Optimization of Geometric Triangulations using Integer Programming

Akira Tajima*f(tajima@trl.ibm.co. jp) Hiroshi Imai' (imai@is.s.u-tokyo.ac.jp)

(Extended Abstract)

Abstract

We investigate the optimization of triangulations of a point configuration mainly in the three-
dimensional space using integer programming, based on computational experiments. The formula-
tion using cocircuit form constraints introduced by De Loera et al. is very effective, but there still
remain difficulties to solve practical instances of larger size, such that we obtain highly fractional
solutions with certain objective functions. We introduce a column generation method to solve
larger instances. To cope with fractional solutions, we apply binary search focusing on the cases
of optimizing the bottleneck values, which enables us to successfully solve instances as large as
ones with summation-style objective functions. We also introduce two kinds of new cutting planes
which utilize the geometrical aspect of triangulations. Preliminary computational results show the
effectiveness of these cuts.

1 Introduction

Geometric triangulation of a configuration of points has been studied in many fields from various
viewpoints such as Delaunay triangulation? and most of these studies have focused on triangulations
in two dimensions. Triangulation, also ha‘s:‘a lot of applications such as the finite element method
(FEM) and computer graphics. Combined with recent advances in the performance of computers,
they require techniques for and insights into triangulations in higher dimensions, especially in three
dimensions.

On the other hand, it appeared that the properties of triangulations in higher dimensions are quite
different from those in two dimensions. For example, bistellar flips (Figure 1) show that the number
of triangles is not constant in three dimensions. Schdnhardt’s polytope (see [3], for example), which
can be obtained by twisting a prism in a way that the side faces become concave, shows that not all
the polyhedron can be triangulated in three dimensions.

As for optimization of triangulations, there are mainly two approaches; one based on computational
geometry, and the other based on integer programming as follows.

Computational-Geometric approach In two dimensions, Delaunay triangulation is optimal in
many respects; for example, it maximizes the minimum angle, and minimizes the largest circumsphere
and the largest minimum enclosing sphere [3]. But in three dimensions, it only minimizes the largest
minimum enclosing sphere [13], and does not necessarily lead to optimality in other respects. We
observed some instances of Delaunay triangulation in three dimensions which have very flat tetrahedra,
on the boundary [14].

The bottleneck values, such as the minimum angle, are very important to guarantee the quality of
the triangulation, and have been investigated intensively in computational geometry. Still, there are
very little results in three dimensions, compared with those in two dimensions.

"Tokyo Research Laboratory, IBM Research.
"Department of Information Science, University of Tokyo.

Thus. optimizing triangulations, especially in three dimensions, has significance in both theory
and applications, and algorithms in computational geometry can not cover all. The followinéy/indicate s
the difficulty of problems related to the optimality of triangulations; obtaining the minimum weight
triangulation (MWT) in two dimensions is a famous problem that is not known to be solvable in
polynomial time or not [9], although there are now known algorithms using skeletons which find
MWT in two dimensions efficiently in many cases [8]. The existence of a polynomial-time algorithm

for triangulating a convex polyhedron with the minimum number of tetrahedra is also an open problem
[4].

Integer-Programming approach One of the most promising methods for such kind of problems
would be integer programming (IP), with objective functions such as the minimum cardinality, the
maximum minimum angle, the maximum minimum aspect ratio, and the minimum weight!. We can
regard triangulation as two kinds of IP problems; the stable set problem and the set partitioning
problem. Masada et al. gave an algorithm for enumerating triangulations in general dimension by
regarding a triangulation as a stable set of triangles [11]. Kyoda et al. obtained MWT in two
dimensions by formulating a triangulation as a stable set of line segments [10]. We gave an improved
formulation of triangulation as a generalized stable set problem by introducing lower dimensional
sitnplices [14].

The set partitioning formulation of triangulation has been discussed in the literature of computa-
tional algebra. The smallest cells obtained by introducing all the facets of triangles are called chambers.
Alekseyevskaya introduced a set partitioning formulation of triangles by regarding chambers as ele-
ments, and triangles as subsets [1]. De Loera et al. refined the formulation by introducing cocircuit
form constraints [6].

We investigated these two kinds of formulations, and concluded that the formulation using cocircuit
form constraints is the most compact to describe the problem, and the most efficient to solve the
problem [14]. We, however, encountered several difficulties through computational experiments even
with the currently best formulation.

S

Our contributions In this paper, we further investigate the optimization of triangulations as one
of IP problems. First we present difficulties we encountered through computational experiments. One
is that the size of the solvable instances is small. We can solve instances of at most 50 points in
three dimensions, which is very large (("3') rows and (}) columns, as we will mention in section
2) as an IP problem, but still small if we consider applications. Another is that we obtain highly
fractional solutions when the objective function is 1) a bottleneck value, which can be optimized by
using algorithms in computational geometry if in two dimensions, or 2) non-weighted, which is also
interesting from a Mathematical point of view. We also mention the degeneracy of the problem.

We then apply methods in integer programming in order to cope with them. We introduce a column
generation method to solve larger instances. The geometrical interpretation of the dual problem is
also given. To cope with the bottleneck cases, we introduce a binary search algorithm. Preliminary
computational results show the effectiveness of the algorithm. Finally, for the non-weighted objective
function, we introduce two kinds of new cutting planes which are based on the geometrical aspects
of triangulations, and specific to the optimization of triangulations. Computational results indicate
that these new cutting planes are effective, although odd-cycle cuts or clique cuts are effective only
for very small instances. o T .

This paper is organized as follows. In section 2, we review the formulations of triangulation;
the set partitioning formulation, and the cocircuit form formulation. In section 3, we investigate
computational experiences directly using the cocircuit form formulation, and present some difficulties

'The weight of a triangulation is defined as the total volume of the constituent (d — 1)-simplices.

that we encountered. In section 4, we Introduce a column generation method in order to solve larger
instances. We also give the geometrical interpretation of the dual problem. In section 5, we introduce -
a binary search method to cope with a difficulty in optimizing the bottleneck value of triangulations.«-
In section 6, we introduce two kinds of new cutting planes. Some computational results are also given.
Finally. in section 7, we summarize this paper and give further subjects to be investigated.

2 Formulations

In this section, we review IP formulations based on the set partitioning problem.

As a preliminary step, we define some special terms. A d-simplez is a d-dimensional polytope
that is the convex hull of d + 1 affinely independent points. For example, a line segment, a triangle,
and a tetrahedron correspond to a 1-simplex, a 2-simplex, and a 3-simplex, respectively. An i-face
of a d-simplex is an i-simplex (0 < ¢ < d) that is the convex hull of a subset of the vertices of the
d-simplex. In particular, a (d—1)-face is called a facet. Two d-simplices intersect when the intersection
is non-empty and is not a face of at least one of the two simplices. Throughout this paper, we consider
the division of the convex hull of a point configuration A of n points in d-dimensional space using
d-simplices, but we use the term triangulation for convenience. We assume that A is a configuration
in general position (no d + 1 points lie on the same (d — 1)-dimensional hyperplane).

Let 2% correspond to the i-th k-simplex, and ¢; denote the cost of the i-th d-simplex.

2.1 The set partitioning problem

We call the minimal cells obtained by dividing the convex hull with all the possible (d — 1)-simplices
as chambers. Then obtaining the optimal triangulation can be treated as an instance of the set
partitioning problem by regarding each chamber as an element, and each d-simplex as a subset [1].

minimize cz? (1)
s.t.
o e {01}
1 d-simplex 7 contains chamber ¢
d p J
Ar® =1, A= (Ay), Aij= { 0 otherwise

The number of rows of A corresponds to the number of chambers, and the number of columns of
A corresponds to the number of d-simplices.

2.2 Cocircuit form constraints

De Loera et al. showed that, if 4 is in general position, the following constraints called cocircuit
form constraints are equivalent to the chamber constraints in (1), and define the affine hull of the
characteristic vectors of d-simplices that form a triangulation [6].

Let fr denote a (d — 1)-simplex. Two half spaces ’H};,’H]k are defined by a hyperplane Hj,
containing fx. Let fr U {a} denote a d-simplex ¢; defined by fi and an element a of the point set A.
The following constraint holds for all the (d — 1)-simplices, and we can easily select (";1) constraints
that constitute a basis® [6].

1 fi is on the boundary and oriented inside
Z xf — Z ZL‘;-i =¢ —1 fiis on the boundary and oriented outside
t=frH{a}a€ AN, ti=frU{a},a€ ANH 0 otherwise

n—1

*The rank is proved to be (4) by De Loera et al., if A is in general position

3 Computational Investigations into Simple Use of the Formulation

All the experiments were done on IBM RS/6000 model 990 with 512 MB of memory, using IBM Op-
timization Subroutine Library for solving mathematical programming problems. The primal-dual
predictor-corrector method was used as the interior point method. We also used library CGAL
15] for handling geometrical objects, program Triangle [15] for obtaining Delaunay triangulations in
two dimensions, and program DeWall [7] for obtaining Delaunay triangulations in three dimensions.
Throughout the experiments, we limited triangulations to be spanning, in other words, to use all the
points. : . o)

In [14], we investigated and compared the formulations in section 2 with formulations based on the
stable set problem, and concluded that the formulation using cocircuit form constraints is the most
compact to describe the problem, and the most efficient to solve the problem. Thus, the following
discussions in this paper are based on the formulation: A

23t $ d V“',A.v"l" it '
minimize cxr

s.t. o .
e {0.1} et

... coclrcuit form constraints ...

From the geometrical point of view, optimizing the bottleneck such as minimizing the largest
aspect ratio, is often required. In such cases, we introduce another variable z as the upper bound?:

minimize z (3)
s.t.
e e {01}
cizl <z (for each d-simplex i)

...coclrcult form constraints . ..

3.1 Observations

Through computational experiments based on the formulations above, we obtained the following
observations:

1. Optimizing the bottleneck by using formulation (3) does not work. We obtain too many fractional
variables (figure 3), the branch and bound procedure just goes down deeper, and the lower bound
never improves [14].

2. For summation-style objective functions such as the minimum weight and the minimum sum of
aspect ratio, we always obtain integer solutions just by solving the linear programming relaxation
of formulation (2), except for the minimum cardinality triangulation, in other words, the non-
weighted case [14]. Thus, practically we do not have fractional solutions with two dimensional
instances.

3. The problem is highly primal degenerate. While the rank is (";1), the number of d-simplices
d
in a triangulation, namely, the number of positive coordinates in a feasible solution is O(n"g_l)

Table 1 shows the primal/dual degeneracy and the time consumed to solve the problem. In
the weighted cases, the problem is only primal degenerate and the dual simplex method is very
effective. On the other hand, in the non-weighted cases, it is also dual degenerate, and it takes
time even with the dual simplex method. We can observe that the interior point method is
robust against degeneracy.

#Maximization problems can be described with slight modifications

Table 1: Primal/dual degeneracy and the effectiveness of LP algorithms

of points in 3D 20 30
Cost Weighted Non-weighted | Weighted Non-weighted
Primal degeneracy 814 919 3088 3221
Dual degeneracy 1 357 1 266
CPU-P (sec.) 25.57 40.95 3000.19 3916.51
CPU-D (sec.) 5.36 8.49 139.56 1065.45
CPU-I (sec.) 22.90 19.08 1396.91 1575.72

Primal degeneracy: # of basic variables with 0 value
Dual degeneracy: # of non-basic variables with 0 reduced cost
CPU-(P/D/I): CPU time consumed by
the (primal/dual simplex and interior point) method

4. We obtain fractional solutions only in the non-weighted cases. Further, points inside the convex
hull are closely related to the solution to be fractional. We randomly generated 50 instances of
20 points on a cylinder (in a convex position), and 20 points uniformly distributed in a cube,
respectively. Although one third of the latter resulted in fractional solutions, we had fractional
solutions with none of the former.

5. Addition of cutting planes can break the integrality of the solution. Even in the cases with
weighted objective functions, a cut specifying the cardinality resulted in a highly fractional
solution.

6. The size of the solvable instances is at most 50 points in three dimensions, and 320 points in two
dimensions with the current computer performance and the naive use of formulation (2) [14].

4 Column Generation for Solving Large Instances

[f we consider applications such as FEM, the size of instances currently solvable which we mentioned
in section 3.1-6, is not enough. In this section, we investigate a column generation method in order to
solve larger instances. Although the number of columns is not exponential (O(n9+1)), and the number
of rows is not so small (O(n?)), we believe there still be an advantage for considering only candidates
that can improve the current solution.

In column generation methods, we start with a subset of columns, and iteratively add columns
that have negative reduced costs and can improve the current solution until we can find no more
candidates?.

4.1 Geometrical interpretations of column generation

First we consider the dual of the linear relaxation of formulation (2). Each d-simplex has d+1 vertices,
and we have d + 1 pairs of a vertex and a facet. Let p;; be 1 if j-th vertex of i-th d-simplex is on the

positive side of the counterpart facet, and —1 otherwise. Also let n(i,7) denote the suffix of the j-th
facet of i-th d-simplex.

“To be precise, we have to switch to the branch and bound procedure if the final solution is not integral, and also
generate columns at each node.

maximize Z biy; (4)

d+1
Z Pijyniiy) < ¢i (for each d-simplex i)
j=1

Figure 2 shows a small sample in two dimensions. We have triangles ¢, ¢, as the current solution,
ty and 14 are not introduced yet, and ¢1 = ¢y — (y1 +y2 + y3) = 0,62 = ca — (=y3 + y4 + y5) = 0 hold.
We can safely set ys to zero, and assume ¢3 = c¢3 — (y1 +ya + yg) < é1 = ¢4 — (y2 + y5 — yg) without
loss of generality. Then we can consider following four cases:

1.¢y < 0,04 <0
Both #3 and t4 are added, and improve the cost of the triangulation (¢; + ¢2 > ¢5 + cq).

2.¢320,¢4 >0
Neither ¢35 nor ¢4 is added.

3. ¢3<0,642>20,¢1+co >c3+c¢y
t3 18 added, yg is updated to be negative. Then ¢; < 0. 4 will be added in the next iteration.

4. 3 <0,¢4 20,e1 +cp >c3+cy
t3 is added, yg becomes negative, but still ¢; > 0 holds. ¢4 will not be added.

When we newly introduce a facet, the solution will never be improved until at least one d-simplex

15 introduced on both sides, as in case 1, 3. In formulation (4), adding a d-simplex k with ¢, <0
corresponds to adding a cut

d+1

Zpkjyn(k,j) < ¢

j=1
which is violated by the current y. When d-simplices are introduced only on one side of (d—1)-simplex
mm which is not on the boundary, the constraints on y,, are one-sided, and the feasible region of y,, is
unbounded. Then ¥, can take arbitrary value and satisfy the constraints without changing the values
of other coordinates, and the objective function never improves. Thus, we can say that 1) we should
geometrically check the usage of (d — 1)-simplices by d-simplices, and 2) applying bistellar flips is in
practice an efficient way in the early stage of column generation.

4.2 Preliminary computational experiments

We did some computational experiments using small instances of 30 points in thee dimensions. As
we mentioned in section 3.1-3, the problem is highly primal degenerate, and it causes two difficulties
when we use simplex methods.

In each iteration, we can start from a primal feasible solution, and using the primal simplex method
scems reasonable. But the results in table 1 shows it is often slower than solving with the dual simplex
method from scratch.

Another difficulty is that the iteration does not easily terminate; the optimal solution was always
obtained in early iterations, but still there were few candidates with slightly negative reduced costs, and
1t took hundreds of iterations to prove the optimality. Anbil et al. [2] noted that perturbing the right
hand side of the constraints could reduce the difficulty, but we could not observe the improvements in
our experiments.

Interior point methods are known to be robust against the degeneracy (e.g. [12]), and we can
observe it in table 1. Actually, the iteration terminated soon after the optimal solution was obtained
when we used the interior point method for solving the LP problems. Unfortunately, interior point
methods requires more memory than simplex methods, and we cannot solve large instances yet.

5 Binary Search for Bottleneck Optimization

As we mentioned in section 3.1-1, when we optimize the bottleneck value of triangulations, introduction
of the additional variable as in formulation (3) does not work. The branch and bound procedure just
goes deeper and we cannot solve even small instances such as 20 points in a cube.

In this section, we introduce a binary search method. We assume the problem to be the mini-
mization of the largest, such as the minimum maximum aspect ratio of the triangulation. Suppose
there are N d-simplices, tg,...,ty, and they are sorted in ascending order of their objective values.
Let U denote the suffix of the d-simplex with the largest cost of a currently available triangulation,
and L denote the suffix such that there is no triangulation only using a subset of {¢;J0 < ¢ < L}. The
procedure is as follows:

L. Initialization. Set U to the suffix of the d-simplex with the largest value of a known triangulation
(such as Delaunay triangulation). Set L to 0.

2. If L+ 1 =U, terminate. Otherwise, set Z = #
3. Solve the minimum-sum-cost problem with {¢;|]0 <1i < Z}.

4. If the problem is infeasible, set L = Z. Otherwise, set U to the largest suffix of the d-simplex
appeared in the solution.

=

5. Go to step 2.

The procedure terminates in O(log n) iterations, because N < (d:l—l)' In step 3, we solve a weighted

summation-style problem. As we mentioned in section 3.1-2, we only have to solve the relaxed LP
problem to obtain an integral solution in practice. Further, step 3 results in infeasible in most of the
iterations, and we can stop the calculation in the early phase of the simplex method.

Table 2 shows the results of preliminary computational experiments. We used points randomly
distributed in a cube as inputs, and applied a preprocess to remove non-empty tetrahedra. To obtain
the minimum maximum aspect ratio, we had to solve the corresponding minimum-sum aspect ratio
problem to the optimality only once for each instance. Further experiments would be necessary to
investigate whether we should obtain the optimal solution or stop when we have found a feasible
solution.

Thus, by using the above procedure, we can solve instances of bottleneck optimization as large as
the instances with the summation-style objective function we can solve.

6 Cutting Planes

Solution can be fractional if the objective function is non-weighted. In this section, we introduce two
cutting planes which are based on the geometrical aspects of triangulations.

Table 2: Binary search for the bottleneck value

points | # iterations # feasible # variables final U value
10 8 1 192 163
20 12 1 3732 3419
30 14 1 18799 18097
40 14 1 55241 52118
50 15 1 137757 135785

6.1 Small fractional examples

De Loera et al. introduced an fractional example in two dimensions [6]. A set of vertices 1,...,5
of a regular pentagon and its center 0 is a point set in two dimensions and has 20 triangles and
16 triangulations. p € R*® with p{io3) = prosay = P{345} = P{i45} = P{125}) = P{013} = P{o24} =
P{035) = P{o14} = P{o2s} = % is a feasible solution of the linear relaxation of (2). The subgraph of
the intersection graph of triangles induced by the nodes which correspond to the triangles with value
% and with(/without) vertex 0, constitute an odd-cycle of size 5, respectively. The corresponding
constraints

Pi123y +P{2a3ay T P3asy + Pliasy T P15y < (5)
Pro13}y + Pfo24) T P{ossy + P{o14} +Pozsy < 2 (6)

cut off p. Thus, odd-cycle cuts can be effective cutting planes for formulation (2).
From a geometrical point of view, the number of triangles around a point inside the convex hull
must be larger than 3, namely,

P{o13} 7+ P{o24} + P{o35} T P{o1a} + P{o25} T Po12} + P{o23} + P{o3a} + P{ods} + P{o15} > 3

This is also an effective cutting plane for the above example.
In three dimensions, we can easily consider the same situation as above; A set of vertices 1,...,50f
a regular pentagon on = —y plane, and two points 6,7 on z axis with a positive(/negative) coordinate,

respectively. ¢ € R* with qp3e7y = qpasery = d(3567) = {1467} = G{2567) = 9{1236) = G(2346} =
Y3456} = d{1456} = {1256} = {1237} = G{2347} = 4{3457} = Q{1457} = 9{1257} = % is a feasible solution,
and can be cut off by odd-cycle cuts. Different from the case in two dimensions, we focus on the
number of tetrahedra around the interior edge 6-7. The sum must be larger than 3 again, and g does

not satisfy it.

6.2 (d —2)-face cuts

Although we observed that the cutting planes in the previous section can be effective, we can seldom
find ones that cut off the current fractional solution, especially when the instance is large. In other
words, odd-cycle cuts are not effective in practice. Figure 4 shows that, even in the case of 30 points,
the intersection graph is very large, and the weight of each node is very small. The largest positive
value is 0.56 (no 1s in the solution), most of the values are less than 0.1, and we can not find a cutting
plane of the above-mentioned type that cut off the fractional solution.

The lower dimensional simplices, however, have fractional values too, and the situation changes if
we consider the relative values. We introduce variable :1:;-1_2 corresponding to i-th (d — 2)-simplex e; as
we did for the generalized stable set formulation of triangulations in [14]. Let S; denote the set of all
the d-simplices which contain e; as a (d — 2)-face. Let a;; denote the angle® of j-th d-simplex around
;. which are normalized so that the perigon is equal to 1.

Proposition 1 The following equation holds for each (d — 2)-face which is not on the convez hull:
% = > ai]w? (7)
JES;

We consider the intersection graph of a set N;(C S;) of d-simplices around e;. Let C; denote the
size of the maximum independent set of N;.

>The dihedral angle in three dimensions. In general dimension, the d simplex has two (d — 1)-faces neighboring the
(d — 2)-face, and the angle corresponds to the angle between the normal vectors of the two (d — 1)-faces.

Proposition 2 The following inequality is valid for any triangulation

Upper bound cut Z :v‘} < Cixf_Q (8)
JEN;

We can see that, in the two dimensional example above, the variable corresponding to the point inside
the convex hull is equal to 1 (= 2 x 1 x 5), and (6) is a special case of this inequality.
The constraint around a point (or an edge in three dimensions) can be generalized as follows:

Proposition 3 The following inequality is valid for any triangulation

Lower bound cut Z x? > 3$f“2 (9)
JES;

Not only that the (d —2)-face cuts can cope with quite small fractional values, but also the number

of candidates are small (at most (,”)) and the calculation to look for violated constraints is not
expensive.

6.3 Computational results

We investigated the effectiveness of the two kinds of (d — 2)-face cuts with the instances of 20 and
30 points randomly generated in a unit cube, which gave fractional solutions under the non-weighted
objective function. As the objective function is non-weighted, we can also add a cutting plane which
cut off the fractional part of the objective value;

Z:c;l > [Cf] Cy : the current fractional solution.

We first repeated solving the relaxed LP and adding cuts, until we could find no additional cuts,
then transferred to the branch and bound procedure. We used the mixed integer programming module
of the mathematical programming library for the branch and bound. Table 3 shows the results. Each
row corresponds to the number of (d—2)-face upper bound cuts, the number of (d—2)-face lower bound
cuts, the number of iterations of adding cuts, the lower bound of the objective function obtained after
adding cuts, the number of fractional variables after adding cuts, and the number of nodes investigated
during the branch and bound, respectively. Each column corresponds to the result with the pure branch
and bound, (d — 2)-face upper bound cuts, (d — 2)-face lower bound cuts, both of the two kinds of
cuts, and both of them plus the fractional cut, respectively.

We can observe that the lower bound cuts are especially effective, whereas the upper bound cuts
do not work well. With the case of 20 points, combined with the fractional cut, the (d — 2)-face
cuts brought integer solutions. On the other hand, with the case of 30 points, the addition of the
fractional cut resulted in the increase of (d — 2)-face cuts, and also the increase of the branch and
bound nodes. This may be related to the fact that the rows corresponding to (d — 2)-faces are dense.
Further investigations are necessary on it.

7 Conclusions and Remarks

In this paper, based on the computational experiments using the cocircuit form constraints, we further
investigated the optimization of triangulations by combining the geometrical observations and IP
approaches. A column generation method was introduced to solve large instances, and the geometrical
interpretation of the dual problem was also presented. Binary search was applied to the optimization
of the bottleneck value of triangulations. Based on the observation of small fractional examples, we
introduced two kinds of cutting planes which utilized the geometrical aspect of triangulations.

Table 3: The effectiveness of the cutting planes

points NONE UB LB UB&LB UB,LB&FRAC

Cuts(UB) - 7 - 5 3
Cuts(LB) - - 20 20 8
iterations 20 - 5 3 2 1
Lower Bound (Optimal:38) | 37.286 37.361 37.688 37.688 38.000
fractional 131 187 80 85 0
Nodes in B&B 12 15 4 4 1
Cuts(UB) - 0 - 1 17
Cuts(LB) - - 61 62 102
iterations 30 - 0 3 4 14
Lower Bound (Optimal:61) | 58.801 58.801 59.310 59.311 60.000
fractional 1172 1172 1271 1256 1407
Nodes in B&B 326 326 155 159 289

The effectiveness of our (d — 2)-face cuts shows that the fractional solutions are related to the
existence of lower-dimensional simplices inside the convex hull. As the formulation using cocircuit
form constraints allow the weighted sum of triangulations, setting upper bounds with cutting planes
such as odd-cycle cuts often result in just another fractional weights. Cuts giving lower bounds seem
more effective. For the branch and bound procedure, we used a commercial IP package as it was, but
controlling the branching, such as branching on lower-dimensional simplices, would reduce the number
of nodes during the branch and bound.

We can currently solve instances of at most 50 points in three dimensions. Further investigations
are necessary to enlarge the limit, say, to 100 points. Roughly speaking, as the number of simplices is
(') in three dimensions, triangulation of 100 points might correspond to TSP of 10000 sites, and be a
good milestone.

References

[1] T. V. Alekseyevskaya. Combinatorial bases in systems of simplices and chambers. Discrete Mathematics,
157:15- 37, 1996.

[2] R. Anbil, R. Tanga, and E. L. Johnson. A global approach to crew-pairing optimization. IBM Systems
Journal, 31(1):71-78, 1992.

[3] M. Bern. Triangulations. In J. E. Goodman and J. O’Rourke, editors, Handbook of Discrete and Compu-
tational Geometry, chapter 22. CRC Press, 1997.

[4] M. Bern and D. Eppstein. Mesh generation and optimal triangulation. In Computing in Euclidean Geom-
etry, volume 4 of Lecture Notes Series on Computing, pages 47-123. World Scientific, 2nd edition, 1995.

[5] CGAL. http://www.cs.run.nl/CGAL/.

6] J. A. De Loera, S. Hosten, F. Santos, and B. Sturmfels. The polytope of all triangulations of a point
configuration. Documenta Mathematica, 1:103-119, 1996.

[7] DeWall. http://miles.cnuce.cnr.it/cg/swOnTheWeb.html.

[8] M. T. Dickerson and M. H. Montague. A (usually?) connected subgraph of the minimum weight triangu-
lation. In Proc. 12th Annu. ACM Sympos. Comput. Geom., pages 204-213, 1996.

[9] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness.
W. H. Freeman and Company, 1979.

10

[10] Y. Kyoda, K. Imai, F. Takeuchi, and A. Tajima. A branch-and-cut approach for minimum weight tri-
angulation. In Proceedings of the 8th Annual International Symposium on Algorithms and Computation
(ISAAC ’97), volume 1350 of Lecture Notes in Computer Science, pages 384-393. Springer Verlag, 1997.

[L1] T. Masada, H. Imai, and K. Imai. Enumeration of regular triangulations. In Proceedings of the 12th Annual
ACM Symposium on Computational Geometry, pages 224-233, 1996.

[12] J. E. Mitchell. Interior point methods for combinatorial optimization. In T. Terlaky, editor, Interior Point
Methods of Mathematical Programming, chapter 11, pages 417-466. Kluwer Academic Publishers, 1996.

(13] V. T. Rajan. Optimality of the Delaunay triangulation in R%. Discrete & Computational Geometry,
12(2):189-202, 1994.

[14] A. Tajima. Optimality and integer programming formulations of triangulations in general dimension. In
Proceedings of the 9th Annual International Symposium on Algorithms and Computation (ISAAC ’98),
Lecture Notes in Computer Science. Springer Verlag, 1998. to appear.

[153] Triangle. http://www.cs.cmu.edu/~quake/triangle.research.html.

Figure 1: Bistellar flips in 2 and 3 dimensions Figure 2: A small sample of column generation

100 1172 fractional variables

min: 0.000137

B0 max: 0.560222

Figure 3: Distribution of positive values: 30 Figure 4: Distribution of positive values: 30
points in 3D, bottleneck points in 3D, non-weighted

11

