We can observe that the LB cuts are especially effective, whereas the UB cuts
do not work well. With the case of 20 points, combined with the fractional cut, the
(d — 2)-face cuts brought integer solutions. On the other hand, with the case of 30
points, the addition of the fractional cut resulted in the increase of (d — 2)-face cuts,
and also the increase of the branch and bound nodes. This may be related to the fact

that the rows corresponding to (d — 2)-faces are dense.

Further observations

We did further experiments on these cutting planes in the previous section to obtain

the minimum and maximum cardinality triangulations of regular and quasi-regular

53

Figure 4.6: The snub cube Figure 4.7: The truncated octahedron
drawn with kaleido [41] drawn with kaleido [41]

polytopes, which we will look into precisely in Section 5.2.

One of the most successful cases is the minimum cardinality triangulation of the
snub cube (Figure 4.6). We had 46 fractional values after solving the linear program-
ming relaxation, and applied 6 LB cuts. Then we obtained an integral solution.

We mentioned in the previous section that the LB cuts worked better, but we
also observed an example where only the UB cuts were effective. Figure 4.8 shows an
example that we encountered when we obtained the maximum cardinality triangulation
of the dodecahedron (Figure 5.5). We had six tetrahedra sharing an edge ' (Figure 4.8
left). In the figure, two points 77, By and E are coplanar, and so as Ty, B2 and E, and
15, By and F.

The tetrahedron defined by 71, B2 and E (denoted as {71 Ba}) share a facet with
{BsT5}. Also, {BsT5} share another facet with {75B;}. Thus, the six tetrahedra in
the figure satisfy the cocircuit form constraints if they have the same weight. Actually
we had a fractional solution of weight g for the six tetrahedra, and g for E.

Here, %—1—%—1—%—1—%—1—%—1—% = % x 3, and the corresponding LB cut does not cut off the
fractional solution. We, however, can find two UB cuts, for {B172 }{B2T5}{Bs71}, and
for {11 Bo}{T>B3}{T5B,}, where 2 + 2 4+ 2 £ 4. It is important that the traditional
clique cuts cannot be applied to this situation.

Table 4.4 shows the (d— 2)-face cuts applied in the first iteration in order to obtain
the maximum cardinality triangulation of the truncated octahedron (Figure 4.7). We
can see that the sum of the fractional values of the tetrahedra that were involved in
a cut is very small, and the traditional cuts such as clique cuts and odd-cycle cuts

cannot be applied.

54

Figure 4.8: An example where UB cuts are effective

Table 4.4: (d — 2)-face cuts applied for the fractional maximum cardinality triangula-

tion of the truncated octahedron in the 1st iteration

UB/LB | Sum of tets. Edge frac. Tets/Edge Constraint
LB 0.636464 0.245102 2.596728 >3
LB 0.331867 0.121826 2.724102 >3
LB 0.139087 0.053945 2.578339 >3
LB 0.597477 0.211438 2.825783 >3
LB 0.223356 0.088990 2.509907 >3
LB 0.136315 0.045644 2.986492 >3
LB 0.212868 0.084624 2.515457 >3
LB 0.723793 0.244189 2.964070 >3
LB 0.567697 0.221794 2.559575 >3
LB 0.420413 0.167228 2.514019 >3
LB 0.452749 0.179517 2.522038 >3
LB 0.269799 0.097988 2.753401 >3
LB 0.368873 0.138173 2.669653 >3
LB 0.120992 0.043267 2.796406 >3
LB 0.572800 0.229120 2.500000 >3
LB 0.703570 0.248525 2.830989 >3
UB 0.155438 0.121826 1.275898 <1
UB 0.088643 0.074308 1.192921 <1
UB 0.189819 0.187535 1.012179 <1
UB 0.259264 0.227814 1.138052 <1

%)

4.2.3 Improving the branch and bound procedure

As fractional values can remain after adding the cutting planes, 1t is also important
to improve the branch and bound procedure.

There are several techniques to accelerate the branch and bound procedure, in-
cluding prioritizing variables, preprocessing, special ordered sets, and many of them
are implemented in commercial codes and automatically applied [76]. As commercial
codes are tuned to work good for a lot of test problems, we can tune the performance
by introducing some domain specific information.

In particular, the choice of branching variables is a major issue. As Formula-
tion (CO) has d-simplices as variables, any branching corresponds to “whether to use
(= 1) the d-simplex in the triangulation or not (= 0)”. Apparently, the search space are

49

not reduced so much in the “= 07 case (we will call this case forgetting the d-simplex)

as In the

= 17 case (we will call this case fizing the d-simplex). Consequently, the
branch and bound tree gets unbalanced.

We then consider improving the branch and bound procedure by introducing vari-
ables with which the search space can be divided in a balanced way. We again focus
on the lower dimensional simplices. Suppose we introduce variables corresponding to
edges (1-simplices) and triangles (2-simplices) in three dimensions. Fixing a tetra-
hedron corresponds to fixing 6 edges, and fixing an edge means less than fixing a
tetrahedron. On the other hand, forgetting an edge corresponds to forgetting all the
O(n?) tetrahedra that have the edge as a face, and means quite more than forgetting
a tetrahedron. In the same way, forgetting a triangle corresponds to forgetting O(n)
tetrahedra.

We can use the equation for (d — 2)-face (4.4) to introduce variables for edges. For
variables for triangles, we can modify the cocircuit form constraints (2.3) so that the
two summations have the same value as the variable for the facet;

d_ d_ .d—1
E T, = E Ty = Iy

t,:fku{a},aEAﬂ’H}"k t,:fku{a},aEAﬂ’H;k

It is still open (1) how we can define the variables for simplices whose number of
dimensions are lower than d — 2 in general dimensions, and (2) which number of

dimensions 1s the most effective to balance the branch and bound tree.

Computational experiments

We examined the effectiveness of the variables for lower dimensional simplices through
the maximization of the cardinality with 20 points uniformly distributed in a unit
cube. As we used the mixed integer programming module of OSL [54] and could not
control the branching strategy, we just defined all the corresponding variables, passed
them to the module, and observed the results.

Table 4.5 shows the results. Although the number of nodes was reduced when the

variables for triangles are introduced, the total CPU time always took longer than the

56

Table 4.5: The effect of introducing the variables for lower dimensional simplices

Variables B&B nodes No. of pivotings CPU time for B&B

Tets 18 3579 26.33

Tets & edges 22 8264 91.47
Tets & triangles 14 35738 414.08
Tets, triangles & edges 42 49811 1099.73

naive case. We can consider two reasons; one reason is that introducing all the possible
variables makes the matrix much larger. The other is that introducing variables for
edges ((d — 2)-faces) causes numerical instability because the coefficients of (4.4) are
fractional and we used a fixed length format (MPS format) to pass the problem to the
solver.

To improve the performance practically, we will need to (1) control the branch
and bound procedure of the solver, (2) introduce only the appropriate variables when
necessary, and (3) call the solver through APIs so that we can avoid the precision
problem with flat files. This means that we need to design and implement a branch
and bound code specific to the optimization of triangulations. For example, the record-
holding Traveling Salesman Problem (TSP) solver by Applegate et al. [3] does it,
combined with a huge computational power of parallel processors. It also branches
on cuts not only on variables, that is, it divides the situation to which 1t can apply
a cutting plane, into sub-situations by utilizing the information on the cutting plane

[16].

57

Chapter 5

Applications and Derivatives

In this chapter, we introduce some applications of our IP-based optimization of trian-
gulations. We also introduce some extensions to the formulation in order to cope with
structures that are slightly different from triangulations. First several topics are of
theoretical interest, and the others are addressing the practical usefulness. For both
of them, we can give some novel insights by providing the optimal solution to each
problem.

In Section 5.1, we further look into the minimum weight triangulation in two di-
mensions that we have referred to several times in this thesis. We also consider the
squared weight instead, as an alternative objective function. In Section 5.2, we apply
our IP-based approach and obtain the minimum and maximum cardinality triangula-
tions of regular and quasi-regular polytopes, which are very interesting three dimen-
sional examples to illustrate our approach. We encounter several difficulties because
of the symmetry and the degeneracy of the polytopes. We introduce how to handle
the difficulties, including implementation issues. In Section 5.3, we consider dissection,
which is a slightly general concept than triangulation. The properties of dissection is
not known compared with those of triangulation, and one of them is the cardinality.
We extend and apply our IP-based approach to obtain the maximum and minimum
cardinality of dissections. In Section 5.4, we obtain data dependent triangulations,
which are used to interpolate a function or a distribution of data. All the existing
studies are focusing on the two dimensional cases and applying local search based on
flips, and we introduce a different approach that obtain the optimal solution and can
handle higher dimensional cases. In Section 5.5, we focus on a practical problem of
quadrilateral mesh generation. Practical instances are very large and heuristics are
mainly used for them. We, however, can give the optimal solutions for small instances,
and based on them, derive some insights into objective functions and input data. As
techniques for three dimensional mesh generation are also required in the fields, we

also search for ways to hexahedral mesh generation in Section 5.6.

58

Ly
2

e: included in the MWT

Figure 5.1: The region with no points for an edge e in the 3-skeleton

5.1 The Minimum Weight Triangulation

As we mentioned in Section 2.4, obtaining the minimum weight triangulation (MWT)
in two dimensions 1s a longstanding open problem in computational geometry and
included in Garey and Johnson’s list of problems as neither known to be NP-complete
nor known to be solvable in polynomial time. Only when the point set is in a convex
position, dynamic programming can obtain the MWT in O(n?) time.

On the other hand, subgraphs contained in the MW'T, called skeletons, can be
computed in polynomial time by making use of geometric properties [14, 75, 15, 23].
There are two kinds of such skeletons. One is LM T-skeleton which is a set of locally
minimum edges in a sense that each of them is the shortest possible diagonal for all the
pairs of triangles that share the edge. LMT-skeleton can be obtained in O(n?®logn)
time [14]. The other is 3-skeleton which is a set of edges that have no other points in
two disks that pass through both ends of the edge and have the ‘g times longer radi
than the edge (Figure 5.1). f-skeleton with 8 > 1.17682 was proved to be contained
in the MWT in [13]. These skeletons work fine if the number of connected components
of the skeleton is bounded. Especially when the skeleton is a connected subgraph of
the MWT, we can obtain the MWT in O(n?®) time by using dynamic programming.
Unfortunately, there exist cases where the skeletons are highly disconnected.

We thus applied an IP approach based on the stable set problem of line segments
in [44], and also considered in Section 2.4 as an instance of the optimization of trian-
gulation. In Table 3.1 and 3.2, we presented the computational results of the MWT in
two dimensions, and the MWT in three dimensions by extending the notion of weight
from the edge length in two dimensions to the triangle area in three dimensions. Dif-
ferent from skeletons, the performance of our IP approach is independent of the point
configuration. Further, so far we have never encountered the cases where we cannot

obtain the MWT by just solving the linear programming relaxation, namely, in weakly

59

polynomial time.

In two dimensional cases, we can utilize skeletons and reduce the candidate triangles
in preprocess. (-skeleton i1s a subset of the edges in Delaunay triangulation and can
be always obtained in O(nlogn) time. Thus, if we focus on the MWT, we could solve

larger instances faster than the result in Table 3.1.

5.1.1 The minimum squared weight triangulation

Instead of the lengths of the edges in the triangulation, we can consider the sum
of the squared edge lengths as the objective function to be minimized. This corre-
sponds to the objective function in Laplace smoothing,! one of the mesh optimization
techniques [42]. In the meshing community, the term “optimization” means node-
movement strategies for improving the quality of mesh that are based on a certain
objective function. Namely they are trying to move the geometry by optimizing —
the local minimum, precisely — a nonlinear and continuous objective function under
the fixed topology, whereas we are trying to improve the topology as a combinatorial
optimization problem under the fixed geometry.

It 1s interesting to optimize the same objective function as mesh optimization under
the fixed geometry. Although the skeletons are not available any more, we can obtain
the minimum squared weight triangulation (MSWT) by using our IP-based approach,
just by replacing the objective function assigned to each triangle with the sum of the
squared lengths of the three edges (facets) of the triangle.

Figure 5.2 shows the distribution of the sum of the edge lengths of the MW'T, the
MSWT, and Delaunay triangulation of randomly generated 50 (/100) points in a unit
square out of 10 trials. Figure 5.3 shows the distribution of the sum of the squared edge
lengths under the same settings. We can hardly see the difference between the MWT
and the MSWT in both of the figures. Actually, we further experimented and obtained
only 73 instances where the MW'T and the MSW'T were different, out of 100 randomly
generated instances of 100 points. Figure 5.4 shows the difference between the MWT
and the MSWT in one of the instances. We can only observe slight differences near
the boundary, where the MSW'T has diagonals whose difference in length is smaller
than those in the MWT.

5.1.2 Remarks

As in the cases with skeletons for the MWT, algorithms in computational geometry
are tuned for particular problems, and sometimes cannot be applied to even slightly
different problems. On the other hand, IP-based approaches are flexible, can cope
with such cases, and give some insights on them, although it can only handle small

instances.

IThe operation results in a local movement of a point to the gravity center of neighbors that are

connected to the point by edges [35].

60

40T .))
351)
304 Delaunay MWT MshT
257

201 Delaunay MET MEWT

15 50 160

Number of points

Figure 5.2: Weight of triangulations in two dimensions

101

Delaunay MWT MSWT

41 Delaunay 1
MWT MSEWT

0 50 100
Number of points

Figure 5.3: Squared weight of triangulations in two dimensions

61

Total Surface area: 33.99933

The main focus of this thesis is on triangulations in three dimensions, but it is
important to note that our IP-based approach can contribute to this type of analysis,

even 1n two dimensions.

5.2 Regular and Quasi-regular Polytopes

In this section, we investigate the minimum and maximum cardinality triangulations
of regular and quasi-regular polytopes, which are very interesting three dimensional
examples to illustrate our approach. They have a lot of symmetry and degeneracy
that cause problems both in theory and implementations. Further, all the vertices are
located on a sphere and therefore all the triangulations are Delaunay triangulations.
In other words, Delaunay triangulation means nothing for them. Thus, other criteria
such as the maximum or minimum cardinality are important. We should notice that
De Loera is also working on this topic [18] and we are inspired by the discussion with
him.

A polytope 1s said to be regular if its facets are regular and equal, while its vertices
are all surrounded alike [17, 66]. There are five regular polytopes, the tetrahedron,
the octahedron, the cube, the icosahedron, and the dodecahedron. A quasi-regular
polytope 1s defined as having regular faces but relaxed to have more than one kind
of regular polygon, in other words, the cones defined by facets sharing vertices are all
congruent [17, 66]. There are thirteen quasi-regular polytopes.

If we go on to obtain the maximum and minimum cardinality triangulations of those
polytopes, we encounter two difficulties caused by the symmetries of the polytopes.
One is that, most of them have irrational numbers in their coordinate values and it 1s
difficult to handle them in a numerically correct way.

The other is that, even if we apply cutting planes such as (d — 2)-face cuts we
introduced in Section 4.2.2, the fractional solution just slips away by rotating into
another position with the same geometry, and the cuts never get effective until we

apply them to all the positions that have geometrically the same structure.

5.2.1 Point configurations of regular and quasi-regular polytopes

We first look into the problem on the coordinate values of the vertices. Based on
Formulation (CO) in page 18, we require only one geometric predicate: Which side of
hyper plane H defined by d points, point p is located? Here, the problem is that regular
and quasi-regular polytopes have irrational numbers in their coordinates [17]. For
example, the dodecahedron (Figure 5.5) has the golden ratio 1_-%@ in the coordinates
of some of its vertices. Namely, a naive implementation using the floating point data
types cannot handle them exactly. Further, a perturbation can bring wrong results as
in the example of Figure 5.6.

It is possible to perturb the vertices so that the face lattice of the dodecahedron

is preserved, in other words, so that the coplanarities of five points on each facet are

63

Figure 5.5: The dodecahedron drawn with kaleido [41]

Figure 5.6: An example that a perturbation changes the maximum cardinality

preserved, but it seems impossible to preserve all the coplanarities that the dodecahe-
dron has inside. In other words, to realize the oriented matroid of the dodecahedron,
we need to allow irrational numbers in coordinate values. This is highly related with

Universality Theorems of oriented matroids.

Universality Theorems

There are many versions of Universality Theorems of oriented matroids [61], and we

will refer here a simple version that fits our current interest.

Theorem 5.1 [61]
There is a polynomial algorithm that takes as input a system 2 of polynomial equations

and strict inequalities with integer coefficients and produces an oriented matroid M(£2)

64

00 X Xy Xty

Figure 5.7: An example of Von Staudt construction (addition)

such that the realizability problem for M(Q) is equivalent to the solvability problem of
Q.

Intuitively, this theorem says that, we can construct an oriented matroid whose
realization is equivalent to the solution of a system of polynomial equations. For
example, we can construct an oriented matroid corresponding to z? = 2 whose solution
is ¢ = /2, and the realization of oriented matroid surely has at least one irrational

number. The following i1s a brief sketch of the construction.

The outline of Theorem 5.1

e (Given a system of polynomial equations 2, we can obtain Shor’s normal form

S(2)
<oy <z <...<a,
ritr; = xp ((<j<k)
rioxy = x (1<j<k)

that is equivalent to Q ([70])

e For each constraint above, we can apply a von Staudt construction (see Figure 5.7

for example) that geometrically represent an addition or a multiplication.

e The realization space of the configured oriented matroid is equivalent to the

solution space of €.

We have not proven yet that the oriented matroid of regular and quasi-regular
polytopes cannot be realized using rational coordinates. But Theorem 5.1 corresponds
to point configurations in two dimensions, and three dimensional cases can surely be

more difficult. Hence we should look for alternative ways.

Implementation issues

One naive way to cope with irrational coordinates is to use inexact data type and to

define an error bound. Namely, we calculate all the time in an inexact way, and if the

65

distance between a point and a plane is smaller than the error bound, we assume that
the point is on the plane. This method has no theoretical background on how to give
the error bound. Fortunately, the point configurations of regular and quasi-regular
polytopes have no delicate cases where a point is very close to a plane but not on
the plane, and the method above works correctly if the error bound is appropriately
defined.

An alternative way with a theoretical background is to use a data type that can
handle irrational numbers. The data type real of LEDA [45], a library of data types

and algorithms of combinatorial computing, is one candidate.

It supports exact computation with k-th roots for arbitrary natural number
k, the rational operators 4+, —, %, and /, and the comparison operators ==,

=, < <, > and >. [48]

With real, the system first computes the value by using a fixed precision floating
point data type such as double. Only when the situation is delicate and the fixed
precision data type can give a wrong answer, it uses an arbitrary precision floating
point data type bigfloat with the bit length that is theoretically guaranteed to give
the correct answer. The bit length is derived from the degree of the acyclic directed
graph that represents the symbolic expression of the value to be evaluated [48].

The following i1s a sample c++-code to see how real works. It always gives the
correct answer “z = (7, but it also preserves the initialization information and the
computation gets slower and slower, as the iteration proceeds, the graph expression

gets complicated, and the required bit length gets longer.

real tau = (sqrt((real)s)+1)/2; // a solution to x~2-x-1=0
for (i = 0; i < 20; i++) {
real z = tau*tau-tau-1; // z should be zero
printf("%f SIGN:%d\n", z.to_double(), z.sign());

tau = tau*tau-1; // recursive definition

Fortunately, the geometric computation we require is simple as we mentioned be-
fore, and real is sufficient for handling the coordinates of regular and quasi-regular
polytopes. Further, LEDA is supported to be used with CGAL [12], which is a library
for handling geometric objects and we actually use in our experiments.

We used real to check the coplanarity of all the (230) x (20 — 3) pairs of planes
and points for the dodecahedron, which include both obviously non-coplanar cases and
degenerate cases, and it took about 160 times longer than using the naive error bound
method that we described above. This performance of real compared with double is
comparable to other reports [29]. In our cases, the computation is far small compared
with the mathematical programming part, and we can say that the use of real is
a good choice to cope with the irrational coordinates of regular and quasi-regular

polytopes.

66

Delaunay triangulation We should also note that just to obtain Delaunay trian-
gulations of regular and quasi-regular polytopes is very difficult. To be precise, as all
the points are on a sphere for those polytopes and all the triangulations are Delaunay
triangulations, we just need to obtain a triangulation. It is possible to obtain one if
we implement by ourselves an algorithm that is robust against degeneracy and also
can cope with irrational numbers by using LEDA, but we can not make use of existing
public software for Delaunay triangulation.

To our knowledge, there is no implementation available that can accept irrational
values such as “(sqrt(5)+1)/2” as input, and we need to give approximated coordinate
values of a fixed length. Further, most of the packages just halted claiming that there
were more than four points on a sphere, and did not give a result. Even when we
obtained a result by perturbing the points, the output triangulation often had flat
(degenerate) tetrahedra inside the convex hull, and the elimination of them resulted

in a dissection, but not a triangulation.

5.2.2 Cutting planes and regular polyhedral groups

We know focus on the other problem, that is; when we apply cutting planes such as
(d — 2)-face cuts that we introduced in Section 4.2.2, the fractional solution just slips
away by rotating into another position with the same geometry, and the cuts never
get effective until we apply them to all the positions that have geometrically the same
structure.

Further during the branch and bound procedure, the similar situation can occur.
Assuming that one d-simplex is not used in the triangulation has very little effect on the
overall search space because there are a lot of geometrically symmetric alternatives.
Consequently, the branch and bound procedure takes a lot of branching nodes and
time.

It is still open if we can reduce the number of variables (d-simplices) in the pre-
process by considering the symmetry of the point configuration. We, however, can
cope with the problem on cutting planes by making use of a property of regular and

quasi-regular polytopes.

Regular polyhedral groups

As studies on polyhedral groups have a long history, we review some of the results
based on [17].

Given a symmetrical figure, we can consider a congruent transformation that cor-
responds to permuting the component elements. Such a congruent transformation is
called a symmetry operation, and all the symmetry operations of a figure form a group,
called the symmetry group. Here we focus on finite groups, and it is known that a
finite symmetry group is a rotation group.

We then look into the rotation groups of the regular polytopes. The centroid of the

67

polytope configure axes by being joined with the vertices, the mid-edge points, and
the centroids of the facets. Then we can consider three kinds of rotations around those
axes. By enumeration, we see that the tetrahedral group has order 12, the octahedral
group, which is also the rotation group of the cube, has order 24, and the icosahedral
group, which 1s also the rotation group of the dodecahedron, has order 60.

For two dimensional regular p-gons, we can consider the cyclic groups of rank p
that correspond to rotations in two dimensions, and the dihedral groups of rank 2p
that also consider the reflections.

These five groups; the tetrahedral group, the octahedral group, the icosahedral
group, the cyclic group, and the dihedral group are called the reqular polyhedral groups,
and it is known that they are the only finite rotation groups in three dimensional
Euclidean space.

Thus, every quasi-regular polytope also has its rotation groups among the regular
polyhedral groups. As these rotations correspond to the permutations of indices of
vertices, we can efficiently enumerate all the cuts symmetric to the one violated by

the current fractional solution.

5.2.3 Computational experiments

De Loera gave the minimum and maximum cardinalities of some of regular and quasi-
regular polytopes [18]. We did further experiments on all the regular and quasi-regular
polytopes for the minimum and maximum triangulations (Table 5.2.3). To obtain
the coordinate values (in a fixed length format) of the vertices of the polytopes, we
used program kaleido [41]. We applied (d — 2)-face LB cuts and the fractional cut in
Section 4.2.2.

We could obtain a little more results than De Loera’s, but still there are a lot to
be done. The points are in a convex position and there is no non-empty tetrahedron
to be ignored, and currently we can not handle polytopes with more than 30 vertices.
Further, the degeneracy of the linear programming problem exists both in primal and
dual as we mentioned in Section 3.4, and simplex methods are very slow. The situation

would change if a good implementation of interior point methods becomes available.

5.2.4 Remarks

Using regular and quasi-regular polytopes, we looked into the degeneracy and the sym-
metry of the problems, not only in geometry but also in mathematical programming.
As we observed in Section 3.4, simplex methods are not good at degenerate problems.
Further, it is well known that mixed integer programming packages are not good at
symmetric problems, and it is important to introduce the domain specific knowledge
that cancels the symmetry. Enumerating effective cutting planes by using regular
polyhedral groups is one of such techniques, but it is not sufficient and techniques

for the branch and bound procedure are quite important and required to solve large

68

Table 5.1: The minimum and maximum cardinality of triangulations of regular and

quasi-regular polytopes

polytope(# vertices) Max/Min | De Loera’s Our results
Frac. Cuts(itr.) Frac. aft. cuts B&B nodes
Tetrahedron Min N.A. 1 0 - - -
(4) Max N.A. 1 0 - - -
Octahedron Min N.A. 4 0 - - -
(6) Max N.A. 4 0 - - -
Cube Min N.A. 5 0 - - -
(8) Max N.A. 6 0 - - -
Cuboctahedron Min 13 13 0 - - -
(12) Max 17 17 0 - - -
Icosahedron Min 15 15 0 - - -
(12) Max 20 20 0 - - -
Truncated Min 10 10 0 - - -
Tetrahedron(12) Max 13 13 0 - - -
Dodecahedron Min 23 23 45 041(1) 44 1
(20) Max 36 36 107 2+1(2) 246 2
Rhombicuboctahedron Min 35 35 0 - - -
(24) Max NA | 5660 971 113+1(19) 1135 N.A.
Snub Cube Min N.A. 38 46 64+1(1) 0 -
(24) Max NA. 74 1264 25+1(1) 515 3
Truncated Cube Min 27 25 0 - - -
(24) Max 48 48 0 - - -
Truncated Min 27 27 0 - - -
Octahedron (24) Max N.A. 49 1031 12441(14) 1089 6
Icosidodecahedron Min 45 45 833 041(1) 0 -
(30) Max NA | 77-81 2149 87+1(6) 2444 N.A.
Truncated Min N.A. N.A. - - - -
Cuboctahedron(48) Max N.A. N.A. - - - -
Rhombicosidodecahedron Min N.A. N.A. - - - -
(60) Max N.A. N.A. - - - -
Snub Dodecahedron Min N.A. N.A. - - - -
(60) Max N.A. N.A. - - - -
Truncated Min N.A. N.A. - - - -
Dodecahedron(60) Max N.A. N.A. - - - -
Truncated Min N.A. N.A. - - - -
Icosahedron(60) Max N.A. N.A. - - - -
Truncated Min N.A. N.A. - - - -
Icosidodecahedron(120) Max N.A. N.A. - - - -

69

instances.

5.3 Dissections

A dissection of a point configuration A (Figure 1.2) is a partition of the convex hull of
A into d-simplices whose vertices are the elements of A. A dissection of a d-polytope
corresponds to the dissection of its vertex set. Thus, a triangulation is a special case
of dissections in a sense that it is a simplicial complex. We will denote a dissection
is mismatching [20], if it is not a triangulation and there exists a pair of d-simplices
whose intersection is non-empty and is not a face of at least one of the two d-simplices.
Apparently a dissection can be mismatching only when A is not in a general position.

In this section, we will focus on dissections of 3-polytopes, and extend our for-
mulation to optimize dissections. The basic idea is that, if we take into account flat
(degenerate) tetrahedra, whose four vertices are on a plane and thus have been ignored
so far, and assign a variable to each of them, then they will cancel the mismatched
regions. A mismatched region is a polygon that is triangulated in two different ways
on both sides of it. Based on the fact that all the triangulations are connected by bis-
tellar flips in two dimensions, the two triangulations on both side of the mismatched
region are connected with a sequence of flips, and the sequence of flips corresponds to
a set of flat tetrahedra.

It is important to note that De Loera et.al. are working on dissections of convex
polytopes, especially focusing on the minimum and maximum cardinality cases [20].
They also apply the idea of flat tetrahedra for proving some of their theorems. We

will utilize some of their theoretical results to consider the formulation.

Lemma 5.1 [20] All mismatched regions for a dissection of a convex 3-polytope P
are convex polygons with all vertices among the vertices of P. Distinct mismatched

regions have disjoint relative interiors.

Proposition 5.1 [20] The mismatched region of a dissection of a 4-polytope can be a

non-conver polyhedron.

In dimensions more than two, we cannot say that all the triangulations are con-
nected by bistellar flips. Santos presented an example of an isolated triangulation in
six dimensions [64]. From this fact and Proposition 5.1, we will limit the following

discussions in this section to three dimensional cases.

5.3.1 An integer programming formulation of dissecting convex 3-polytopes

We extend Formulation (CO) in page 18 in order to handle dissections of 3-polytope
P, by introducing variables corresponding to the flat tetrahedra that have been ig-
nored in triangulations. There are two realizations of a flat tetrahedron and each of

them corresponds to a direction of flips (Figure 5.8). We will distinguish them in the

70

W

\/ ’
6®@@®@

Figure 5.8: Two realizations of a flat tetrahedron

following formulation, according to which side of a facet the other vertex is assumed
to be located.

Different from the notations used so far, A denotes the set of vertices of P. Ag
again denotes a set of points on the plane defined by (d— 1)-simplex f; and are not the
vertices of fi. Let ¢} (/7) denote a flat tetrahedron defined by fx and an element a
of Ax on the positive(/negative) side of fx, respectively. Variable #; (/2]) represents
if t;»"(/ti) is used in the dissection or not, respectively. Also we will use #; instead of

z? as we are limiting the dimensions to be three.

Formulation (COD):

minimize cx

s.t.
r; € {0,1}
zr e {0,1}
r; € {0,1}

Y oowr X
t,:fku{a},aeAﬂ’H}"k th=rcU{a},ac Ay
D ED SR
t,:fku{a},aeAnH;k t; =fru{a},ac Ay

1 f& is on the boundary, oriented inside and A; =@

—1 fx is on the boundary, oriented outside and .4, = §
0 fx 1s not on the boundary

Z Me;e; = 1 (for a chamber A7, only if conv(A) has no simplicial facet)

Proposition 5.2 For every dissection D of a convex 3-polytope P, there exists a

corresponding solution to Formulation (COD).

Proof: If D is a triangulation, we can set all ;" and z; to zero and @ to the incidence

71

vector of the constituent tetrahedra.

If D has mismatched regions, they are convex polygons with all vertices among the
vertices of P from Lemma 5.1. For each mismatched region, we have two triangulations
of the convex polygon, one for each side of it. By considering sequences of flips to
Delaunay triangulation from the two triangulations, we can make a sequence of flips
from one of the triangulations to the other without duplicated flips. Then we set the
variables for the flat tetrahedra corresponding to the flips to 1 and obtain a feasible
solution to Formulation (COD), combined with the incidence vector of the constituent

non-flat tetrahedra. O

It is still open if every integer solution to Formulation (COD) gives a dissection of

P, but we think it does.

Conjecture 5.1 For every integer solution to Formulation (COD), there exists a cor-

responding dissection D of a convex 3-polytope P.

In case the above conjecture is false, we can find the chamber constraints violated
by the current solution. Thus iteratively adding the violated constraints as cutting
planes, we will obtain the optimal dissection. Fortunately, we encountered no case

that was against the conjecture during the computational experiments below.

5.3.2 Computational experiments

We obtained the minimum and maximum cardinality dissections of some of regular
and quasi-regular polytopes using Formulation (COD). We did not encounter cases
where the obtained integer solutions did not correspond to dissections. Table 5.2
shows the results. As (d — 2)-face cuts are not valid for dissections, we only applied
the fractional cut before proceeding to the branch and bound procedure. As far as
we could obtain the optimal solutions, all the polytopes had the same minimum and
maximum cardinalities both in dissections and triangulations. Computationally, we
often obtained much smaller lower bound or larger upper bound than the cases of
triangulations by solving the linear programming relaxation. Further investigation on

the fractional solutions would be interesting.

5.4 Data Dependent Triangulations

In this section, we investigate a method to interpolate functions based on triangulations
of the domain of definition. We can obtain a better approximation by selecting a
specific triangulation for each function, especially when the function has a preferred
direction [26], and there has been several studies on obtaining such data dependent
triangulations [62, 26, 65].

We consider approximating a function I' defined over a region in R?, with a set

of piecewise polynomial function g¢; defined over each d-simplex ¢; of a triangulation

72

Table 5.2: The minimum and maximum cardinality dissections of regular and quasi-

regular polytopes

polytope(# vertices) Triangulation Dissection LP-relaxation No. frac. tets
Octahedron Min 4 4
(6) Max 4 4
Cube Min 5 5
(8) Max 6 6
Cuboctahedron Min 13 13
(12) Max 17 17
Icosahedron Min 15 15
(12) Max 20 20
Truncated Min 10 10
Tetrahedron(12) Max 13 13
Dodecahedron Min 23 23 14.0 398
(20) Max 36 - - -
Rhombicuboctahedron Min 35 35
(24) Max 56-60 - 61.25 952
Snub Cube Min 38 38
(24) Max 74 74
Truncated Cube Min 25 25 21.0 20
(24) Max 48 - 56.0 166
Truncated Min 27 - 16.5 361
Octahedron (24) Max 49 - - -

T. We are actually interested in the special cases where the vertices of 7 is given as
a point set A, and the domain of definition of F' equals to conv(A). Further, g; are
limited to the linear function using the values of F' at the vertices of ¢;, and the only
degree of freedom is the choice of triangulation 7 of A.

All of the existing studies were limited to two dimensional cases and based on local
search using edge flips. Dyn et al. just obtained the local minimum triangulation, and
mainly focused on the choice of the flipping criteria [26]. Schumaker tried to get out of
local optimals by applying simulated annealing [65], but it can never prove optimality
as well known.

By applying our IP-based optimization of triangulations, not only we can obtain
the optimal triangulation but also can cope with higher dimensional cases, where
flipping do not help a lot as we mentioned in Section 1.2.3. Typical applications of
data dependent triangulations are surface representation in computer aided geometric
design and approximation of a scattered data set in two dimensions. But we can
consider higher dimensional applications such as constructing four dimensional surfaces
with the form of three dimensional coordinates and the corresponding temperature [5].
An algorithm suggested in [6] triangulates the domain into tetrahedra, interpolates the
function within each tetrahedron, and renders the resulting four dimensional surface,
perhaps using contours. Further we can generalize the problem to approximation of
higher dimensional functions based on a triangulation of the domain of definition,
although we can hardly visualize the result.

We should note that some of the edge flipping criteria require the values of F' only

at the vertices of the triangulation. It is useful in the cases where the information on

73

the function is not enough, which may occur when we approximate the function based
on observations at scattered points.

In many cases, however, we can assume that more information on F' is available,
and data dependent triangulations give good approximations in such cases. Our IP-
based optimization has advantages when we have enough information on F' and can
assign cost to each d-simplex. In two dimensions, Dyn et al. recommended in [26] to

use the minimum error criterion
B =1 U7 = e (5.1)

stating that “The numerical tests indicate that it is recommended to use this criterion
whenever possible,” where f7 1s the interpolation within each triangle ¢; in 7 using
the values of I at the vertices of #; in 7. Namely, the most recommended criteria is
a summation style function that can be calculated for each triangle, and is congenial

to IP-based optimization.

5.4.1 Optimization criteria for data dependent triangulations

We review some criteria introduced in the previous studies, and investigate them from
the view point of integer programming.

The minimum roughness criterion R(F,T) is given by
oF

RET) = 5 [150"+ (g PHiedy
This evaluate the smoothness of F' within each triangle. Rippa proved that Delaunay
triangulation is always the optimal triangulation under this criterion [62].

The minimum roughness criterion, however, does not address the error when used
for interpolation, and several other criteria have been introduced. Dyn et al. gave
four criteria defined on edges, namely pairs of adjacent triangles in triangulations,
assuming that the triangulation is lifted to three dimensional space according to the

values of F' at the vertices in the triangulation.

1. The angle between normals
The angle defined by two planes used for interpolation at the triangles on both
side of the edge.

2. The jump in normal derivatives
The product of a unit vector orthogonal to the edge, and the difference of two

normal vectors of two planes.

3. The deviations from linear polynomials
The error at the other vertex of the quadrilateral formed by the two triangles

based on the interpolation function of one of the triangles.

4. The distances from planes
The distance of the other vertex of the quadrilateral formed by the two triangles

from the plane corresponding to the interpolation function of one of the triangles.

74

The criteria for triangulations are defined by the Iy, [5-norm or lexicographic ordering
of the above criteria for edges. We cannot replicate these criteria with our IP approach,
for these are defined for pairs of triangles.

Obviously, all these criteria are only valid in two dimensions, and we note again
that Dyn et al. recommended the minimum error criterion (5.1), and used the sum
of interpolation errors at uniformly distributed points for evaluating these criteria.
It means these criteria have significance only when (1) the information on F is not
sufficient and (2) F is defined on R?.

Schumaker suggested to use the thin spline energy when F' is a spline with higher

smoothness

65)
PF, OF ., 9°F,
| G + 2+ (e ey

7

This is a summation over triangles and can be handled and optimized by IP.

5.4.2 An example of data dependent triangulations

We introduce here an example of data dependent triangulations. We approximated a

function used in [26]:
FO = 3/4¢71407=27=1/4(9y=2)" 4 374 =1/ (r+1)?=F5y=1/10
11/2e"Y40O0=T=1/4(9y=3)" _ | /5= (90-4)°~(9y-7)’

with a triangulation whose vertices are 100 randomly distributed points in a unit
square. As the exact definition of I is available, we can approximate the minimum

error criterion of triangle ¢;:
Bt = [(r = F)ded?
ti

with the sum of the errors at the finely distributed sampling points, say, 10000 grid
points, and use it as the objective function to be minimized by using IP.

Figure 5.9 is a view of F over the domain of definition. Figure 5.10 and Figure 5.11
show Delaunay triangulation and the optimized triangulation for (1) using the same
vertex set, respectively. In Figure 5.11, we can observe many thin triangles where there
is a direction in which the gradient of F(1) is stable compared with other directions.
This is consistent with the observation in [26].

Delaunay triangulation gave the accumulated error of 0.047278, whereas the opti-
mized triangulation gave the error of 0.040356. We reduced the error by 15%, which is
a larger improvement than that in [26], although the vertex sets for triangulations are
different. For more objective evaluation, we require common data sets with existing
studies on data dependent triangulations, which are not available unfortunately.

It is important that we can now provide the best quality solution for the triangulation-
based approximation, and it contributes to the design and evaluation of (1) heuristics
which are faster than the optimization, and (2) criteria for them such as those we

referred in Section 5.4.1.

75

o o ©o o

o N & O o = N
: h n 1 0 N h
f t t t t t t

Figure 5.9: F(1) in [26]

Figure 5.10: Delaunay triangulation

76

Total number of tetra: 188

Total Surface area: 40862523
Maximum AspectRatioc 27257785
Minimum Solid Angle: 8

Maximum Gircumecribeg

Figure 5.11: The optimal triangulation to approximate F(1)

5.5 Quadrilateral Mesh Generation

In this section, we investigate quadrilateral mesh generation from the viewpoint of
optimization, assuming that a region to be meshed and a point set are given as input.
In particular, we introduce integer programming formulations for obtaining the optimal
quadrilateral mesh. Focusing on the cases discussed by Itoh et al. [40], we also examine
through computational experiments how far we can improve the quality of mesh by
using optimization techniques.

The finite element method (FEM) has been a major analysis technique for en-
gineering applications. From a practical point of view, quadrilateral meshes in two
dimensions or hexahedral meshes in three dimensions are preferred to triangular or
tetrahedral meshes for reasons of accuracy and efficiency [11]. However, it is well
known that quadrilateral or hexahedral meshes of good quality are far more difficult
to generate than triangular or tetrahedral meshes. Still, for quadrilateral meshes,
several automated mesh generation techniques have been developed.

Techniques for quadrilateral mesh generation can be classified into two categories:
direct and indirect approaches [55]. The former includes grid mapping, which maps
a lattice grid inside the region to be meshed [39], and the advancing front method,
which recursively fills mesh elements starting from the boundary of the given region
[77].

Generally speaking, indirect methods consist of three steps: (1) generate a point
set within the region to be meshed, (2) obtain the triangulation, and (3) generate a

quadrilateral mesh by pairing triangles. Indirect methods are good at controlling the

7

size, the orientation, and the shape of mesh elements [40], especially when combined
with good point generation algorithms such as [68].

Indirect methods are also quite interesting as combinatorial optimization problems.
The third step above can be formulated as a matching problem, although most of the
previous studies applied greedy heuristics [55]. Further, most of them are based on
Delaunay triangulation, which can be obtained efficiently and has various optimal
properties in two dimensions such as maximization of the minimum angle [7]. On the
other hand, we can optimize triangulations by using integer programming, and it is also
possible to extend the framework to cope with quadrilaterals; that is, we can obtain
the optimal quadrilateral mesh. The extent to which Delaunay triangulation-based

meshes can be improved 1s very interesting.

5.5.1 Indirect methods for quadrilateral mesh generation

We first review indirect methods for quadrilateral mesh generation. For the third step
to pair triangles and generate a quadrilateral mesh element, most existing methods
use greedy heuristics, which sort the candidate pairs according to some criteria and
therefore take O(N log N) time, where N denotes the number of triangles. Since
Delaunay triangulation used in the second step also requires O(N log N) time? | an

O(N log N) time heuristic will be a reasonable choice.

Itoh et al.’s method [40]

In preparation for the computational experiments in Section 5.5.4, we briefly introduce
Itoh et al.’s method. To balance multiple requirements for meshes, they consider three
functions F,, F}, and F, for quadrilateral mesh elements, that is, for pairs of triangles.
F, evaluates the alignment of a mesh element to a given vector field such as the
boundary of the domain and the fluid direction. Fj evaluates the shape of a mesh
element that is desired to be square or rectangular. F, is a positive value for avoiding
isolated triangular elements in the final mesh. The objective function V' is then defined

as the weighted sum of the three functions:
V=alF, +bF, + cF; (5.2)

Itoh et al. sort all the possible pairs of triangles in descending order of V', and fix
the pairs in a greedy way. During the greedy procedure, they update F.(p,q) from
zero to a positive value when a triangular element ¢, has only one remaining triangular

neighbor 4, in order to avoid ¢, to be an isolated triangular element.

5.5.2 Applying a matching algorithm to quadrilateral mesh generation

We here focus on the third step in indirect methods, namely, generating a quadrilateral

mesh by pairing triangles from a given triangulation 7 with N triangles. Most of the

2The number of points n is O(N), from Euler’s formula, and Delaunay triangulation can be

obtained in O(nlogn) time.

78

Figure 5.12: Constant F.s for all the arcs also contribute to reducing the isolated

triangles.

existing indirect methods apply greedy procedures that take O(N log N) time. On the
other hand, we can regard the problem as an weighted matching problem in a general
graph.

Let G(V, E) denote a graph whose nodes correspond to triangles in 7. Arcs are
defined between two nodes when the corresponding triangles share an edge. From
Euler’s formula, [V| = N, |E| = O(N). For the weight to an arc defined between two
nodes v, and vy, we assign the value of the objective function to be assigned to the
quadrilateral element generated by joining triangles ¢, and .

In Itoh et al.’s method which we reviewed above, the function F. is dynamically
updated to avoid isolated triangles. We can expect to obtain a similar effect by as-
signing the constant value of F, to all the possible pairs of triangles (Figure 5.12),
although this does not exactly correspond to the original settings by Itoh et al.

With the settings above, obtaining the maximum weight matching in G gives the
optimal quadrilateral mesh that can be obtained from 7. The problem is classified as
an instance of the weighted matching problem in general graphs, and can be solved in

O(EV log V) [32], which equals O(N?log N) in this case.

5.5.3 Integer programming formulations of quadrilateral mesh generation

We took a triangulation as input in Section 5.5.2, where the total number of edges
available for mesh generation, O(N), is quite limited. However, if we could optimize
the mesh by taking account of all the O(N?) edges, the result would be better.

We now focus on obtaining the optimal quadrilateral mesh by using integer pro-
gramming (IP). We investigate the extensions of the formulation of triangulation for
handling quadrilaterals, by assigning variables to all the possible quadrilaterals, as we
did for triangles in Chapter 2.

Here we extend the formulation in two different ways based on different ideas, then

prove that the two extended formulations are equivalent. From now on, we fix the

79

number of dimensions to two for simplicity, and let variable z; (not ¢ as before) be

assigned to triangle t;.

Extension based on the underlying triangulation

Any quadrilateral mesh can be transformed into an underlying triangulation by intro-
ducing the diagonals of the constituent quadrilaterals. For the underlying triangula-
tion, we can use the cocircuit form constraints of Formulation (CO) in page 18. Each
triangle in the underlying triangulation then belongs to one element in the quadrilat-
eral mesh, which is either a quadrilateral or a triangle (Figure 5.13).

We assign variable y; to mesh element ¢;, distinguishing two quadrilaterals accord-
ing to the diagonal to be chosen for the underlying triangulation. Let Si denote the
set of mesh elements to which ¢ can belong. We can define set partitioning constraints

between mesh elements and underlying triangulation elements as follows:

Formulation (UT):

maximize cy

s.t.
r; € {0, 1}
SR S
t,:fku{a},aEAﬂ’H}"k t,:fku{a},aEAﬂ’H;k
1 fx 1s on the boundary and oriented inside

—1 fx 1s on the boundary and oriented outside

0 otherwise

Su o= w

i€ Sy

Extending cocircuit form constraints

We can also consider constraints among mesh elements similar to the cocircuit form
constraints for triangulations (Figure 5.14). Let P (/Ng) denote the set of mesh
elements that have edge fi as a face and other faces on the positive (/negative) side

of fi, respectively.

Formulation (COQ):

maximize cy

s.t.

1 fx 1s on the boundary and oriented inside
D ui— D

ic Py i€ Ny

—1 fx 1s on the boundary and oriented outside

0 otherwise

80

Region to be meshed

..

“4 |> Mesh elements
Elements in the
underlying triangulation

Figure 5.13: Elements in the quadrilateral mesh and the underlying triangulation

R o
=

R
e

S

The constraint of this
edge is:

Figure 5.14: An extended cocircuit form constraint

81

Equivalence between the two formulations

Here we compare the polytopes defined by the linear programming relaxations of
Formulation (UT) and (COQ). Let Pyr denote the polytope defined by the feasible
region of y in the linear programming relaxation of Formulation (UT). That is to say,
we do not consider the variables corresponding to the underlying triangles here. Let

Peog denote the polytope corresponding to y in Formulation (COQ).
Proposition 5.3 Pyp = Peog

Proof: First we show that Pcog C Pyr. Consider a point ycog in Pcog, namely,
a feasible solution to the linear programming relaxation of Formulation (COQ), which
can be fractional. We split all the quadrilaterals corresponding to positive values in
Ycog into triangles of the same values, and generate a fractional incidence vector of
triangles, which will be denoted as zcog. The split above introduces triangles with
the same weight on both sides of the diagonal, and does not violate the cocircuit form
constraints, thus zco¢ satisfies the constraints in Formulation (UT). By construction
rcog and ycoogq satisfy the set partitioning constraints in Formulation (UT). Hence
ycoq € Pur.

We then show Pyr C Peoog by deriving the constraints in Formulation (COQ)
from the constraints in Formulation (UT). Consider an edge on the boundary f;. All
the triangles that have f; as a face belong to different mesh elements. Thus,

X w= Y Yu-Xu

t,:be{a},aEAﬂ’H}"b t,:be{a},aEAﬂ’H}"bjESz ieP,

S w= Y Yu-YXu

t,:fbu{a},aEAﬂ’H;b t,:be{a},aEAﬂ’H;bjESz tENy

Next we consider an internal edge f,,. Let D,, be the set of quadrilateral mesh elements

that have f,, as a diagonal.

Z T = Z Zyjzzyrl-zyi

t,:fnU{a},aE.Aﬂ’H;!—n t,:fnU{a},aE.Aﬂ'H;!—n JES: 1€ Py €Dy
>, wm=) dui= 2 vt v
t,:fnU{a},aE.Aﬂ’H;n t,:fnU{a},aE.Aﬂ'H;n JES: €N, €Dy
Thus, a point yyr in Py satisfies all the constraints in Formulation (COQ). a

We have observed that the two extended formulations give the same polytope, and
we can say that the latter formulation with extended cocircuit form constraints are
better in the sense that both the number of constraints and the number of variables
are smaller.

Further, we have so far distinguished two quadrilaterals with the same vertices but
with different diagonals to be used for the conversion into triangulation. However,
with the formulation using the extended cocircuit form constraints, we can ignore the

difference and assign only one variable to the two quadrilaterals.

82

Table 5.3: Input data

Data set | No. of points No. of triangles Minimum no. of elements (*)
ITOT1 294 505 254
ITOT?2 401 728 364
ITOT3 180 283 143

U50 50 89 49
U100 100 188 103
U150 150 288 153

(*): if based on Delaunay triangulation

Coping with non-convex boundaries

So far we have assumed that the region to be meshed is the convex hull of a point
configuration, namely, a simple and convex polygon. The practical interest, however,
is in meshing non-convex polygons with holes. Fortunately, in two dimensions, we
can always triangulate a non-convex polygon, and the formulations have a feasible
solution. Thus, we only need to preprocess and remove the meshing elements that

intersect the boundaries.

5.5.4 Computational experiments

We present the results of some computational experiments that we conducted to com-
pare the methods described in the previous sections. For weighted matching problems,
we used the implementation of Gabow’s O(|V|?) time algorithm [31] at the Dimacs
Challenge 1 site [24].

Input data

We used three sets of data supplied by Ttoh (ITOT1, ITOT2, ITOT3), and three ran-
domly generated point sets uniformly distributed in a unit square (U50, U100, U150)
(Table 5.3). Since the vector field is difficult to replicate, we fixed the corresponding
coefficient to zero, and used a = 0, b = 1.0, and ¢ = 1.0 for (5.2).

Results

From Table 5.4, we can see that the matching-based method gave better solutions than
Itoh et al.’s method® , and that our IP-based method gave the best solutions. The
IP-based method gave a smaller number of mesh elements than the smallest possible
number of elements based on Delaunay triangulation, which is given in the rightmost
column of Table 5.3.

Figure 5.15 shows the heuristic solution by Itoh et al. and our optimal solution. We

could not obtain the optimal solutions for ITOT1 and ITOT2 (Table 5.5). Instances of

3The settings are not strictly the same as Itoh et al.’s, and the comparison in Table 5.4 is just for

reference.

83

Table 5.4: Comparison of the results

Data set [toh Matching P
No. of elements Obj. | No. of elements Obj. | No. of elements Obj.
ITOT1 264 825.0 260 837.1 - -
ITOT?2 376 12214 372 1235.0 - -
ITOT3 168 322.4 151 375.5 144 392.5
U50 - - 49 69.6 47 75.7
U100 - - 104 152.3 99 172.1
U150 - - 153 249.7 148 279.5

Table 5.5: Size of the problems and CPU time

Data set | No. of rows No. of columns No. of B&B nodes CPU time (sec.)
ITOT1 43071 424334 - -
ITOT2 - - - -
ITOT3 16110 143387 4 94876.82

U50 1225 9658 0 183.6
U100 4950 46968 0 6188.68
U150 11175 111730 3 51818.71

two to three hundred points seem to be the largest possible instances with the current
computational resources.

We obtained a fractional solution with TTOT3 (Figure 5.16). It contains two odd-
cycles of size b and 11, respectively. The former corresponds to a pentagon with a
point inside, subdivided into five 0.5-weighted quadrilaterals using the center point.

Figure 5.17 shows the optimal solution for U100, where we can observe many non-

Delaunay edges drawn in bold lines.

5.5.5 Remarks

From a practical point of view, the IP-based method is too slow, soluble instances are
too small, and the optimal solutions are not always good as a mesh.* Still, it gives
us some insight into the quality of a mesh; namely, it tells us how good the solutions
are that we can obtain from the given input, and how suitable the current objective

function is for our applications.

5.6 Toward Hexahedral Mesh Generation

In this section, we investigate a way to contribute to hexahedral mesh generation by
using our IP-based approach.
We considered optimizing quadrilateral mesh generation in two dimensions in Sec-

tion 5.5. As we mentioned there, there are also large needs for techniques for hex-

4Mesh generation is still an art and cannot be evaluated appropriately with an objective function.

84

Figure 5.15: ITOT3: heuristic and optimal solutions

Figure 5.16: ITOT3: a fractional solution

85

Figure 5.17: Non-Delaunay edges in the optimal mesh

ahedral mesh generation in three dimensions. All the commercial applications for
hexahedral mesh generation require some extent of human-computer interactions, and
it is still one of the major goals in mesh generation research to generate a high-quality
hexahedral mesh automatically.

For hexahedral meshes, the point configuration must be in a special position such
that four points are on the same plane for each face of mesh elements. Obviously,
to generate such a point configuration 1is itself a very difficult problem, and indirect
methods that handle point generation and mesh generation separately do not seem
appropriate for hexahedral meshes.

Thus most of the existing hexahedral mesh generators are designed for structured
mesh, namely, to apply predefined grid structures, called templates, to the region to
be meshed [50]. As the form of the region gets complicated, users have to specify how
to apply the templates. Namely, it 1s required to subdivide the region into elements
of simple forms, and users have to define it manually. We will call this procedure as
specifying the topology.

Automatically specifying the topology will quite reduce the human workload for
mesh generation. If the points used to subdivide the region is provided by somehow,
manually or automatically, this procedure can be regarded as a combinatorial optimiza-
tion problem: given a three dimensional region and a set of points within it, subdivide
the region wnto simple topological elements such as tetrahedra, prisms, pyramids, and
hexahedrals using the given points as vertices. The largest difference from our stand

points in this thesis is that, it just focuses on the topology. Even Schonhardt’s poly-

86

tope (Figure 1.3) is a prism if we do not consider the three diagonals, and also can be

triangulated into tetrahedra.

5.6.1 A procedure for topological subdivision into simple elements

It depends on the applications how flexible the elements can be. In order to maintain
the consistency of the situation, we need to assume that the transitivity on coplanarity

holds:

Assumption 5.1 Consider five points p; (0 < ¢ < 4). If four points p; (0 < i < 3),
and p; (1 < ¢ < 4) are topologically on the same planes respectively, the five points
p; (0 < i <4) are topologically on a plane.

Then we can consider a subdivision procedure as follows:

1. Enumerate all the possible triangles and quadrilaterals that can be facets of

elements, by selecting three or four coplanar points out of the given point set.

2. Enumerate all the possible elements such as tetrahedra, prisms, pyramids, and
hexahedrals that can be mesh elements whose facets are a subset of the trian-
gles or quadrilaterals enumerated in Step 1. Non-empty elements and elements

intersecting the boundary should be eliminated here.

3. Define an objective function to evaluate the quality of the elements enumerated

in Step 2, and also assign 0/1 variables to all of them.

4. Consider cocircuit-form-like constraints. Namely, for each facet enumerated in
Step 1, the sum of elements on one side 1s equal to the sum of the elements on

the other side.
5. Solve the TP problem to obtain a subdivision.

Unfortunately, the procedure above is just a conceptual sketch. The following open

problems have to be solved to realize it.

e How to locate points to obtain a good subdivision?
The procedure highly depends on the point configuration. More points should
be located in complicated regions, and few points are enough for simple regions.
One approach would be to define a function that quantify the complexity of the
region, and locate points according to the value or the gradient of the function.

Human interaction will also be a practical solution.

e How can we define the coplanarity?
Points on a curved surface may be better considered to be coplanar. It means

that just setting an error bound may not work in practical cases.

87

Can we loosen the transitivity in Assumption 5.17
The transitivity assumption is too strict, but the consistency that is necessary
for optimization can collapse without 1t. This is also related to the coplanarity

above. How to balance the coplanarity and the transitivity would be a key issue.

How good are the cocircuit-form-like constraints in Step 4¢

This is a common problem with the case of quadrilateral mesh generation. There
is no theoretical result, and it is still open whether an integer solution surely
correspond to a subdivision. Conversely, if we can find a pathological case, we

will be able to obtain some insights.

Is there a good objective function suitable to evaluate topological elements?
This issue is highly dependent on applications. It also depends on the available
templates. In any case, we require some measure in order to apply integer

programming, and the measure should be designed carefully.

How can we handle the cases where the region is non-convexr and cannot be
subdivided with the enumerated elements?

This 1s related to Theorem 1.1 and 1.2. It is open whether they also hold with
topological cases. Even Schonhardt’s polytope i1s a prism if we do not consider
the three diagonals. This means that the situation depends on the definition of

coplanarity.

88

Chapter 6

Conclusions and Remarks

In this thesis, we investigated TP-based optimization of triangulations, covering mul-
tiple aspects ranging from formulations to applications. Throughout this thesis, we
focused not only on d-simplices but also lower dimensional simplices as seen in (d—2)-
face cuts and the generalized stable set formulation. We also kept examining our
ideas through computational experiments, which sometimes gave further insights. In
particular, we could actually optimize middle-sized problems both in theory and ap-
plications, which can not be solved by enumeration or other alternatives so far, under
various measures.

In Chapter 2, we examined the existing studies by classifying into two groups, those
could be reduced to the stable set problem, and those to the set partitioning problem.
Further for the former, we gave a more efficient formulation as an instance of the
generalized stable set problem by removing the redundancy based on the observation
of lower dimensional simplices. After theoretical investigations, we concluded that the
formulation using cocircuit form constraints was the most efficient and suitable for
the triangulation of a point configuration. On the other hand, the (generalized) stable
set formulation is suitable for several extensions such as dissections or non-convex
boundaries. We observed the effectiveness of explicitly handling lower dimensional
simplices. This was further utilized in Chapter 4 in relation to cutting planes and the
branch and bound procedure.

In Chapter 3, we showed how large instances we could solve with the formulation
using cocircuit form constraints through computational experiments, with the obser-
vations on the degeneracy of the problem in both primal and dual. We also gave
several interesting examples of optimal triangulations. We then introduced practical
difficulties to be coped with in Chapter 4.

In Chapter 4, we investigated column generation methods to solve large instances
with relation to geometry. Then we introduced a binary search algorithm to success-
fully solve the bottleneck-type optimization problems, which could not be solved in a
naive way. We introduced two cutting planes that were based on geometric aspects of

triangulation, and were observed through computational experiments to be practically

89

very useful when the objective function was unweighted and the solution of the LP
relaxation was highly fractional. We also proposed a method to improve the branch
and bound procedure by focusing on lower dimensional simplices.

In Chapter 5, we gave not only the minimum weight triangulation but also the
minimum squared weight triangulation, which could not be obtained with algorithms in
computational geometry. We also showed that, with our IP-based approach, we could
easily obtain data dependent triangulations, which had been long studied by using
local search. We addressed the symmetry and degeneracy of the point configuration
by focusing on regular and quasi-regular polytopes. We also gave the minimum and
maximum cardinality of triangulations and dissections of those polytopes. We finally
coped with industrial applications; quadrilateral and hexahedral mesh generation. In
particular, we gave an extension of our formulation for quadrilateral mesh generation

with successful computational results.

6.1 Future Work

We can currently solve instances of at most 50 points in three dimensions. Further

investigations are necessary to enlarge the limit, say, to 100 points. Roughly speaking,

n

4) in three dimensions, triangulation of 100 points might

as the number of simplices is (
correspond to TSP of 10000 sites, and be a good milestone.

We sometimes obtained fractional solutions after applying (d — 2)-face cuts, and
further investigation into the universal polytope, the integer hull of the incidence
vectors of triangulations, are important. (d — 2)-face cuts are not proven to be facets
of the universal polytope, and there are a lot to be done.

One of the most important objectives of this study is to contribute to practical
applications, that is, to give significant insights into mesh generation, geometric design,

and computer graphics. Coping with non-convex boundaries and handling hexahedral

mesh elements are also difficult but significant issues.

90

References

(1]

[12]

T. V. Alekseyevskaya. Combinatorial bases in systems of simplices and chambers.

Discrete Mathematics, 157:15-37, 1996.

R. Anbil, R. Tanga, and E. L. Johnson. A global approach to crew-pairing opti-
mization. IBM Systems Journal, 31(1):71-78, 1992.

CRPC News Archive. Record traveling salesman solution — new heuristic
approach to classic linear programming problem yields big dividend, 1998.
http://www.crpc.rice.edu/CRPC/newsArchive /techweb_6_29_98.html.

I. Barany and Z. Furedi. Empty simplices in Euclidian spaces. Canad. Math.
Bull., 30:436-445, 1987.

R. E. Barnhill. Surfaces in computer aided geometric design: A survey with new

results. Computer Aided Geometric Design, 2:1-17, 1985.

R. E. Barnhill and F. F. Little. Three- and four dimensional surfaces. Rocky
Mountain J. Math., 14:77-102, 1984.

M. Bern. Triangulations. In J. E. Goodman and J. O’Rourke, editors, Handbook
of Discrete and Computational Geometry, chapter 22. CRC Press, 1997.

M. Bern, P. Chew, D. Eppstein, and J. Ruppert. Dihedral bounds for mesh
generation in high dimensions. In 6th ACM-SIAM Symp. Discrete Algorithms,
pages 189-196, 1995.

M. Bern and D. Eppstein. Mesh generation and optimal triangulation. In Com-
puting in Buclidean Geometry, volume 4 of Lecture Notes Series on Computing,

pages 47-123. World Scientific, 2nd edition, 1995.

L. J. Billera and A. Bjorner. Face numbers of polytopes and complexes. In J. E.
Goodman and J. O’Rourke, editors, Handbook of Discrete and Computational
Geometry, chapter 15. CRC Press, 1997.

J. R. Brauer. What Every Engineer Should Know about Finite Element Analysis.
Marcel Dekker Inc., 2nd edition, 1993.

CGAL. http://www.cs.ruu.nl/CGAL/.

91

[13]

[14]

S. W. Cheng, M. J. Golin, and J. C. F. Tsang. Expected case analysis of (-
skeletons with applications to the construction of minimum-weight triangulation.
In Proc. 7th Canadian Conference of Computational Geometry, pages 279-284,
1995.

S. W. Cheng, N. Katoh, and M. Sugai. A study of the lmt-skeleton. In Proc.
7th International Symposium on Algorithms and Computation, volume 1178 of

Lecture Notes in Computer Science, pages 256-265. Springer Verlag, 1996.

S. W. Cheng and Y. F. Xu. Approaching the largest 3-skeleton within a minimum
weight triangulation. In Proc. 12th Annual ACM Symposium on Computational
Geometry, pages 196-203, 1996.

V. Chvatal, 1998. Private communication.
H. S. M. Coxeter. Regular Polytopes. Dover Publications, INC., 3rd edition, 1973.

J. A. De Loera. Computing minimal and maximal triangulations of convex poly-

topes. working paper, 1998.

J. A. De Loera, S. Hosten, F. Santos, and B. Sturmfels. The polytope of all
triangulations of a point configuration. Documenta Mathematica, 1:103-119, 1996.

J. A. De Loera, F. Santos, and F. Takeuchi. Maximal dissections of convex

polytopes. wn preparation, 1999.
J. A. De Loera and F. Takeuchi, 1999. Private communication.
DeWall. http://miles.cnuce.cnr.it/cg/swOnTheWeb.html.

M. T. Dickerson and M. H. Montague. A (usually?) connected subgraph of
the minimum weight triangulation. In Proc. 12th Annu. ACM Sympos. Comput.
Geom., pages 204-213, 1996.

DIMACS Challenge 1. ftp://ftp.rutgers.edu/pub/netflow.

J. Dompierre, P. Labbe, F. Guibault, and R. Camerero. Proposal of benchmarks
for 3d unstructured tetrahedral mesh optimization. In Proc. of 7th International

Meshing Roundtable, pages 459-478, 1998.

N. Dyn, D. Levin, and S. Rippa. Data dependent triangulations for piecewise
linear interpolation. IMA Journal of Numerical Analysis, 10:137-154, 1990.

H. Edelsbrunner, F. P. Preparata, and D. B. West. Tetrahedrizing point
sets in three dimensions. Journal of Symbolic Computation, 10(3-4):335-347,
September—October 1990.

P. Fleischmann and S. Selberherr. Three-dimensional Delaunay mesh generation
using a modified advancing front approach. In Proc. of 6th International Meshing

Roundtable, pages 267-278, 1997.

92

[29]

[30]

S. Fortune, 1999. Private communication.

L. A. Freitag and P. M. Knupp. Tetrahedral element shape optimization via
the jacobian determinant and condition number. In Proc. of 8th International

Meshing Roundtable, pages 247-258, 1999.

H. N. Gabow. Implementation of Algorithms for Mazimum Matching on Nonbi-
partite Graphs. PhD thesis, Dept. of Electrical Eng., Stanford Univ., 1973.

Z. Galil, S. Micali, and H. Gabow. An O(EVlogV) algorithm for finding a
maximal weighted matching in general graphs. SIAM Journal on Computing,
15(1):120-130, February 1986.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman and Company, 1979.

I. M. Gelfand, M. M. Kapranov, and A. V. Zelevinsky. Discriminants, Resultants,

and Multidimensional Determinants. Birkhauser, Boston, 1994.

P.-L. George and H. Borouchaki. Delaunay Triangulation and Meshing. Hermes,
1998.

P. Gritzmann and V. Klee. Computational convexity. In J. E. Goodman and
J. O’Rourke, editors, Handbook of Discrete and Computational Geometry, chap-
ter 26. CRC Press, 1997.

M. Halpern. Industrial requirements and practices in finite element meshing: A
survey of trends. In Proc. of 6th International Meshing Roundtable, pages 399—
411, 1997.

M. Henk, J. Richter-Gebert, and G. M. Ziegler. Basic properties of convex poly-
topes. In J. E. Goodman and J. O’Rourke, editors, Handbook of Discrete and
Computational Geometry, chapter 13. CRC Press, 1997.

K. Ho-Le. Finite element mesh generation method: a review and classification.

Computer Aided Design, 20(1):27-38, 1988.

T. Itoh, K. Shimada, K. Inoue, A. Yamada, and Tomotake Furuhata. Automated
conversion of 2d triangular mesh into quadrilateral mesh with directionality con-

trol. In Proc. of 7th International Meshing Roundtable, pages 77-86, 1998.
kaleido. http://www.math.technion.ac.il/kaleido/.

P. M. Knupp. Matrix norms & the condition number. In Proc. of 8th International
Meshing Roundtable, pages 13-22, 1999.

K. Koyamada, S. Uno, A. Doi, and T. Miyazawa. Fast volume rendering by polyg-
onal approximation. Journal of Information Processing, 15(4):535-544, 1992.

93

[44]

[50]

Y. Kyoda, K. Imai, F. Takeuchi, and A. Tajima. A branch-and-cut approach for
minimum weight triangulation. In Proceedings of the 8th Annual International
Symposium on Algorithms and Computation (ISAAC ’97), volume 1350 of Lecture
Notes in Computer Science, pages 384-393. Springer Verlag, 1997.

LEDA. http://www.mpi-sb.mpg.de/LEDA.

A. Lingas. The greedy and Delaunay triangulations are not bad in the average

case. Information Processing Letters, 22:25-31, 1986.

T. Masada, H. Imai, and K. Imai. Enumeration of regular triangulations. In
Proceedings of the 12th Annual ACM Symposium on Computational Geometry,
pages 224-233, 1996.

K. Mehlhorn and S. Naher. LEDA: A Platform for Combinatorial and Geometric
Computing. Cambridge University Press, 1999.

J. E. Mitchell. Interior point methods for combinatorial optimization. In T. Ter-
laky, editor, Interior Point Methods of Mathematical Programming, chapter 11,
pages 417-466. Kluwer Academic Publishers, 1996.

K. Nakahashi and K. Fujii. Grid Generation and Computer Graphics, volume 6
of Computational Fruid Dynamics Series. University of Tokyo Press, 1995. (in

Japanese).

G. L. Nemhauser and G. Sigismondi. A strong cutting plane/branch-and-bound
algorithm for node packing. Journal of Operations Research Society, 43(5):443~
457, 1992.

G. L. Nemhauser and L. E. Trotter. Properties of vertex packing and independent
system polyhedra. Mathematical programming, 6:48-61, 1974.

G. L. Nemhauser and L. E. Trotter. Vertex packings: Structural properties and
algorithms. Mathematical programming, 8:232-248, 1975.

OSL. http://www6.software.ibm.com/es/oslv2/features/welcome.htm.

S. Owen. A survey of unstructured mesh generation technology. In Proc. of 7th

International Meshing Roundtable, pages 239-267, 1998.

PORTA. http://www.iwr.uni-heidelberg.de/iwr/comopt /soft /PORTA /readme html.

PUNTOS. http://www.geom.umn.edu/about/people/home /deloera.html.

V. T. Rajan. Optimality of the Delaunay triangulation in R?. In Proc. 7th ACM
Symp. Computational Geometry, pages 357-363, 1991.

V. T. Rajan. Optimality of the Delaunay triangulation in R?. Discrete & Com-
putational Geometry, 12(2):189-202, 1994.

94

[60]

[61]

[71]

[72]

[73]

J. Rambau, 1999. Private communication.

J. Richiter-Gebert. The universality theorems for oriented matroids and poly-
topes. In B. Chazelle, J. E. Goodman, and R. Pollack, editors, Advances in Dis-
crete and Computational Geometry, volume 233 of Contemporary Mathematics,

pages 269-292. American Mathematical Society, 1999.

S. Rippa. Piecewise linear interpolation and approzimation schemes over data

dependent triangulations. PhD thesis, Tel Aviv, 1989.

J. Ruppert and R. Seidel. On the difficulty of triangulating three-dimensional
nonconvex polyhedra. Discrete & Computational Geometry, 7:227-253, 1992.

F. Santos. A point configuration whose space of triangulations is discon-
nected, 1999. Preprint. Available at http://matsunl.matesco.unican.es/ san-

tos/Articulos/.

L. L. Schumaker. Computing optimal triangulations using simulated annealing.

Computer Aided Geometric Design, 10:329-345, 1993.

J. Sekiguchi. Mathematical Study on Polyhedra and Graphics, volume 13 of Math-

emacical and Information Science. Makino Books, 1996. (in Japanese).

K. Shimada. Physically-based automatic mesh generation. Simulation, 12(1):11-
20, 1993. (in Japanese).

K. Shimada, JH. Liao, and T.Itoh. Quadrilateral meshing with directionality
control through the packing of square cells. In Proc. of 7th International Meshing
Roundtable, pages 61-76, 1998.

P. Shirley and A. Tuchman. A polygonal approximation to direct scalar volume

rendering. Computer Graphics, 24(5):63-70, 1990.

P. Shor. Stretchability of pseudoline arrangements is NP-hard. In P. Gritzman
and B. Strumfels, editors, Geometry and Disrete Mathematics — The Victor Klee
Festschrift, volume 4 of DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, pages 531-554. American Mathematical Society, 1991.

A. Tajima. Optimality and integer programming formulations of triangulations
in general dimension. In Proceedings of the 9th Annual International Symposium
on Algorithms and Computation (ISAAC ’98), volume 1533 of Lecture Notes in
Computer Science, pages 377-386. Springer Verlag, 1998.

Takeuchi and Imai. Enumerating triangulations for products of two simplices
and for arbitrary configurations of points. In COCOON: Annual International
Conference on Computing and Combinatorics, pages 470-481, 1997.

TOPCOM. http://www.zib.de/rambau/TOPCOM.html.

95

[74] Triangle. http://www.cs.cmu.edu/"quake/triangle.research.html.

[75] C. A. Wang, F. Chin, and Y. F. Xu. A new subgraph of minimum weight trian-
gulation. In Proc. 7th International Symposium on Algorithms and Computation,

volume 1178 of Lecture Notes in Computer Science, pages 266-274. Springer Ver-
lag, 1996.

[76] L. A. Wolsey. Integer Programming. Wiley-Interscience Series in Discrete Math-
ematics and Optimization. John Wiley & Sons, Inc., 1998.

[77] J. Z. Zhu, O. C. Zienkiewicz, E. Hinton, and J. Wu. A new approach to the
development of automatic quadrilateral mesh generation. International Journal

for Numerical Methods in Engineering, 32:849-866, 1991.

[78] G. M. Ziegler. Lectures on Polytopes. Graduate Texts in Mathematics. Springer-
Verlag, revised first edition edition, 1995.

96

