Enumerating Triangulations in General Dimension

Fumihiko Takeuchi Tomonari Masada Hiroshi Imai
Department of Information Science, University of Tokyo
Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan

Keiko Imai
Department of Information and System Engineering, Chuo University
Kasuga, Bunkyo-ku, Tokyo, 112-8851 Japan

April 30, 1998

Abstract

We propose algorithms to cnumerate (1) regular triangulations, (2) spanning regular tri-
angulations, (3) classes of regular triangulations in respect of symmetry, and (4) all trian-
gulations. All of the algorithms are for arbitrary points in general dimension. They work
in output-size sensitive time with memory only of several times the size of a triangulation.
For the enumeration of regular triangulations, we use the fact by Gel’fand, Zelevinskil and
Kapranov that regular triangulations correspond to the vertices of the secondary polytope.
To accomplish these efficiency, we use reverse search technique by Avis and Fukuda, its
extension for enumerating classes of objects, and a reformulation of a maximal independent
set enumeration algorithm.

1 Introduction

Triangulations have been one of the main topics in computational geometry and other fields
in recent years. Especially, some types of triangulations are found to bridge geometric issues
and algebraic ones. Regular triangulations are of such a type [3, 12, 13]. For example, this
subclass of triangulations has a close connection with a well-known paradigm of computer
algebra, Grobner bases, and also with theory of discriminants, hypergeometric functions, ctc.
(see [3. 8. 12. 19, 29, 30]). Regular triangulations can be defined as a natural extension of the
Delaunay triangulation and also of lexicographic triangulations, a subclass of triangulations
well-known in the theory of oriented matroids.

From the viewpoint of computational geometry, regular triangulations provide a good
framework where many known results for triangulations of a planar point set can be gen-
cralized to higher dimensional case. For instance, in the planar case, any pair of triangulation
can be transformed to cach other by a sequence of so-called Delaunay flips, but, even in three
dimensional case, Delaunay triangulation cannot always be obtained from a non-regular tri-
angulation by Delaunay flips [15, 16]. However, restricting ourselves to the class of regular
triangulations, such a result is already shown in any dimensions [3, 12, 13]. Also, there are
several works in computational geometry on regular triangulations such as [10, 11].

(1) Enumeration of regular triangulations. Enumecration of all regular triangulations is
mteresting from the viewpoint of computer-aided mathematical research. As mentioned above,
regular triangulations have connection with many mathematical concepts, and by enumerating
them mathematical problems can be investigated through computational experiments (e.g., sce

5. 8.30]). Also. for the three-dimensional case, through the enumeration algorithm, exhaustive
and local search can be performed for triangulations of three-dimensional objects in computer
graphics. finite clement method, etc.

By extending the original work by Masada [20, 21|, we first propose an output-size sensi-
tive and work-space cfficient algorithm for enumerating regular triangulations of n points in
the d-dimensional space. To achieve these efficiency, we used reverse search technique [1, 2].
The algorithm makes full use of the existing results on the secondary polytope that the ver-
tices correspond to regular triangulations. These known results are summarized using the
so-called volume vector, and the algorithm is described in a simple way. Its time complexity
is O(d?s*LP(n — d ~ 1, 5)#7R), where where s is the upper bound of the number of simplices
of all dimensions contained in one regular triangulation, and LP(n — d — 1,s) denotes the
time required for solving a linear programming problem with s strict inequality constraints
in n —d — 1 variables, and #R is the number of regular triangulations, which is bounded
by ()(72,(‘”2)("*‘1"2)). Its work-space complexity is O(ds), which is best possible to retain one
triangulation. Our time complexity is proportional to the output size #R, and working space
is quite small.

There have been proposed three algorithms for enumerating regular triangulations [3, 5,
20, 21].

1. The algorithm by Billera, Filliman and Sturmfels [3] first characterizes the secondary fan
dual to the secondary polytope by means of gale transforms, and then algorithmically
by applying the hyperplane arrangement algorithm in [9] the problem is shown to be
solvable in O(n(¢t1)("=4-2)) time and space. This algorithm is worst-case optimal for the
so-called Lawrence polytopes which form a very restricted class. However, the reduction
has redundant part for other cases, and the number of regular triangulations may be
much smaller than the complexity of the arrangement. Thus, even if a good algorithm
for arrangements is available, an output-size sensitive and work-space efficient algorithm
is hard to obtain along this line.

2. An output-size sensitive algorithm is given by De Loera [5]. It is based on the breadth-
first search enumeration, and is implemented using Maple. Since it is based on the
breadth-first search, its work-space complexity is Q(#7R), which becomes prohibitively
large even for small-size problems.

3. An output-size sensitive and work-space efficient algorithm is originally developed by
Masada [20. 21]. It is based on the reverse search technique developed in [1, 2], and is
implemented in C.

The algorithm presented in this paper is a refined version of the last one, together with some
new results for spanning triangulations, and have theoretical merits as described above. Prac-
tical merits of this algorithm will be seen from subsection 4.6. The codes are available via
internet [34]. Preliminary computational results are also shown.

(2) Enumeration of spanning regular triangulations. Next, we consider regular trian-
gulations using all points. Some regular triangulations may not use a point inside the convex
hull, which may not be preferable for three-dimensional applications in computer graphics
and finite element method. Triangulations using all the points are called spanning, and an
algorithm with similar complexities is given to enumerate all spanning regular triangulations.
Also, the diameter of the secondary polytope the vertices of which correspond to the regular
triangulations is shown to be O(n4+?).

(3) Enumeration of classes of regular triangulations. As mentioned above, regular
triangulations have connection with many mathematical concepts such as Grobner bases, and
in such cases a given point configuration is mostly degencrate, and furthermore has symmetric

structures. Then, enumerating only a representative triangulation from each equivalence class
induced by the symmetry becomes crucial, since the number of triangulations equivalent under
the symmetry may become large.

De Loera’s program can take this symmetry into account, and he enumerated the trian-
gulations. all of which are regular, for the case of Ay x Az and Ay x Ay [5, 6]. When the
dimensions become larger, even the number of classes divided by symmetry becomes huge. De
Loera is using breadth first search in his program, so all visited triangulations should be kept
in the memory, and the memory constraint becomes serious in larger cases.

We propose an algorithm to cnumerate classes of objects by reverse search. And then

apply this to the enumeration of classes of regular triangulations in respect of symmetry for
symmetric polytopes. Applications to products of two simplices and hypercubes are shown.
The algorithm runs in output-size sensitive time, i.e. in time proportional to the number of
classes. and requires memory only several times of a triangulation.
(4) Enumeration of triangulations. We finally propose an algorithm to enumerate all tri-
angulations, regular or not, in general dimension. De Loera found a nonregular triangulation in
A3 x As. So. it is important also to enumerate all triangulations, regular or not. Though there
are some results |7], there is no efficient algorithm to enumerate all triangulations in dimen-
sion higher than two. Our algorithm enumerates them for arbitrary configurations of points.
We characterize triangulations as a subclass of maximal independent sets of the intersection
graph of the maximal dimensional simplices. We reformulate a general maximal independent
set enumeration algorithm, for the graph case, and apply it to this intersection graph. The
time complexity is proportional to the number of maximal independent sets, the objects we
really enumerate. When triangulations form a proper subset of the maximal independent sets,
the gap between them becomes a loss. If this gap is small, this algorithm is efficient, the first
efficient one, to enumerate all triangulations. The existence of this gap is determined geomet-
rically by the configuration of points. In two dimension this does not happen, and in three
dimension, we have Schoénhardt’s polyhedron (cf. [23, 10.2.1]) for example. However we are
thinking that the gap may be small even in higher dimension. The memory required in this
algorithm is only about the size of two triangulations.

We apply this to the case of the product of two simplices. The number of the simplices, the
vertices of the intersection graph, increases exponential to the dimension, but we cope with
this by using their correspondence with spanning trees of an bipartite graph, and memorizing
one simplex, or spanning tree. at once.

An implementation of this algorithm in Mathematica is available via internet [34].
Outline of this paper. We begin by a brief explanation of reverse scarch, and then give
our formulation of reverse search for classes of objects (section 2). Next, we summarize the
definitions and properties of regular triangulations and the secondary polytope (section 3). We
give our algorithm to enumerate regular triangulations (section 4). We also consider spanning
regular triangulations, and investigate the diameter of the secondary polytope (section 5).
Next. we present the algorithm for the enumeration of classes of regular triangulations, and
apply it to products of simplices and hypercubes (section 6). We summarize the general
maximal independent set enumeration algorithm, and show our formulation for graphs (section
7). Finally, we apply this to the enumeration of all triangulations.

2 Reverse search

Avis and Fukuda introduced an enumeration technique called reverse search [2]. It runs in
time proportional to the number of objects to be enumerated, and requires memory only of
several times the size of an object. We first explain their algorithm (subsection 2.1), and then

show our extension for enumeration of classes of objects (subsection 2.2).

2.1 Reverse search

Reverse scarch is a general technique for enumeration. It performs at the same output-size
sensitive time as breadth first search (BFS) or depth first search (DFS), but requires memory
only of twice the size of an object among those to be enumerated. BFS and DFS needed
output-size sensitive memory to memorize all reached objects. To save memory, in addition to
the adjacency relation, which is necessary for BFS and DFS, parent-children relation is needful
for reverse search [1, 2}.

First we state the adjacency and parent-children relation for reverse search. This structure
for reverse search is named “local search structure given by an A-oracle.” We call it a reverse
search structure herc.

Definition 2.1 (reverse search structure [2])

(5,0.Adj, f) is a reverse search structure if it suffices the followings. (1) S is a finite set.
(2) 6 € N. (3) Adj: S x{1,...,6} - SU{0}. For anya € S and i,5 € {1,...,6}, (i)
Adj(a,i) # a and (i) if Adj(a,?7) = Adj(a,j) # 0 theni = j. (4) f : S = S is the parent
function: f(a) = a or Adj(a,i) for some <. (5) There exists a unique root object r € S: an
object such that f(r) =r. For any other object a # r, there exists n € IN such that f(™(a) =r.

S is the set of objects to be enumerated. The maximum degree of the adjacency graph is
0. For each object a € S the adjacency function Adj returns its indexed adjacent object, or
sometimes @ if the object has degree less than §. This index is for use in the enumeration
algorithm. We always assume that the adjacency relation is symmetric: if Adj(a,i) = b then
Adj(b.j) = a for some j.

The information of 6, Adj, f and r is given to the reverse search algorithm, and the
algorithm returns S as its output. Actually r is not necessary, because it can be founded by
applying f several times to an object.

Algorithm 2.2 (reverse search [2])

ReverseSearch(d, Adj, f,r)
vi=7r j7:=0
repeat
while j<d§ do
Ji=j+1 next= Adj(v,j)
if nert#(then
if f(next) =v then
{v:=next j:=0}
if v#r then
u:=v v:= f(v)
j:=0
repeat j:=j+1
until Adj(v,j) =u
until v =7 and j=94

Theorem 2.3 ([2, Corollary 2.3.])

Algorithm 2.2 works for the reverse search structure in Definition 2.1. The time complezity is
O(d (time(Adj)+time(f)) #5S), where time(Adj) and time(f) are the time necessary to compute
Junctions Adj and f. The memory required is twice the size of an object in S.

2.2 Reverse search for classes

Later, we will give an algorithm to enumerate classes of regular triangulations. This will be
based on the enumeration of classes of objects by reverse search we propose here.

We use ~ for an equivalence relation on the objects S. The equivalence class of an object a
is denoted by [a]. By rep we denote the representative function: for any object a, rep(a) ~ a,
and for any objects a, b, a ~ b if and only if rep(a) = rep(b). The composition (repof)(a)
denotes rep(f(a)).

Definition 2.4 (reverse search structure for classes)

(5.0.Adj. f.~.rep) is a reverse search structure for classes if

o (S.4.Adj. f) is a reverse search structure.
e ~ 15 an equivalence relation and rep is a representative function on S.

e a adjacent to b and c ~ a implies the existence of an object d adjacent to ¢ and d ~ b,
for any a, b and c.

e The root object r of the original reverse search structure is the only object with (repof)(r) =
r. For any other object a # r, there exists n € IN such that (repof)™(a) = r.

Theorem 2.5

For the reverse scarch structure for classes in Definition 2.4, we can enumerate the classes of
objects by the following reverse search structure. The functions Adj and f in the right hand
are those of the original reverse search structure as in Definition 2.1.

o S/~={[a] :a € S} is the set we want to enumerate

e 0 is the same as the original reverse search structure

[Adj(rep(a),)] E'fAdj()l]fep(a)-,i) # 0 and [Adj(rep(a),)] #
rep(a)| and
e Adj([a].4) = if [Adj(rep(a),7)] # [Adj(rep(a),j)] for
any j <1
0 otherwise

o J(la]) = [f (rep(a))]

The time complexity is O(d(d(time(Adj) + time(rep)) + time(f))#(S/~)) where time(rep) is
the time to compute the representative object of the class of an given object, and time(Adj) and

time(f) is the time as in the original reverse search structure. The memory required is 6 + 2
times the size of an object.

Proof. We have to check conditions (1) to (5) of Definition 2.1 and the symmetry of the
adjacency relation.

Symmetry of the adjacency: if Adj([rep(a)], i) = [rep(b)], Adj(rep(a),:) = c for some ¢ ~ rep(b),
and [rep(a)] # [¢]. By rep(a) adjacent to ¢ and ¢ ~ rep(b), there exists d ~ rep(a) adjacent to
rep(b). Thus Adj(rep(b).j) = d for some j. and [rep(b)] = [c] # [rep(a)] = [d]. This implies
Adj([rep(b)]. k) = [d] = [rep(a)] for some k.

(1). (2) and (3) are satisficd by definition.

(4): if f(la]) = [b] and [a] # [b]. f(rep(a)) ~ b # a. Thus f(rep(a)) # rep(a). Since
f(rep(a)) # rep(a). Adj(rep(a).i) = f(rep(a)) for some i. Thus Adj([rep(a)],4) = [/ (rep(a))]
for some j. This leads Adj([a].) = [b].

First statement of condition (5): we prove that the only class [a] with f([a]) = [a] is the class

which includes the root object r of the original reverse search structure. Since r = rep(f(r)),
7 is the representative of its class [r]. For this class f([r]) = [f(r)] = [r]. If [a] is a class
where f([a]) = [a], we have [f(rep(a))] = [a], thus rep(f(rep(a))) = rep(a), which implics
r = rep(a) € |al.
Sccond statement of condition (5): for any class [a] # [r], rep(a) # 7, and there exists n € IN
such that (rep of)(™(rep(a)) = r. Thus, £ ([a]) = [r].

The argument above shows that the structure above is a reverse search structure, so we
can enumerate the classes by Algorithm 2.2 as shown in Theorem 2.3.

The adjacency function avoids self and multiple adjacency. Its time complexity becomes
d(time(Adj) + time(rep)). The memory required is § times the size of an object.

The parent function works with time complexity time(f) + time(rep). O

Two classes are adjacent if and only if there are adjacent objects from each of them. Any
object of a class has an adjacent object in all the class-wise adjacent classes. Thus the degree
of adjacency for the reverse search of classes is not larger than the degree for the original
reverse search. and we can use the same 4.

The following is a special case of reverse search, given by an adjacency function and a total

order on the objects S.
Definition 2.6 (reverse search structure with total order)
(5,0.Adj, <) is a reverse search structure with total order if

o (S.6.Adj) satisfies conditions (1) to (3) in Definition 2.1.

o < is a total order on S.

e Only the mazimum element r of the total order satisfies max<({a € S : a = Adj(r,1) for

some i} U{r})=r.

Proposition 2.7
A reverse search structure with total order (8,4, Adj. <) together with

e fla) =max.({be S:b= Adj(a.i) for some i} U {a})

becomes a reverse search structure.

Proof. We have to check the conditions (4) and (5) of Definition 2.1. By the definition of f,
(4) is satisfied. The condition f(a) = a holds if and only if @ = r. For other objects, f(a) > a,

thus therc exists some n € IN such that f(®)(a) = r. This shows (5). The maximum object 7
becomes the root. O

We introduce a reverse search structure for classes for this version.

Definition 2.8 (reverse search structure for classes with total order)

(5.9, Adj. <.~) is a reverse search structure for classes with total order if

e (5.4.Adj. <) is a reverse search structure with total order
e ~ 15 an equivalence relation on S.

® o adjacent to b and ¢ ~ a implies the existence of an object d adjacent to c and d ~ b,
for any a, b and c.

Proposition 2.9

The reverse search structure for classes with total order together with

o f(a) =max<({be S:b= Adj(a,i) for some i} U{a})

e 1ep(a) = maxc([al)

becomes a reverse search structure for classes.

Proof. We have to check the last condition of Definition 2.4. For any a, f(a) > a, and
fla) = a if and only if @ = 7. For any «a, rep(a) > a. And also rep(r) = r. Thus the root object
r is the only object satisfying (repof)(r) = r. For any other object a # r, (repof)(a) > a,
and there exists n € IN such that (repof)™(a) =r. D

3 Regular triangulations and the secondary polytope

Regular triangulations form a subset of triangulations. They correspond to the vertices of a
polytope, secondary polytope, which is determined uniquely by a configuration of points. We
later propose an algorithm to enumerate regular triangulation by applying a vertex enumeration
method to this secondary polytope. Refer to [3, 12, 13, 19, 33] for further information on regular
triangulations.

Let A = {a;,...,a,} C IR? be a configuration of points, with their convex hull conv(A)
having dimension d. We are interested in triangulations of conv(.A). We only consider trian-
gulations whose vertices are among the given points A.

Two simplices 0; and o; intersect properly if their intersection o; Noj is a (possibly empty)
face for both simplices. This is equivalent to o;No; = conv(vert(o;) Nvert(o;)), where vert(o;)
and vert(o;) are the sets of vertices of 0; and o;.

A set of d-simplices {oy,....0,} whose vertices are among A is a triangulation of A if
(1) any pair of simplices 0;, o; are intersecting properly and (2) the union of the simplices
U{o1.....om} is equal to conv(A).

A triangulation T of A is regular if there exists a vector ¢ : A — IR having the following

property. For P = conv{<$;),...,(fz:)}, and 7 the projection n : R — IR? with
7 (ail) =z, T = {n(F) : Fis alower facet of P}. Here F being a lower facet means,

F={x € P:cx = c} is a facet with ez < ¢ valid for P and c4y; < 0. Notice that
this definition admits regular triangulations which do not use some of the given points, while
vertices of conv(A) arc necessarily used. Regular triangulations using all points are treated in
section 5.

Let T be a triangulation of A. The wvolume vector for T is a vector ¢ : A — IR with
er(ai) = Yoera,evert(s) VOL(0), where vol(o) is the volume and vert(o) is the set of vertices
of a d-simplex o.

The secondary polytope £(A) of a point configuration A is the convex hull of the points ¢
in IR* for all triangulations T of A.

Regular triangulations correspond to the vertices of the secondary polytope £(.A). The
vertices connected by an edge in the secondary polytope arc “similar”: they can be modified
cach other by “flips”. For the definition of flips, consult the references above.

Theorem 3.1 ([12, Chapter 7. Theorem 1.7., Theorem 2.10.])

The secondary polytope L(A) has dimension n — d — 1, and its vertices correspond one-to-one
to the volume vectors of the regular triangulations of A. The edges are between vertices whose
corresponding reqular triangulations can be transformed each other by a flip.

It should be noted that a new triangulation obtained by appling a flip to a regular triangulation

is not necessarily regular. During enumeration, we will visit a new triangulation from a known

one using flips. Thus, we have to check the regularity for each newly obtained triangulation.
The next lemma is an implication of the upper bound theorem of convex polytopes.

Lemma 3.2

The number of the d-simplices and all of their faces in a regular triangulation of A is bounded
by the number of the faces with the same dimension of a cyclic (d+1)-polytope with n vertices.
Especially, the number of d-simplices is bounded from above by O(n“‘”l)/u).

For the rest, s denotes the maximum number of all the d-simplices and their faces used in a
regular triangulation of A, and s,; denotes the maximum number of the d-simplices.

4 Enumeration of regular triangulations

We present an algorithm for the enumeration of regular triangulations (subsection 4.1). We
use our formulation of reverse scarch, defined in Definition 2.6 and Proposition 2.7. We next
describe the data structure for representing a regular triangulation for efficient manipulation
(subsection 4.2). Then, we show that it can be checked by linear programming whether a given
triangulation is regular (subsection 4.3). Also, how to obtain an initial regular triangulation is
explained (subsection 4.4). The complexities achived by these treatments are given (subsection
4.5). Finally, some prelimary computational results are shown (subsection 4.6).

4.1 Enumerating regular triangulations
Two triangulations are defined to be adjacent if they can be modified along a circuit.

Definition 4.1 (reverse search structure for regular triangulations)

The reverse search structure for regular triangulations of an arbitrary point configuration A is
o S = {regular triangulation}

o Adj(T,i) = (the i-th regular triangulation which can be modified from T
along a circuit)

The index 7 in the definition of Adj(T,1) is not of importance.

Definition 4.2 (total order on regular triangulations)

We introduce a total order on regular triangulations by comparing their volume vectors in
lexicographic order.

Since regular triangulations correspond to the vertices of the secondary polytope 2(.A4), and lex-
icographic order is same as ordering the vertices by the inner product with a vector (N, N*~!,
.... N) with sufficiently large N, last condition in Definition 2.6 is satisfied. Thus, the reverse
scarch structure and the total order above satisfy the conditions of reverse search structure
with total order. Thus, we can enumerate all regular triangulations using Proposition 2.7.

Theorem 4.3 (enumerating regular triangulations)

The structure of Definition 4.1 and 4.2 enables reverse search. The time complezity is O(d?s?
LP(n —d — 1.5)#R), where s is the upper bound of number of simplices of all dimensions
contained in a regular triangulation and LP(n —d — 1, 8) is the time required to solve a linear
programming problem with s strict inequalities constraints in n — d — 1 variables, and R is the
sct of reqular triangulations. The memory required is O(ds).

Proof. The degree 4. time and space complexity for Adj and f are given in Proposition
1.6. O

4.2 Data structure for a triangulation

We represent a simplex by the set of the indices of its extreme points. For each triangulation,
we hold the graph of its face poset in memory. The d-simplices used in the triangulation and
their faces become the vertices of the graph. When a simplex is a face of another simplex, with
their difference of dimension one, the corresponding vertices in the graph are connected by an
cdge. We label this edge by the index of the point included only in the larger simplex. This
data structure represents the incidence relation of the simplices. It requires O(ds) space, where
s was the maximum number of simplices of all dimensions used in a regular triangulation of
A.

Besides this graph, we maintain all circuits supported by the current triangulation. Each
circuit is conceptually represented by an (i + 2)-tuple (i < d) of the indices of the points in
the circuit sorted in increasing order. We maintain all of these circuits by a list of these tuples
sorted in lexicographic order. For a circuit with 7 + 2 points, its convex hull consists of at
most ¢ + 1 simplices, and in practice we represent the (i + 2)-tuple of points implicitly by
recording those simplices. Any i-simplex belongs to at most ¢ + 1 of the circuits consisting of
more than onc simplices. And. there are no more than n circuits consisting of one simplex.
Thus, the number of circuits is bounded by O(ds), and also the space required for this implicit
representation is O(ds).

For each regular triangulation, we also maintain its volume vector.

When updating triangulations by a flip, we have to maintain these data structures. The
face lattice can be updated in O(ds) time. Since the computation of the volume of a simplex
can be done in O(d*) time, the volume vector can be computed in O(d®s) time. By a flip, at
most (d + 1)s of the circuits consisting of more than one simplex are deleted or inserted to the
list of the circuits. Computing all such circuits can be done in O(d*s) time. Checking whether
such circuit is supported by the triangulation can be done in O(ds) per each. There are at
most n circuits consisting of one simplex. Computing such circuits can be done in O(d'sn)
time. Two circuits can be compared with respect to the lexicographic ordering in O(d) time
by the implicit representation above. Hence, the list for a flip can be computed in O(d*s?)
time.

When a new triangulation is computed, we have to check its regularity by solving the linear
programming problem in O(LP(n — d — 1, s)) time, as described in Lemma 4.4 below. The
time complexity to solve a linear programming problem with n variables and m constraints is
denoted by LP(n.m). By interior point method, this takes n3L operations, where L is the size
of the input. In the sequel, we assume that the time complexity to update the data structure
by a flip is dominated by O(LP(n — d — 1, 5)).

For points in general position, we only have to hold the graph of the d and (d —1)-simplices.
In this case, both the space and the time complexity can be reduced.

4.3 Checking the regularity of a triangulation

In the existing literature, the regularity check is done in the dual space. We here give a simple
primal approach. For cach (d — 1)-simplex of a given triangulation of the set A of points, not
on the boundary of conv(A), there are two d-simplices sharing the simplex. Suppose the two
simplices have points {py....,p,} and {p;....,py,,}. Let w; represent the weight of p,. If w

is defining a regular triangulation, we must have

1o 11

1 ... 1
Dy ' P4 Pdt1 Po - Dy > 0. (%)
woe - W4 Wd4 0

Lemma 4.4

A gwen triangulation is regular if and only if there is a solution w satisfying () for each pair
of adjacent d-facets {py,---.py} and {py, -+, Py}

Proof. The “only if” part is seen just by setting w to the weight vector realizing the regular
triangulation. The “if” part can then be shown by standard convex analysis. O

Thus. in a primal way, the regularity can be checked by linear programming. It is easy to
see that for a fixed simplex we can set w; = 0 for each point of the simplex without changing
the existence of the solution. The number of (d — 1)-simplices in a regular triangulation is
smaller than s. It can also be bounded by (d + 1)s4/2. Hence, this linear programming is to
check the existence of a solution to n — d — 1 variables and at most s constraints. Denote by
LP(n —d — 1, s) the time required to solve this linear programming problem.

Proposition 4.5

Whether a given triangulation is regular can be judged in LP(n —d — 1, s) time.

4.4 Constructing an initial regular triangulation

Our algorithm requires a regular triangulation to start. This can be an arbitrary regular one.
For conceptual simplicity and some technical merits, we may consider two candidates for the
initial one. One is a regular triangulation whose volume vector is lexicographically maximum
among all volume vectors. The other is the Delaunay triangulation. In the latter case, we
can use an algorithm for convex hulls in [1, 4, 27]. [10] devises an algorithm which directly
constructs a regular triangulation from an assignment of weight, while its time complexity is
analyzed by means of randomized analysis since the algorithm uses flipping operation as a
primitive. If one regular triangulation is necessary, this may also be used.

The lexicographically maximum one can be computed by starting with any regular trian-
gulation and transforming it by flips towards lexicographic maximization along a path on the
secondary polytope. When the input points in A are in general position, the optimal regular
triangulation can be obtained simply by considering a triangulation formed by points on the
convex hull boundary and a; such that all simplices have a; as a vertex. Such a triangulation
is uniquely determined.

In any case, the time necessary for obtaining the initial regular triangulation is negligible
in comparison with the time necessary for the rest of the enumeration algorithm.

4.5 Complexities
Proposition 4.6

(1) For each vertex in the reverse search tree, there are at most 6 = O(ds) adjacent triangula-
tions.

(2) For a vertex in the reverse search tree, its i-th adjacent vertez can be computed in time(Adj) =
O(LP(n—d —1,s)) time and O(ds) space.

(3) For a vertez in the reverse search tree, its parent can be computed in time(f) = O(dsLP(n—
d —1.5)) time and O(ds) space.

10

Proof. (1) As in subsection 4.2, for any triangulation the number of supported circuits is
bounded by O(ds).

(2) This can be done by updating the triangulation along the i-th circuit and checking its
regularity. The complexity is from subsection 4.2, 4.3.

(3) To find the parent, we enumerate all adjacent triangulations, with checking their regu-
larity. and find the lexicographically maximum one. Since there are at most O(ds) adjacent
triangulations and each of them can be computed separately, the complexities follow. O

4.6 Preliminary Computational Results

We here describe computational results for randomly generated points. Concerning the results
for regularly structured point sets which are interesting from mathematical viewpoints, see
120. 21]. These are still preliminary results.

Our algorithm is implemented in C language. The experiments are done on Sun SPARCsta-
tion 10 with 64MB memory. Exact arithmetics are realized by GNU MP library for arbitrary
precision integer and rational number arithmetic. Linear programming problems are solved
by a simplex method with Bland’s rule. The space complexity is a little more than O(ds)
for speeding up the computation in this implementation. Our implementation also works for
degencrate inputs.

We here show the number of simplices of regular triangulations when the points are ran-
domly generated in the d-cube with the edges of length 1000. Every coordinate is an integer
less than or equal to 500 and more than —500.

o n = d+ 4; this is, so to speak, the first non-trivial case, since in the case of n = d + 3 all
triangulations are regular.

— n =5.d = 1: Bach of 20 configurations has 8 regular triangulations.

— n =206,d = 2: 2 of 20 configurations have 16 regular triangulations, 6 of them have
15 ones, and 12 of them have 14 ones.

- n=17,d=3: 2 of 20 configurations have 27 regular triangulations, and 18 of them
have 25 ones.

— n =8.d=4: 3 of 20 configurations have 40 regular triangulations, 3 of them have
41 ones, 7 of them have 42 ones, 3 of them 43 ones, and the other four have 44 ones.

e n=d+5;

— n =6,d = 1: Each of 20 configurations has 16 regular triangulations.

—n = 7,d = 2: The number of regular triangulations is quite various. 4 of 20
configurations have 42 ones, 9 of them have 46 ones, 2 of them have 50 ones, one of
them has 51 ones, and 2 have 55 one, and two other configurations have 56 regular
triangulations, respectively.

— n = 8.d = 3: In this case the number regular triangulations varies from 128 to 168
with some small peak around 133.

Our system can solve much larger cases as follows. For example, the system can partially
cnumerate a set of 24 degenerate points in 20 dimensions, arising from some graph, such that
their regular triangulations consist of at most 306 triangles (in this case the total number
of triangulations is huge and we could only enumerate part of them, and yet some useful
information could be obtained from partial computational results).

11

5 Enumeration of spanning regular triangulations

We call a regular triangulation using all points spanning. We show that all spanning triangu-
lations are connected by flips. and show their enumeration. We also consider the diameter of
the secondary polytope using the arguments for this enumeration.

The first question concerning spanning regular triangulations is whether their corresponding
vertices are connected by edges in the secondary polytope. To investigate this, let wp be the
weight vector with wp; = |la;]| = Zj«lzl (aij)?. Consider the polytope obtained by lifting the
points A by wp. By perturbing wy,, if necessary, we can assume that there are exactly d + 1
points on any of the lower facets of this polytope. The corresponding regular triangulation is
a Delaunay triangulation. We consider transforming a spanning regular triangulation into this
Delaunay one.

Lemma 5.1

From a spanning regular triangulation, we can generate a sequence of reqular triangulations to
one Delaunay triangulation by flips such that

(1) all the regular triangulations appearing in this process are spanning, and the inner product
of wp and the volume vector of a regular triangulation is strictly decreasing, and furthermore
(2) a circuit used in a flip in the sequence is never used again in this process.

Proof. For cach triangulation A, we consider a piecewise linear function g, (z) on conv(A)
such that g, (a;) = wp; on points a; used in the triangulation, and g, linear on each d-simplex
of the triangulation. Let Aqy, be the regular triangulation for the weight vector wp. Then,

it is easy to see that ‘
x)dr < / galx)dzx
/conv(.A) Iawp, (@) conv(A) A()

holds for any triangulation A except Aqy,. Noting that this integral is for a piecewise linear
function. the following holds

(- ps,,,) = (d+1) [

Gr, @42 < (d+1) [gy (@)dz = (w, py),
conv(A) P

conv(A4)

where (w.) is the inner product of w and ¢, and PAqy,: PA are the volume vectors of Aqy
and A.

Since for wp all the lifted points are on the boundary of their lower hull, for any triangula-
tion. a flip which makes a point unused in any simplex necessarily increases the inner product
of wp and the volume vector. Consider a linear programming problem of minimizing a linear
function with wp as its cost vector on the secondary polytope. For a vertex corresponding
to a non-Delaunay regular triangulation there exists an adjacent vertex connected by an edge
whose inner product with wp strictly decreases. Hence, performing the corresponding gener-
alized flip. a new triangulation with smaller inner product value is obtained and this flip does
not destroy the spanning property. Thus, (1) is shown.

For the sequence of triangulations Ay, ..., Ag where Ay is the Delaunay triangulation, we
see

9a, (@) 2 gp,(®) (2 <J; @ € conv(A)).

This is because for lifted points corresponding to a circuit Z their convex hull is a full-
dimensional simplex in the lifted space and have the upper and lower boundaries. Each of the
upper and lower boundaries corresponds to a triangulation of Z in the original space. Since any
circuit has two triangulations, these two are such ones, and hence strict above-below relation
holds. If a circuit Z is used twice for generalized flips for i and j with 7 < j, ga, () = gAj(a:)

12

for z in the interior of conv Z, while by the argument above g, (z) > (N (x) > gAj(m), a
contradiction. O

Theorem 5.2

All the spanning regular triangulations can be enumerated in O(d*s*LP(n—d—1, s)#Rspanning)
time and O(ds) working space, where Repanning 1S the set of spanning regqular triangulations.

Proof. We use similar arguments as for the enumeration of regular triangulations. The
objects to be enumerated are S = Rgpanning) the spanning regular triangulations. When the
i-th circuit is formed by a simplex and a point in its interior, we set Adj(T,7) = §. Otherwise,
Adj(T. 1) is same as the case of regular triangulations. We introduce a total order on Rispanning)
by defining a triangulation with the inner product of its volume vector and wp smaller to be
larger. When there is a tie break, we compare their volume vectors in lexicographic order.
Then the claim holds similarly as Theorem 4.3: the conditions in Definition 2.6 are satisfied
and the complexities are as in Proposition 4.6. O

The arguments in Lemma 5.1 can be further utilized as follows.

Theorem 5.3
The diameter of the secondary polytope is O(n¢+2).

Proof. Since the number of circuits is bounded by O(nt?), and the piecewise linear function
monotonically changes downwards also for non-spanning regular triangulations. O

In [3]. they construct the arrangement of O(n*?) hyperplanes whose cells correspond to
the vertices of the secondary polytope, and two cells in the arrangement are adjacent each
other if and only if the corresponding vertices of the secondary polytope are connected by an
cdge. From these fact, Theorem 5.3 can be obtained because any two cells in the arrangement
are connected by a sequence of at most O(n¢t?) adjacent cells. However, the sequence from
any regular triangulation to the Delaunay triangulation can be found by the arguments in
Lemma 5.1 and Theorem 5.3.

6 Enumeration of classes of regular triangulations

In section 2, we showed an extension of reverse search for enumeration of classes of objects. In
section 4.1. we gave a structure to enumerate regular triangulations. We combine these results
and give an algorithm for the enumeration of classes of regular triangulations (subsection 6.1).
The equivalence for the classes reflects the symmetry of the given point configuration. We also

show applications to products of two simplices (subsection 6.2) and hypercubes (subsection
6.3).

6.1 Enumerating classes of regular triangulations

We define symmetries of point configurations by groups. A point configuration may be the
set of vertices of a symmetric polytope, and the group a set of transformations which do not
change the polytope as a set.

Let G be some group of affine maps which define bijections on conv(.A4). These maps define
bijections on the points A. A bijection on conv(.A4) can be determined by its action on A. So
we can regard G as a subgroup of the symmetric group S,, consisting of elements satisfying
the conditions of affine bijectivity. We define an equivalence relation using this group.

13

Definition 6.1 (equivalence on simplices and triangulations)

Letg e G.

o Gactson A={a1.....a,}.

e The action of G on a simplex of A is induced by the action on its vertices: g conv{a,,,...,
a;,} =convi{ga,,.....ga;, }.

o The action of G on the triangulations of A is induced by the action on the simplices:
9T ={go:0 € T}.

e The action of G on the vertices, simplices or triangulations defines an equivalence rela-
tion on each of them: two elements are equivalent if they can move to each other by an
element of G. We classify these sets by this equivalence classes.

Since G is a set of affine bijections, it maps a simplex to a simplex, and a triangulation
to a triangulation. Since affine bijections only relabel the name of the vertices, for any g € G
two triangulations 77 and T, can be modified along a circuit if and only if g77 and ¢75 can.
Thus, the definition of equivalence class on (regular) triangulations satisfy the last condition
of Definition 2.8, and the conditions for a reverse search structure for classes with order are
satisfied. Theorem 2.5 leads the following.

Theorem 6.2 (enumerating classes of regular triangulations)

By reverse search structure, total order and equivalence relation defined in Definition 4.1, 4.2
and 6.1. we can enumerate the classes of regular triangulations in respect of symmetry. The
time complexily and required memory are as in Theorem 2.5. Time complexities for time(Adj)

and time(f) are the same as the case of Theorem 4.3 and time(rep) in general is as in Lemma
6.3.

Lemma 6.3
The representative of a class is the mazimum element. The time complezity time(rep) for

finding the representative is O(n#G).

Proof. Judging the order between two volume vectors can be done in n time. By checking
all actions of (G, we can obtain the above time complexity. O

6.2 Products of two simplices
6.2.1 Ak X A{

We are interested in enumerating the triangulations for products of two simplices. We take as
the standard d-simplex Ay the convex hull conv{e;,...,egsy1} in R, We write e; or fj for

unit vectors with i-th or j-th element one and the rest zeros. The product of two standard
simplices Ap x 4} is

AkxA,:conv{Gf) elR,"'“”:ie{l,...,k+1},je{1,...,l+1}}.

J

In Figure 1 we show Ay x Ay and Ay x Ay for example.
Our objects to enumerate are the triangulations of A = vert(Ag x 4;), where vert(Ag x A))
are the vertices. Examples of triangulations are shown in Figure 2.

14

AIXAl
Ay Ay
| ¢
)) /y 7 i
1)
€ e
1 2
fZ fz f2
A2)(A1 .
A, A 2

Figure 1: Product of simplices: A1 x Ay and Ag x A

6.2.2 The symmetry of Ay x 4

The product Ay x Ay has a symmetric structure: even if we commute the axes of each simplex,
the shape of the product does not change.

Definition 6.4

We formulate the symmetry of Ay x &y by the action of the direct product of symmetric groups
Sk41 % Sy to the vertices. An element (g, h) € Sgi1 X Sjy1 acts on the vertices of Ag x A,

as (g. h) (;;) - (?i((;))).

This action consists of affine maps defining bijections on A x A; and vert(Ax x A;). Thus
it suffices the conditions for the group. Actions and equivalence relations on simplices and
triangulations are induced as in Definition 6.1. For example, the triangulations 77 and T in
Figure2 moves to each other by ((1,2),e) € Sy x S2. So does T; and Ty by ((1,3),e) € S3 x Ss.
As shown in Theorem 6.2, this equivalence relation satisfies the last condition of reverse search
structure for classes with symmetry, and we can enumerate the classes of regular triangulations
in respect of symmetry.

When k = [, there are further symmetry: commuting the first half of axes and the last
half. This can be formulated as an action of S, x S, x S5. We can also consider this action
with some modifications on the arguments on complexity shown below.

6.2.3 Computing the representative

The volume vectors can be regarded as matrices: (o7 (;1))” € R¥*! x R“*!. Those corre-
J

sponding to the triangulations in Figure2 are

2 2 1 3

1 2 2 1
'sO’hZ(Q 1) @7'2:(1 2) o, = 3 1 oy =1 3 1
1 3 2 2

Siiq1 x Sy acts on a volume vector 7 as rearrangements of rows and columns of a matrix.
[I+ T
Two regular triangulations T' and T’ are in the same class if and only if their volume vectors

[

AN

=)
==
RN

[

LS
—

[N

iyl

~
w

Figure 2: Triangulations for A; x A7 and Ag x A

@ and @qv arc in the same class, since the correspondence between regular triangulations and
volume vectors was one-to-one (cf. Theorem 3.1).

We introduced a total order on the regular triangulation by lexicographic order of their
corresponding volume vectors (Definition 4.2). For the case of Ag x A;, we can regard this
order as lexicographic order on matrices: a matrix (a;;) is smaller than (b;;) if for some (ig, jo),
Qigjo < bigjo. and for any (7, 7) such that i < 4y or such that i = ip and j < jo, a;; = bij.

As the representative of a class of regular triangulations we took the maximum one. In
Figure 2, T, becomes the representative of the class {171, T5}.

Lemma 6.5

Given a regular triangulation T, the time time(rep) to compute the representative element of
its class is O(I! k*1?).

Proof. In order to choose the representative triangulation from the class of a given regu-
lar triangulation. we look for an element of Si.1 x S;y; whose corresponding rearrangement
maximizes the matrix of the volume vector ¢p. We check all of the (I + 1)! arrangements of
columns. For cach of them, the maximum can be obtained by sorting the rows. There are
k + 1 rows of length { + 1. Comparing two numbers in unit time, a comparison between two
rows takes [+ 1 time. So we can sort the rows in O((k + 1)*(+ 1)) time. Hence the whole
time complexity is O((I + 1)! (k + 1)?2(1 + 1)) = O('k?1?). D

This is faster than the time complexity for the general case in Lemma 6.3.

16

6.2.4 Enumerating classes of regular triangulations
Proposition 6.6

The enumeration algorithm for classes of reqular triangulations in Theorem 6.2, works for the
case of Apx ;. The time complezity is linear to the number of classes of reqular triangulations,
and the memory required is several times the size of a triangulation.

Proof. The time to compute the representative clement time(rep) is O(I! k?1?) by Lemma, 6.5.
The ! here appears in the whole time complexity, but since we are just finding the maximum
arrangement of a small matrix (remind the instances we have to solve are for k,l = 3 or 4),
practically this is not time consuming compared to solving LPs for each elements in a class. O

6.3 Hypercubes
6.3.1 Oy

We are intercsted in enumerating the triangulations for hypercubes. We write e; for unit
vectors with the ¢-th element one and the rest zeros. The d-cube Cy is given by

e,
Cy = conv : EIdezil,...,idE{l,2}

€4
Our objects to enumerate are the triangulations of A = vert(Cy).

6.3.2 The symmetry of C,
We define the symmetry of Cy as follows.

Definition 6.7

We formulate the symmetry of Cy by an action of the direct product of d+ 1 symmetric groups
So X +-+ x S9 x Sy to the vertices. An element (g1,...,94,h) € Sz X -+ x So x Sy acts on the

€;, €91(in())
vertices of Cy as (g1, ..., 94, h) : = :

€ig €94(in(a))
This action consists of affine maps defining bijections on Cy and vert(Cy). Thus it suffices the
conditions for the group. Actions and equivalence relations on simplices and triangulations are
induced as in Definition 6.1. As shown in Theorem 6.2, this equivalence relation satisfies the
last condition of reverse search structure for classes with symmetry, and we can enumerate the
classes of regular triangulations in respect of symmetry.

6.3.3 Enumerating classes of regular triangulations
Proposition 6.8

The enumeration algorithm for classes of regular triangulations in Theorem 6.2, works for the
case of Cy. The time complezity is linear to the number of classes of reqular triangulations,
and the memory required is several times the size of a triangulation.

7 Enumeration of maximal independent sets

In section 8. we will show that triangulations can be regarded as a subclass of the maximal
independent sets of some graph. Efficient algorithms to enumerate maximal independent sets
are known [18, 32|. We reformulate one of these algorithms for our case, and later propose a
triangulation enumerating algorithm.

Tsukiyama, Ide, Ariyoshi and Shirakawa proposed an algorithm to enumerate maximal
independent scts of a graph [32]. This runs in time proportional to the number of maximal
independent sets, but requires memory of the order of the size of the graph. Lawler, Lenstra
and Rinnooy Kan extended this algorithm for the enumeration of maximal independent sets of
independent set systems [18]. The time complexity is proportional to the number of maximal
independent sets, with evaluation based on the number of executions of independent tests.
The algorithm requires memory of the size of the base set, which is equal to the number of the
vertices in the case of a graph. For our case, the vertices of the graph will correspond to all of
the d-simplices, which can become large.

We reformulate algorithm [18] to the graph case. Our algorithm does not put the graph
itsclf in the memory, but proceeds by testing whether two vertices are connected by an edge.
Also, we reduce the time complexity for some degree compared to just applying [18] to graphs.

7.1 Enumerating maximal independent sets

Here, we show the maximal independent set enumeration algorithm from [18], on which our
algorithm is based. It is called the generalized Paull-Unger procedure [24] with improvements
by Tsukiyama, Ide, Ariyoshi and Shirakawa [32].

Let the base set be £ = {1,...,n}, ¢ the independence testing time, and M the set of
maximal independent sets. Let us denote by M; the family of independent sets that are
maximal within {1,...,4}. In this algorithm, M; is computed using M;_1, starting from
My = {0}, to obtain M,, = M.

The update from M;_; to M; is done as follows. For each I in M;_1, the independence
of U {j} is tested. If this is independent, I U {j} is added to M. If not independent, I and
other maximal independent sets of M; included in I U {5} become candidates to be added. If
I' is such maximal independent set of M included in TU {j}, it should be maximal in T U {j}.
This fact is used reversely: first the maximal independent sets in I U {;} are listed up, and
then their maximal independence in M; is checked. The algorithm elaborates to produce I’
from a single I.

Algorithm 7.1 (enumerating maximal independent sets [18])

Step 1. For each I € M1, find all independent sets I' that are mazimal within I U {j}.
Step 2. For each such I', test I' for mazimality within {1,...,7}. Each set I' that is mazimal
within {1..... Jt is a member of M;, and each member of M; can be found in this way.
However a given I' € M; may be obtained from more than one I € Mj_1. In order to
eliminate duplications we need one further step.

Step 3. For cach I' obtained from I € M;_y that is mazimal within {1,...,j}, test for cach
i< j.i¢ 1. the set (I'\ {7})U(IN{L,....: —1})U{i} for independence. Reject I' if any of
these tests yields an affirmative answer. (This step retains I' only if it is obtained from the
lexicographically smallest I € M;_1.)

This computation can be regarded as a search on a tree. The tree is rooted by the), and

nodes at level j correspond to members of M;. For cach I in M;_;, the corresponding I’
(possibly sceveral) in M; become its children. The maximal independent sets, the leaves of the

18

tree, are enumerated by depth first search, and the path from the root to the current I needs
to be memorized.

Theorem 7.2 ([18])

Algorithm 7.1 enumerates all mazimal independent sets in O((nc + ncK')#M) time and
O(nK') memory. We suppose that in Step 1, for each I € M;_1, at most K' sets I' are
found in ¢’ time.

7.2 Enumerating maximal independent sets of a graph

Next, we reformulate Algorithm 7.1 above for the enumeration of maximal independent sets
of a simple undirected graph.

The basc set E is the set of vertices of the graph. We suppose the existence of an oracle
which answers in unit time the previous or next vertex for a given vertex for some fixed order
of vertices. This seems trivial when we write E = {1,...,n}, but it is not for our case, because
the vertices will correspond to the d-simplices S. The existence of such oracle is discussed in
section 8.3.

Let m = maxjea #1 be the maximum cardinality of vertices in a maximal independent
set. We say that two vertices are intersecting if they are connected by an edge, and denote by
time(intersect) the time needed to judge whether two vertices are intersecting or not.

The time complexity of Theorem 7.2 is given by ¢ and ¢’. The time for an independence
test was ¢. For any set I C E, this test can be done by checking if any pair of vertices in I are
connected by an edge. If such pair exists, I is dependent, and if not, independent. This takes
(#1)? time(intersect) time, m? time(intersect) at most, which corresponds to the ¢ in Theorem
7.2. However, by the following realization it can be done in m time(intersect) time.

Algorithm 7.3 (enumerating maximal independent sets of a graph)

We reformulate Algorithm 7.1 as follows.
Step 1. For each I in M;_1 we want to find all independent sets I' mazimal within T U {j}.

For this, we only have to check the intersection of the newly added vertex j with the no more
than m current ones in I.

(1) If j does not intersect with any of the vertices in I, I U {j} is the only mazimal
independent set in I U {j}. Further, this is mazimal independent in {1,...,5}. So, the
test in Step 2 is not necessary for this case.

(2) If j intersects with some of the vertices in I, I and the set {i € IU{j} : not intersecting
with j} are the maximal independent sets of I U {j}. Further, I is mazimal indepen-
dent in {1,..., j}, so the test in Step 2 is unnecessary for this. For {i € T U {j} :

not intersecting with j}, we need the test.

Step 2. We check the mazimality of I' in {1,...,j}. As mentioned above, the only case
we have to check is the second candidate in case (2) of Step 1. We check whether some
i € {1.....3}\ I' is not intersecting with all the vertices in I'. If such i exists, I' is not
mazimal independent, and if not, it is mazximal independent.
Step 3. We check whether I' is obtained from the lexicographically smallest I € M 1. This
is always true for case (1) and for the first candidate in case (2) of Step 1. So, we only have
to check for the second candidate in case (2).

For each I' we have to check for each i < j, © ¢ I, the independence of (I' \ {j}) U
(INn{l..... i —1}) U {i}. Each of this independence test can be done by checking whether i
intersects with some vertex in (I'\ {j}) U (I N{Ll,...,i—1}). If i intersects with some vertexz,

(I'\{FjHuIn{l,....i — 1}) U {i} is not independent. If i does not intersect with any of

19

the vertices, this set is independent. For this latter case, I' can be obtained from another
lexicographically smaller I, and I' is rejected. If this does not happen for anyi < j,i ¢ I, I'
s the child of I, and should be retained.

The time complexity is as follows.

In Step 1. ¢’ in Theorem 7.2 is computed in m time(intersect) time. For each I in M; ;
the candidates I' we take are one or two. so K’ < 2. The total time complexity for this step
is O(nc'#M) = O(m time(intersect)n#M).

In Step 2. each independence test can be done in ¢ = m time(intersect) time, and it takes
m time(intersect)n time for each I'. The total time complexity for this step is O(m time(intersect)
ni#M).

In Step 3. the independence test can be done in ¢ = m time(intersect) time. The total
time complexity for this step is O(m time(intersect)n?# M).

The time complexity analyzed above is the total time needed for descending the search tree.
Since we want to restrict the required memory size to 2m, we have to recompute the parent
when ascending the tree. However, this does not increase the order of the time complexity.

Suppose we arc at I' € M;,; and want to find its parent I € M;. If j+1¢ I' I
is the first candidate for case (2) in Step 1, and I = I'. When j + 1 € I', we try to add
max(I'\ {j +1})+1....,7 in this order to obtain I. Remind that I was lexicographically the
smallest among the possible parents. If we have no element to add, I’ is the child for case (1)
in Step 1, and if we have, I’ is the second candidate for case (2) in Step 1.

The time complexity needed for a recomputation of I is m time(intersect)n and O(m
time(intersect)n’#.M) as a whole. Thus ascending the tree does not increase the order of
the time complexity.

Next. we discuss the space complexity.

To identify which node we are, the information of the current and previous independent
scts and the depth j is enough. This requires memory of size 2m. We do not need to memorize
the path from the root to the current node, which became the space complexity O(nK') in
Theorem 7.2. This saving of memory was implied in [18]. We realize this as follows.

If we are descending the search tree, the next thing to do is to compute the candidates
I" and descend the tree. For case (1), we descend to the only candidate I' = I'U {j}. For
case (2), let us descend first to the candidate I’ = I. We will try the second candidate
{i € TU{j} : not intersecting with j}, if it is a child, when we come back to this node
ascending from I € M;.

When we are ascending the tree, there are three possibilities. We came from the only child
for case (1), the first or the second for case (2). This was the information of the path from the
root, which took O(nK'). We can dispense with this as shown above in the analysis ascending
the tree.

Since we have the oracle mentioned above, we do not have to memorize all vertices. Thus, we
can traverse the scarch tree only with the information of our current and previous independent
scts and the depth j.

Theorem 7.4

Algorithm 7.3 enumerates all mazimal independent sets of a simple undirected graph. This
works in O(m time(intersect)n?#M) time with memory size 2m. The graph has n vertices,
with the mazimum cardinality of independent sets m, and time(intersect) is the time required
to compute if two vertices are connected by and edge.

The computation of this enumeration can be divided into smaller problems, and performed
in parallel. This can be done by enumerating all nodes of depth not larger than j, which arc

20

M. the maximal independent sets of {1....,j}. and performing searches for each subtrees
with roots I € M;.

8 Enumeration of triangulations

We propose an algorithm to enumerate all triangulations, regular or not, for arbitrary config-
urations of points in general dimension. We formulate triangulations as maximal independent
sets of a graph, and apply the maximal independent set enumeration algorithm proposed in
section 7. The graph here is the graph with all maximal dimensional simplices the vertices and
cdges between those intersecting improperly. This algorithm works in time proportional to the
number of maximal independent sets. The memory required is twice the size of a maximal
independent set. We also show an application of this algorithm to the case of polytopes of the
products of two simplices.

We first define the intersection graph (subsection 1), and enumerate triangulations as max-
imal independent sets of this graph (subsection 2). We discuss further two basic operations
used in the enumeration: the enumecration of maximal dimensional simplices (subsection 3)
and testing whether two simplices are intersecting improperly or not (subsection 4). We also
show the enumeration for products of two simplices in which some parts of the algorithm can
be made faster (subsection 5).

8.1 Triangulations as maximal independent sets

We were given a configuration of points A = {ay, ..., a,} C IRY, with their convex hull conv(.A)
having full dimension d. We are interested in the triangulations of conv(.A). We only consider
triangulations whose vertices are among the given points A.

Two simplices o; and o intersect properly if their intersection o; No; is a (possibly empty)
face for both simplices. This is equivalent to o;No; = conv(vert(o;) Nvert(o;)), where vert(o;)
and vert{oj) are the sets of vertices of o; and 0. Simplices intersect improperly if they are not
intersecting properly.

A set of d-simplices {01,...,0,} whose vertices are among A is a triangulation of A if
(1) any pair of simplices 0;, o; are intersecting properly and (2) the union of the simplices
U{og..... om} is equal to conv(.A). The whole set of d-simplices is denoted by S.

We define the intersection graph as follows.

Definition 8.1 (intersection graph)
The intersection graph of S is the graph with S the vertices and edges between two simplices
intersecting improperly.

Several classes of sets of d-simplices are defined.

Definition 8.2
e 7 ={I€25: independent set of the intersection graph of S}
e M ={I€25: mazimal independent set of the intersection graph of S}
o T =1{1€2%: triangulation of A}
Trivially, M is a subclass of Z. Let I be a triangulation. The d-simplices in I must
not intersect improperly. so I is an independent set. Further, since we cannot add anymore d-

simplex to a triangulation without making improper intersections, I is an maximal independent
sct. This gives the following proposition.

Proposition 8.3

T is a subclass of M. An element I € M is in T if and only if the sum of the volume of the
d-stmplices in I is equal to the volume of conv(A).

In next section we enumerate the triangulations 7 by giving an algorithm to enumerate
the maximal independent sets M.

The difference of 7 and M becomes a loss. This kind of thing happens, for example, for
the point configuration given as the vertices of Schonhardt’s polyhedron (cf. [23, 10.2.1], [26]).
This polyhedron is a concave polyhedron made by twisting a little bit a triangle of a prism. No
tetrahedron with vertices among the six vertices is included in this polyhedron. The set made
by the three tetrahedra fitting the outer concave part of this polyhedron becomes a maximal
independent set of the convex polytope of the six vertices. However, this is not a triangulation,
because the inner part is left. Whether this kind of thing happens or not depends on the point
configuration, though this dependence is not easy.

8.2 Enumerating triangulations

Now we apply our formulation above towards the enumeration of triangulations. The base set
E is the sct of d-simplices S. We supposed the existence of an oracle which answers in unit
time the previous or next simplex for a given simplex for some fixed order of E. The existence
of such oracle is discussed in subsection 8.3. The number m = maxjeaq #7I is the maximum
cardinality of simplices in a maximal independent set, and time(intersect) is the time needed
to judge whether two simplices are intersecting properly or not.

Theorem 8.4 (enumerating triangulations)

Using Algorithm 7.3, we can enumerate all mazimal independent sets, thus the triangulations,

of the intersection graph of S. This works in O(m time(intersect)(#S)?#M) time with memory
size 2m.

The number of simplices in a triangulation is bounded by m. If m, the largest cardinality
of (maximal) independent sets, and the largest cardinality of a triangulation is the same, we
can say that the required memory is only twice the size of a triangulation.

8.3 Enumerating d-simplices

We supposed the existence of an oracle which answers in unit time the previous or next d-
simplex for a given d-simplex for some fixed order of the d-simplices S.

The given point configuration was A = {a1....,a,}. A set of d+ 1 points {a;,....,a;,,, }
becomes the set of vertices for a d-simplex if and only if (alil) ,...,(a’?{“) are linearly
independent.

a; a,
1 s 1

This can be realized by reverse search with the time complexity O((d + 1)n#S) for the whole
enumeration [2]. For a given base, answering its next or previous base can be done in approx-
imately O((d 4 1)n) time.

Using this oracle, we do not need to memorize all of the d-simplices, thus memory for
only scveral times the size of a simplex would be enough. This enables handling of large
size problems. For such large size problems that even the memory for simplices matters,
the enumeration of all triangulations may be hopeless, since it may require enormous time.
However, since the algorithm does work, we can generate several triangulations among the
whole.

Thus the problem reduces to the existence of a similar oracle for the bases of

22

For smaller problems for which we can memorize all of the d-simplices, it is better to
enumerate and memorize them. This will be much faster than asking the oracle each time.
The enumeration here can be done by reverse search as mentioned above. Though practically,
trying all d+1 points among S and checking if it is a d-simplex by calculating the determinant
of the corresponding d + 1 vectors is fast enough.

8.4 Testing the intersection of d-simplices

Computing whether two simplices are intersecting improperly or not is usually the most time
consuming calculation. The time complexity in Theorem 8.4 was evaluated by the number of
this calculation. Here, we give algorithms and their complexity for this calculation. (A matrix
will be regarded as a set of column vectors.)

Algorithm 8.5 (testing the intersection of d-simplices)

Suppose {py; ... Pgi1 Y Gy, ..., qas1} = 0. First, by affine transformation, we move (q; - - - q441)
to (0 ey ---eqy), where ; are the unit vectors. The points (py ---pyy1) move to (ga—qy -+ qgy1—
q;) "p1 — g1 - Pyy1 — q1)- Let C denote this matriz. The conver hull of these points has

a point common with the conver hull conv{0 ,e;,...,eq} if and only if these simplices are
intersecting improperly. This is equivalent to whether the linear programming

C 0
1---1 1
1.1 B2 4
-2 Ci -1
x>0
under some cost vector has a feasible solution or not. When {py,...,pgy1} and {qy,...,q4.1}

have points in common, the testing reduces to smaller linear programmings, after neglecting by
projection the dimensions spanned by the points in common.

Lemma 8.6

Algorithm 8.5 works in time LP(d + 1,d + 3), where LP(n,m) is the time required to solve a
linear programming problem with m constraints and n variables.

If it is possible to memorize whether the simplices are intersecting properly or improperly
for all pairs of simplices, it is better to compute first all the intersections and memorize them.
This requires memory of (#f) bits. It can be done in time(intersect)(#’;‘g) time. Since this
computation is just to test intersection for (#25) pairs, it can obviously be divided and computed
in parallel. By this preprocess we can remove away the factor time(intersect) of M of the time
complexity in Theorem 8.4 to achieve O(time(intersect)(#8)? + m(#S)2#M).

8.5 Products of two simplices

We are interested in enumerating the triangulations for products of two simplices. The defini-
tion of this polytope was given in subsection 6.2.

First we state several lemmas for later use. The volume of (k+1)-simplices in a triangulation
of Ay x Ay is constant. Under scaling, they have volume 1/(k+1)!, and the product has volume
/KL This leads the following.

23

Lemma 8.7

No more than m = (k + D!/KN (k 4 1)-simplices are included in an independent set of the
intersection graph of Ay x Ay All triangulation consists of m (k + 1) -simplices.

The (k+{)-simplices in Ay x A correspond to the spanning trees of the complete bipartite
graph Kjj 41 [12, 7.3.D.]. This derives the next.

Lemma 8.8

The number of (k + 1)-simplices of A x Ay is (k + 1)H(1 + 1)*.

The generation of spanning trees of K. ,4; can be done using a constant time per tree
with small memory [17, 28]. Thus we can generate the corresponding (k+1)-simplices similarly.

Lemma 8.9 (enumerating d-simplices: the Ay X A; case)

We can generate the (k+1)-simplices of Ax x Ay using a constant time per simplex with small
memory. Thus, the oracle supposed for Algorithm 7.3 exists.

For the point configuration of Ay x A;, testing whether two simplices are intersecting
improperly or not can be reduced to judging the existence of a cycle in a subgraph of a
directed Kjy1441 [6, Lemma 2.3.], which leads the time complexity. The intersection test for

this Ay x A; case can be computed faster using this graph property compared to Algorithm
8.5.

Lemma 8.10 (testing the intersection of d-simplices: the Ay X A; case)

Gwen two (k + [)-simplices in Ap X A, judging whether they are intersecting improperly or
not can be done in O(k +1) time.

We apply Theorem 8.4 to the case of Ay, x A.

Theorem 8.11 (enumerating triangulations for Ay X A;)

For the point configuration A = vert(Ayg x A}), Algorithm 7.3 enumerates all mazimal inde-
pendent sets of the intersection graph of S, thus the triangulations, in O((k;l)(k+l)k21l2k#M)

time with memory size Q(k,jl)-

Proof. By Lemma 8.9, the oracle exists. By Lemma 8.7, and m = (k,jl). By Lemma 8.8,
#S8 = (k+ 1)!(I + 1)k. By Lemma 8.10, time(intersect) = O(k + {). O

Acknowledgments

We would like to thank Nobuki Takayama of Kobe University for introducing us these problems
and giving us lectures on many mathematical aspects of them. The work of the third author
was supported in part by the Grant-in-Aid of the Ministry of Education, Japan.

Fumihiko Takeuchi:
fumi@is.s.u-tokyo.ac.jp

Hiroshi Imai:
imai@is.s.u-tokyo.ac.jp

Keiko Imai:
imai@ise.chuo-u.ac. jp

24

References

1]

DaAviD Avis AND KOME! FukuDA, A piwoting algorithm for convexr hulls and vertex
cnumeration of arrangements and polyhedra, Discrete Comput. Geom., 8 (1992), 295-313.

DaAvID Avis AND KOMEI FUKUDA, Reverse search for enumeration, Discrete Appl. Math.,
65 (1996) 21-46.

Louts J. BILLERA, PAUL FILLIMAN, AND BERND STURMFELS, Constructions and com-
plexity of secondary polytopes, Advances in Math., 83 (1990), 155-179.

B. CHAZELLE, An optimal conver hull algorithm and new results on cutlings, in Proc.
32nd Annual IEEE Symposium on Foundations of Computer Science, 1991, 29-38.

JESUS A. DE LOERA, Computing triangulations of point configurations, Preprint, Decem-
ber 1994.

JESUS A. DE LOERA, Nonregular triangulations of products of simplices, Discrete Comput.
Geom., 15 (1996), 253-264.

JESUs A. DE LOERA, SERKAN HOSTEN, FRANCISCO SANTOS, AND BERND STURMFELS,
The polytope of all triangulations of a point configuration, Doc. Math., 1 (1996), 103-119.

JESUS A. DE LOERA, BERND STURMFELS, AND R. R. THOMAS, Grébner bases and
triangulations of the second hypersimplez, Combinatorica, 15 (1995), 409-424.

HERBERT EDELSBRUNNER, Algorithms in combinatorial geometry, Springer-Verlag, 1987.

HERBERT EDELSBRUNNER AND N. R. SHAH, Incremental topological flipping works for
reqular triangulations, Algorithmica, 15 (1996), 223-241.

M. A. FACELLO, Implementation of a randomized algorithm for Delaunay and reqular
triangulations in three dimensions, Computer-Aided Geometric Design, 12 (1995), 349-
370.

ISsRAEL M. GELFAND, MIKHAIL M. KAPRANOV, AND ANDREI V. ZELEVINSKY, Dis-
criminants, resultants and multidimensional determinants, Birkhauser, Boston 1994.

ISRAEL M. GEL'FAND, ANDREI V. ZELEVINSKII, AND MIKHAIL M. KAPRANOV, Newton
polyhedra of principal A-determinants, Soviet Math. Dokl., 40 (1990), 278-281.

HirosHr IMAT AND KEIKO IMAL, Triangulation and convex polytopes, RIMS Kokyuroku
934 (1996). Research Institute for Mathematical Sciences, Kyoto University, 149-166 (in
Japanesc).

BARRY JOE, Three-dimensional triangulations from local transformations, SIAM J. Sci.
Stat. Comput., 10 (1989), 718-741.

BARRY JOE, Construction of three-dimensional Delaunay triangulations using local trans-

formations, Computer Aided Geometric Design, 8 (1991), 123-142.

SANJIV KAPOOR AND H. RAMESH, Algorithms for enumerating all spanning trees of
undirected and weighted graphs, SIAM J. Comput., 24 (1995) 247-265.

E. L. LAWLER. J. K. LENSTRA, AND A. H. G. RINNOOY KAN, Generating all mazimal
independent sets: NP-Hardness and polynomial-time algorithms, SIAM J. Comput., 9
(1980). 558-565.

CARL W. LEE., Regular triangulations of convez polytopes, DIMACS Series in Discrete
Mathematics and Theoretical Computer Science 4, Amer. Math. Soc. 1991, 443-456.

20]

[21]

[22]

23]
[24]
[25]
[26]

[27]

[32]

[33]
[34]

TOMONARI MASADA, An output size sensitive algorithm for the enumeration of regular
triangulations, Technical Report 94-1, Department of Information Science, University of
Tokyo. November 1994.

TOMONARI MASADA, An algorithm for the enumeration of regular triangulations, Mas-
ter’s Thesis, Department of Information Science, University of Tokyo, March 1995.

TOMONARI MASADA, HIROSHI IMAI, AND KEIKO IMAI, Enumeration of regqular triangu-

lations, in Proc. 12th Annual ACM Symposium on Computational Geometry, New York
1996, 224-233.

JOSEPH O’ROURKE, Art gallery theorems and algorithms, Oxford University Press, New
York, 1987.

M. C. PauLL AND S. H. UNGER, Minimizing the number of states in incompletely
specified sequential switching functions, IRE Trans. Electronic Computers, 1959, 356—-367.

GUNTER ROTE, Degenerate convex hulls in high dimensions without extra storage, in
Proc. 8th Annual ACM Symposium on Computational Geometry, 1992, 26-32.

E. SCHONHARDT, Uber die Zerlegung von Dreieckspolyedern in Tetraeder, Math. Ann.,
98 (1928), 309-312.

RAIMUND SEIDEL, Constructing higher-dimensional convez hulls at logarithmic cost per

face. in Proc. 18th Annual ACM Symposium on the Theory of Computing, 1986, 404-413.

AKIYOSHI SHIOURA, AKIHISA TAMURA, AND TAKEAKI UNO, An optimal algorithm for
scanning all spanning trees of undirected graphs, SIAM J. Comp., 26 (1997), 678-692.

BERND STURMFELS. Grébner bases of toric varieties, Téhoku Math. J. 43 (1991), 249
261.

BERND STURMFELS, Grébner bases and convez polytopes, American Mathematical Soci-
ety, 1996.

FuMiHikOo TAKEUCHI AND HIROSHI IMAL, Enumerating triangulations for products of
two simplices and for arbitrary configurations of points, in Proc. Computing and combi-

natorics: 3rd annual international conference, Lecture Notes in Computer Science 1276,
Springer-Verlag, Berlin, 470-481.

SHUJI TSUKIYAMA, MIKIO IDE, HIROMU ARIYOSHI, AND ISAO SHIRAKAWA, A new

algorithm for generating all the mazimal independent sets, SIAM J. Comput., 6 (1977),
505-517.

GUNTER M. ZIEGLER, Lectures on polytopes, Springer-Verlag, New York, 1995.

http://naomi.is.s.u-tokyo.ac.jp

26

