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Abstract. The properties of triangulations in two and three dimensions
are computationally investigated by using integer programming (IP).
Three 1P formulations of triangulations are introduced, two based on
the stable set problem, and the other based on the set partitioning prob-
lem. Some properties that are interesting from a theoretical or practical
point of view are considered as objective functions for IP. Finally, some
computational results are given. This approach allows three-dimensional
triangulations to be treated in a flexible and efficient way, and has led
to the discovery of some interesting properties of three-dimensional tri-
angulations.

1 Introduction

Triangulation is a major topic in computational geometry, and there have been
many studies of various approaches to triangulating a configuration of points,
such as Delaunay triangulation, the minimum weight triangulation, and the lex-
lcographic triangulation. Most of these studies have focused on triangulations
in two dimensions, and less attention has been paid to triangulations in higher
dimensions.

As a result of the recent advances in the performance of computers, however,
the number of applications using triangulation in three dimensions is growing.
For the finite element method (FEM), a three-dimensional polyhedron has to
be divided into meshes. There are many meshing techniques: one approach is
to distribute points inside the polyhedron and generate meshes by triangulating
them. This approach is gaining popularity because of its simplicity and indepen-
dence of dimensions [14]. Another major application is volume rendering, which
is a method for visualizing the results of FEM, or semi-transparent objects such
as clouds and flames. Unlike ordinary computer graphics methods that visualize
the surface of materials, volume rendering meshes the three-dimensional space
[15].

To contribute to these applications, the properties of triangulations in three
dimensions should be further investigated. In three dimensions, some properties
that arc valid in two dimensions do not hold. Bistellar flips (Figure 1) show
that the number of triangles is not constant in three dimensions. Schénhardt’s
polytope (Figure 2), which can be obtained by twisting a prism in such a way that
the side faces become concave, shows that not all polyhedra can be triangulated
in three dimensions. Some results on triangulatability are given in [13].
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In two dimensions, Delaunay triangulation is optimal in many respects; for
example, it maximizes the minimum angle, and minimizes the largest circum-
sphere and the largest minimum enclosing sphere. Many applications, such as
meshing algorithms for FEM, depend on this characteristic. But in three dimen-
sions, it only minimizes the largest minimum enclosing sphere [12], and does
not necessarily lead to optimality in other respects. In other words, Delaunay
triangulation is not so good in three or more dimensions. Thus, it is nccessary to
obtain a good triangulation for cach individual application, namely, to optimize
the triangulation.

In this paper we investigate the optimality of triangulations in two and three
dimensions by using integer programming (IP) formulations. We first give three
formulations in gencral dimension. Two of them are based on the stable set
problem, and the other is based on the set partitioning problem. We then com-
pare these formulations in size, and in other respects related to the efficiency
of the procedure for solving the problem. We consider several objective func-
tions in both two and three dimensions, which are interesting from a theoretical
or practical point of view. We also give some computational results. Through
the experiments, we found some interesting properties of triangulations in three
dimecunsions.

As a preliminary step, we define some special terms. A d-simplez is a d-
dimensional polytope that is the convex hull of d+1 affinely independent points.
For example, a line scgment, a triangle, and a tetrahedron correspond to a 1-
simplex; a 2-simplex, and a 3-simplex, respectively. An i-face of a d-simplex is
an ¢-simplex (0 < ¢ < d) that is the convex hull of a subset of the vertices of the
d-simplex. In particular, a (d — 1)-face is called a facet. Two d-simplices intersect
when the intersection is non-empty and is not a face of at least one of the two
simplices. In this paper, especially for IP formulations, we consider the division
of the convex hull of a point configuration A of n points in d-dimensional space
using d-simplices, but we use the term triangulation for convenience. We assume
that A is a configuration in general position (no d + 1 points lie on the same
(d — 1)-dimensional hyperplane).

This paper is organized as follows. In Section 2, we give two kinds of IP for-
mulations of triangulations in general dimension, then compare and investigate
them. In Section 3, we consider objective functions. In Section 4, we give some
computational results. Section 5 summarizes this paper.

2 Formulations

In this section, we give IP formulations by regarding triangulation as the stable
sct problem (Formulations 0 and 1), or the set partitioning problem (Formulation
2). Especially for the former, we consider two cases: that in which each d-simplex
corresponds to an clement (Formulation 0), and that in which cach i-simplex
(0 <1 < d) corresponds to an clement (Formulation 1).

2.1 Formulation 0: the stable set problem of d-simplices
In the intersection graph G(V, E) of d-simplices, V corresponds to the set of

d-simplices, and an arc is defined between two nodes when the corresponding
two d-simplices intersect. A triangulation has no pair of simplices that intersect
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Fig. 1. Bistellar flips in 2 and 3 dimensions Fig. 2. Schonhardt’s polytope

and thus corresponds to a stable set; further, it is maximal, because another d-
simplex surely intersects with some d-simplices that constitute the triangulation.
On the basis of this observation, Imai [10] gave an algorithm for enumerating
triangulations in general dimension.

As mentioned in Section 1, not all polytopes can be triangulated in dimen-
sions higher than two. Thus, there exist cases in which regions like Schénhardt’s
polytope remain untriangulated inside the convex hull, and the maximal stable
set is not a triangulation. Thercfore, we have to ensure that the stable set be-
comes a triangulation by imposing the condition that the sum of the volume v;
of d-simplex 7 is equal to the volume V' of the convex hull.

minimize Z Cim (1)
s.t. !
{0.1)

xi + a5 < 1(for e, j s.t. d-simplex ¢ and d-simplex j intersect)

Z v, =V
j
Here, checking the intersections among d-simplices is essentially redundant. For
example, consider triangulations of the convex hull of four points on a plane.
We have four triangles, and four pairs of triangles that intersect. On the other
hand, the four intersections are derived from an intersection of two diagonals. In
other words, if we explicitly handle lower-dimensional faces of d-simplices, the
formulation can be more cfficient.
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2.2 Formulation 1: the stable set problem of i-simplices (1 < d)

In the two-dimensional case; Kyoda et al. [11] formulated the minimum weight
triangulation (MWT) problem as the stable set problem on the intersection
graph of edges (1-simplices). MWT is a famous problem for which it is not known
whether a solution can be obtained in polynomial time[9]. In two dimensions,
the maximal stable sets of edges are always maximum, and the number of edges
AM is constant. Thus MWT is obtained by using the following formulation:



minimize Z CiT; (2)
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{0.1}

x; +1; <1 (for ¢, 5 s.t. edge ¢ and edge j intersect)

Z x; = M
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s.t.
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Extending to higher dimensions The above formulation (2) is valid only in
two dimensions; and the cost and variables are assigned only to edges, so we
need to extend it to higher dimensions and assign variables to d-simplices. We
first consider the simplest example in three dimensions, a bistellar flip defined
on the convex hull of five points. In the lattice-like structure in Figure 3, the +-th
layer corresponds to (¢ — 1)-simplices, and straight arcs among layers correspond
to face relations of simplices in different dimensions. For example, edges (0,1),
(0.4), and (1,4) are facets of, and necessary for triangle (0,1,4). Thus, the lattice
is interpreted as a poset when we assign a variable to each simplex in such a way
that the variable is equal to 1 if the simplex appears in the triangulation, and 0
otherwise. We will call the relations defined by the poset lattice constraints.

The lattice itself is independent of the configuration, whereas information on
intersections depends on the configuration. In Figure 3, edge (0,4) and triangle
(1,2.3) interscct. On the other hand, point (4) and tetrahedron (0,1,2,3) intersect
in Figurc 4.

When cdge (0,4) and triangle (1,2,3) intersect, only one of them can appear
in the triangulation. This can be represented as a constraint that the sum of
the corresponding variables is less than or equal to 1. The following condition is
nccessary to make the formulation efficient:

Proposition 1. All the vertices of simplices are assumed to be in general po-
sition. Then, two d-simplices intersect if and only if they have a k-face and a
J-face, respectively, that intersect and satisfy k + j = d.

We obtain a set of d-simplices that do not intersect by imposing the intersec-
tion constraints only on the pairs of simplices whose sum of dimensions is equal
to d. and the lattice constraints. The volume constraint is again necessary, as in
formulation (1), for the set to be a triangulation.

minimize Z it (3)
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s.t. &
x; € {0,1} (0 <k <d)
k

a :1:?7*~ <1 (k-simplex ¢ and (d — k)-simplex j intersect, 0 < k < d)

2

ah - :1:;1’H > 0 (k-simplex i is a facet of (k + 1)-simplex j, 0 <k <d - 1)
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2.3 Formulation 2: the set partitioning problem

We use the term chambers for the minimal cells obtained by dividing the convex
hull with all the possible (d — 1)-simplices. Obtaining a triangulation can be



Fig. 4. Intersection of a O-simplex and a

Fig. 3. Face relations among simplices %
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treated as an instance of the set partitioning problem by regarding each chamber
as an clement, and each d-simplex as a subset [1].

minimize cr? (4)
!¢ {0.1}

d 1 d-simplex j contains chamber ¢
At =1 4, = .
: 0 otherwise

Cocircuit form constraints A large amount of geometric computation is nec-
essary for handling chambers, and therefore we consider another type of con-
straint called cocircuit form constraints instead. Let e, be a (d — 1)-simplex.
Two half-spaces H} 'H_ are defined by a hyperplane M., containing ej. Let
e U {a} be a d-simplex t; defined by an clement a of the point set A4 and e.
The following constraint holds for all (d — 1)-simplices [7].

D)

ty=cpU{atac AnHY, ti=epU{a},a€ANH,

+1 ¢y, is on the boundary
€T; = { of the convex hull
0 otherwise
For (d — 1)-simplices on the boundary, the above equation is the same as
the set partitioning constraint for the adjacent chamber. For interior (d — 1)-
stiinplices, it corresponds to the difference of the constraints for the chambers on
hoth sides.
De Loera et al. [7] showed that the cocircuit form constraints are sufficient
to define the affine hull of the characteristic vectors of d-simplices that form a
triangulation. From now on, we will call the formulation using the cocircuit form
coustraints Formaulation 2.

2.4 Comparison of formulations

I this section, we compare Formulations 0, 1, and 2. Table 1 shows the size of
cach formulation. Although Formulation 1 uses fewer constraints than Formula-
tion 0. Formulation 2 is still the most compact.



Table 1. Size of each formulation

#variables # constraints # v/c
Formulation 0]O(n?T")  O®*¥H))  O(1)
Formulation 1|0(n??)  O(n?*?) o)
Formulation 2{O(n?™!)  O(n?) O(n)
#tvariables: total number of variables
#constraints: total number of constraints
#v/c: number of variables in a constraint

Polytopes We denote the polytope that corresponds to the linear programming
relaxation of formulation 0, 1, and 2 by Py, P/, and P» respectively. The pro-
jection of P[ to the subspace that corresponds to the variables for d-simplices is
denoted by P;. Then, the following relations hold among these polytopes:

Proposition 2. P, = P;.

Lemma 3. For the conver hull of d + 3 points in d dimensions, there exist two
triangulations that share no d-simplex. Further, there exists a d-simplex: that lies
inside the convex hull and does not belong to either of the two triangulations.

Proposition4. P, C Py (n > d+ 3).

Proof outline: By focusing on a chamber, we can observe that both the vol-
ume and intersection constraints are satisfied if the set partitioning condition is
satisfied. Thus P> C F,.

From Lemma 3, we can configure the overlap of two triangulations, both of
which arc assigned a weight of % We then perturb it slightly by using another
simplex so that it still satisfies the constraints of Formulation 0. It then violates

some chamber constraints, and P, C Fy. ]

Spanning triangulations All the formulations above allow triangulations that
do not use points inside the convex hull. However, triangulations are often as-
sumed to use all the points: we call them spanning triangulations. In order
to avoid non-spanning triangulations, we eliminate non-empty d-simplices in ad-
vance. For random point sets, the expected number of empty d-simplices is O(n?)

dil) achieved when all

the points are on the boundary of the convex hull. The lower bound is (dfl) [3]-

[3]. which is significantly smaller than the upper bound (

2.5 Cutting planes

As cutting planes for the problem of formulation (2), Kyoda et al. [11] applied
clique cuts and odd-cycle cuts, both of which are well known for the stable set
problem, and convex polygon cuts which use geometric information on triangu-
lations. Formulations 0 and 1 are based on the stable set problem, and these
cutting plancs can cut off fractional solutions of their lincar programming re-
laxations. In this section, we investigate the effectiveness of cutting planes with
respect to Formulation 2.

The convex polygon cut is based on the property that the number of edges
is constant for triangulations in two dimensions. Thus, this cut is valid only in
two dimensions. Although it was given as a constraint on the nnmber of edges,
it can also be described as a constraint on the number of triangles, as follows:



Definition 5. Let V denote a configuration of points, C' denote its convex hull,
and M denote the cardinality of the spanning triangulations of V. Further let «
denote the incident vector of a spanning triangulation of a point configuration
A(ADV, AVYNC = 0), and let V denote the dimensions of #, which correspond
to triangles that only have the elements of V as their vertices. The following
inequality holds:

Convex polygon cut z x; <M

eV
Here we focus on an example in which Formulation 2 has a fractional solution
[7]. A set of vertices 1,...,5 of a regular pentagon and its center 0 constitutes

a point set in two dimensions, and has 20 triangles and 16 triangulations. The
vector 7 € R2Y with coordinates T(123} = T{234) = T{345) = T{145} = T{125} —
{013y = Tfo24) = T{ozs} = T{o1a} = ZL{025} = % and all other coordinates
= 0, satisfies the constraints of Formulation 2. The subgraph of the intersection
graph of triangles induced by the nodes corresponding to the triangles with value
5 and without vertex 0, constitutes an odd-cycle of size 5. The corresponding
constraint

ozt wiozay + Tyzas) + Tlgs) T 25y <2
cuts off . Thus, odd-cycle cuts can be effective cutting planes. On the other
hand, the convex polygon cut Z,I-j,ﬂ Tk < M(= 5) is satisfied by = and redun-
dant. For convex polygou cuts, we state the following:

Conjecture 1 Any convex polygon cut is valid for P;.

3 Objective Functions

In this section, we introduce some objective functions that are interesting from
a theoretical or practical point of view. Objcctive functions can be categorized
into two types. One is simple summation, which only requires us to solve IP on
the basis of one of the formulations we introduced in Section 2. The other is
bottleneck optimization, such as minimizing the maximum. If we try to solve
such problems solely by using IP, the branch-and-bound procedure just goes
progressively deeper and the lower bound never improves, and thus we cannot
obtain a solution. Binary scarch is one way to avoid this numerical instability.

Minimize the maximum aspect ratio. In applications such as FEM, we should
avoid flatness of triangles for the sake of computational stability and accu-
racy. The most straightforward index of the flatness is the aspect ratio (AR),
which is the ratio of the radii of the circumscribing and inscribing spheres.

Maximize the minimum angle. Delaunay triangulation in two dimensions
maximizes the minimum angle. In three dimensions, the angle itself has two
varietics: the dihiedral angle and the solid angle. There are several meshing
algorithms that avoid some of the bad — too large or too small — angles (see
[4], for example). but none for triangulating a point configuration. We can
obtain a solution by specifying the min-max/max-min angle as the objective
function.

Minimize the number of triangles. The number of triangles varies in three
dimensions, and is an interesting objective function related to the following
open problem:



Open Problem 1 s there a polynomial-time algorithm for triangulating
an arbitrary conver polyhedron with the minimum number of tetrahedra 2 [5]

Minimize the weight. MWT in two dimensions is an interesting problem, as
we mentioned in Section 2.2. In three dimensions, the weight is extended
from the edge length to the surface area of the triangle.

4 Computational Experiments

This scction gives the results of computational experiments based on Formula-
tion 2. All the experiments were done on an IBM RS/6000 model 990, using
the IBM Optimization Subroutine Library to solve mathematical programming
problems. We also used the library CGAL [6] for handling geometric objects,
and for obtaining Delaunay triangulation, we used the program Triangle [16] for
two dimensions, and the program DeWall [8] for three dimensions.

4.1 Problem size and computational time

We measured the size and the CPU time for obtaining the minimum weight
(spanning) triangulation of uniformly distributed point sets in two and three
dimensions (Tables 2 and 3). The size of solvable problems is quite small in
three dimensions. Further, if the point set is in convex position, all the trian-
gles/tetrahedra are non-empty and the number of columns becomes larger, and
the size of solvable instances becomes smaller.

We obtained integer solutions by means of the linear programming relax-
ations in all the cases, whereas in [11], based on the stable set problem, we
ohtained fractional solutions in many cases and applied cutting planes and the
branch-and-bound method.

We cxperimented with several kinds of objective functions, including the
ones in Section 3, and encountered fractional solutions after solving the relaxed
lincar programming problems only when the objective function was the cardi-
nality, that is, when the problem was unweighted. Formulation 2 is fairly good
practically, but still, the cutting planes we mentioned in Section 2.5 would be
necessary to solve unweighted cases cfficiently.

4.2 Optimality

Figures 5, 6, and 7 show the cardinality, weight and maximum aspect ratio,
respectively, of triangulations in three dimensions. We used 10 point sets of
cardinality 10, 20, and 30 randomly generated in a unit cube with different
sceds. D, W, C, and AR in these figures represent Delaunay triangulation, the
mintmum weight triangulation, the minimum cardinality triangulation, and the
triangulation with the minimum maximum aspect ratio, respectively.

From Figurc 3 we can observe that Delaunay triangulation tends to contain
more tetrahedra than the other triangulations. Figure 6 shows that Delaunay
triangulation is not at all close to the minimum weight triangulation in three
dimensions. Figure 7 shows that Delaunay triangulation avoids flat tetrahedra.
There is still a gap between Delaunay triangulation and the optimal solution,
which is obtained by the triangulation with the minimum maximum aspect ratio.



Table 2. Size and CPU time of the minimum weight triangulation in 2D

No. of points | 10 20 30 40 80 160 240 320
No. of rows 45 190 435 780 3160 12720 28680 51040
No. of columms| 71 482 1220 2328 11209 47837 109998 197883
IP (sec.) 0.24 0.72 1.78 4.25 45.91 727.99 3956.20 13801.49
Others (sec.) {0.31 1.89 6.21 14.24 131.35 1345.19 5283.15 13770.27

Table 3. Size and CPU time of the minimum weight triangulation in 3D

No. of points | 10 20 30 40 50
No. of rows | 120 1140 4060 9880 19600
No. of columns| 194 3771 19638 57735 139982
1P (sec.) 0.42 9.08 148.27 6374.83 66798.32
Others (sec.) |0.69 10.29 48.67 145.28 372.84
IP: CPU time for solving the IP problem
Others: CPU time for the rest

Fig. 5. Cardinality of triangulations Fig. 6. Weight of triangulations

Fig. 7. Minimum maximum aspect ratio of triangulations



5 Conclusions and Remarks

[n this paper, we have introduced IP formulations of triangulations of a point
configuration in general dimension, and shown through computational experi-
ments that the properties of triangulations differ significantly between two and
three dimensions.

Another very important property of triangulations in three dimensions is
that not all polyhedra can be triangulated [13]. Through the use of TP and
maximization of the volume that can be triangulated, it may be possible to
gain some insight into triangulatability. Among the formulations introduced in
this paper. the one using cocircuit form constraints was the most efficient for
triangulations of a point configuration. But it is still an open question which
formulation is the most efficient for triangulations of non-convex polytopes.

Our experiments were based on linear programming, and it would be inter-
esting to compare our approach with graph-based algorithms for the stable set
problem ([2] for example).
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