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Abstract: In recent years, relations between Grobner bases of graphs and

integer programs on graphs have been studied through Conti-Traverso al-

gorithm via toric ideals. However, Grébner bases of directed graphs have
b il A

no\)ge/ll studied. In this paper, we study Grébner bases for toric ideals of

acyclic directed graphs. These toric ideals can be homogenized by chang-

ing the positive grading, or by adding one more variable. Some Grébner
ﬁ.“ \’-3

bases are characterized in terms of graphs, and §ives the bounds for the

degrees and the cardinalities of the Grdbner bases of acyclic tournament

graphs. Homogenization by changing the positive grading enables to ap-
S T e

ply Grébner bases of acyclic directed graphs to the minimum cost flow

problems for any cost vector using Conti-Traverso algorithm. Another ho-

mogenization gives the alternative proof for the result by Gelfand-Graev-

Postnikov about the number of independent solutions of hypergeometric
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systems on the group of unipotent matrices via the relations of Grébner

bases and regular triangulations.

1. Introduction ('1
e
Co‘ntri-afllﬁdw’l“lzgverso [5] showed the Grobner bases methods for integer programs
using the discreteness of toric ideals. Applying to some integer programs on
graphs, properties of Grobner bases of graphs may give some insights into prop-
erties of integer programs, or conversely, properties of integer programs may give
some insights into properties of Grobner bases of graphs. Especially, Grébner
bases of undirected graphs and their applications to integer programs have been
studied [6,7,13] in recent years. The toric ideals of these graphs are “homoge-
neous”, which is well-studied property in commutative algebra, for the standard
grading. On the other hand, Grébner bases of directed graphs have not well stud-
ied singe}hg,i:ari&idﬁais\p\f‘t}‘l‘e‘s_e graphs are not homogeneous for the standard
gr;ding- e B L 1S 't‘wv (@W\&) ~ T

" In thié paper, we study Grobner bases for toric ideals of acyclic dir;cted
graphs and their applications to minimum cost flow problems and to some hy-
pergeometric systems. We focus especially on the degrees and the cardinalities

of reduced Grébner bases. The cardinality of reduced Grdbner-basis is related

to the complexity of the algorithms for minimum cost flow problems using the
Conti-Traverso algorlt—h—m

The toric ideal of an acyclic directed graph is not homogeneous for the stan-

dard grading, but can be homogenized by changing the grading of each variable
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(we call the graphical grading) or by adding one more variable. In addition, each Q
0

element in Grobner bases corresponds to a circuit of graphs. Three Grobner

bases are characterized in terms of circuits. Two are the set of incidence vectors
for all of the circuits of length 3 and some of the circuits of length 4, and the
other is the set of incidence vectors for all of the fundamental circuits for some <<

spanning tree.

The fact that toric ideals of acyclic directed graphs are homogeneous for the
graphical grading enables to use the Conti-Traverso algorithm in the minimum
cost flow for any cost vector. On the other hand, minimum cost flow problems
are one of the most fundamental and easiest network problems. So Grobner bases

of acyclic directed graphs may have several good properties.

Moreover, the vertex-arc incidence matrices of acyclic tournament grapﬁs‘

relate with the hypergeometric system on the group of unipotent matrices are ‘i

)

hypergeometric systems. These hypergeometric systems have been studied re- V
cently by Gelfand, Graev and Postnikov {8]. By adding one more variable, toric ff
ideals of acyclic tournament graphs can be homogenized for the standard grad-
ing. Then we can relate the Grébner bases with the regular triangulations [16].

Two Groébner bases for homogenized toric ideals are obtained from the Grébner

bases characterized above, and these bases implies the alternative proof for the

[P

result of Gelfand, Graev and Postnikov [8].

This paper is organized as follows. In Section 2, we give some basic definitions
of toric ideals and Grébner bases. In Section 3, we study the Grdbner bases for

acyclic directed graphs. We give the positive grading which homogenize the
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toric ideals, and characterize three reduced Grobner bases in terms of graphs.
In Section 4, we analyze the bounds for the degrees and the cardinalities of the
reduced Grobner bases with respect to various cost vectors. In Section 5, we
describe the Conti-Traverso algorithm, and apply the reduced Grébner bases to
the minimum cost flow problems on acyclic directed graphs. Finally in Section
6, we summarize [12] which shows that some results in [8] can be obtained by

analyzing the Grébner bases of acyclic tournament graphs.

2. Preliminaries

In this section, we give basic definitions of toric ideals and Grobner bases. We
refer to [4] for Grébner bases, and [16] for toric ideals. We denote the set of
non-negative integers by Ny and the set of non-negative real numbers by Rp.
We consider the integer programming problem IPg4 (b) := minimize{c -
x: Ax = b,x € N2}, where 4 € Z%*™ is the coefficient matrix, b € Z¢ is the
right hand side vector, and ¢ € R} is the cost vector. We denote P, := conv{x €

Nj: Ax = b}, where “conv” means the convex hull.

Let k be a field and k[zy, ... ,z,] be the polynomial ring in n variables. For
an exponent vector a = (a1,...,a,) € NZ, we denote x* := z{'xy?--- 28 €
kizi,...,z,]). A total order on monomials in k[z1,...,2,] is a term order if

1 is the unique minimal element, and x“ > xV implies x"t% > xV*V for all
u,v,w ¢ Nj.
For a fixed term order -, the refinement cost vector . is a term order such

that x" = xV if either c-u>c¢-vor “c-u=c-v and x* > xV”. Let IP4 . _(b)
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be the problem to find the unique minimal element in P, N N3 with respect to
>c. Then the solution u of IP4 . (b) is one of the optimal solutions of P4 (b).

The toric ideal Iy of A is defined as I4 := (x* —xV: Au= Av, u,v € N}).
For any f € I4, the initial term in, _(f) of f is the largest term in f with
respect to .. Then we define the initial ideal in, (I4) of I4 as in, _(I4) :=

(n._(f): f€la).

Definition 1. The Grobner basis for Iy with respect to >, is a finite subset
Go. = {91,...,9s} C I4 such that in, (Ia) = (in._(91),..- ,ins_(gs)). In

addition, Grobner basis G, is reduced if G. _ satisfies the following:

1. For any 1, the coefficient of in._(g;) is equal to 1.

2. For any i, any term of g; is not divisible by iny_(g;) (i # j)-

The reduced Grobner basis G, _ is uniquely defined for any > and c, and
calculated by Buchberger algorithm (see [4]). The reduced Grébner basis G, _ is
a test set for the family {IP4 . _(b): b = Ap for some p € N2} for fixed A and
c. For more details, see [17,18].

The support supp(u) of a vector u is the index set {i: u; # 0}. Any u € Z"
can be written uniquely as u = u™ — u~ where ut,u” € N} and have disjoint
support. Then G, can be written as G,._ = {x* —x%,...,x" —x" } for

some uy, ..., u, € ker(4) [16].

Proposition 1 ([4]). Let G, = {g1,... ,9s} be the reduced Grébner basis for
14 with respect to .. Then every f € k[zi,...,x,] can be written as f =

aigr + - +asgs + 1, (a;,r € k[z1,...,2,]), where either r = 0 or no term of r
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is divisible by any of iny. (g1),... ,in._(gs). In addition, v is unique for any >

and ¢, and called the normal form of f by G, _.
Proposition 2 ([4]). Any Grébner basis for I4 is a basis of I4.

Anideal I C k[zy,...,z,] is called homogeneous with respect to the positive
grading deg(z;) =d; >0 (i =1,...,n)ifforany f=fi+ fo+ -+ fm €l
(f: is the homogeneous component of degree i in f), f; € I for any i. Then I is

homogeneous if and only if I is generated by homogeneous polynomials [4].

Proposition 3 ([16]). If I4 is a homogeneous with respect to some positive
grading deg(z;) = d; > 0, then reduced Grébner basis G.._ exists for any ¢ €

R\ {0}.

3. Grobner Bases for Acyclic Tournament Graphs

Let Dy be the acyclic tournament graph with d vertices which have labels
1,2,...,d such that each arc (¢,7) (¢ < j) is directed from 4 to j. Let n = (g)
be the number of arcs in Dy. We associate each arc (i,j) with the variable Tij

in the polynomial ring k[x] := k[z;;: 1 < ¢ < j < d]. Let Ay be the vertex-arc

incidence matrix of Dg.

3.1. Toric Ideals of Acyclic Tournament Graphs

A walk in Dy is a sequence (v1,vs,...,v,) of vertices such that (vi,vi41) or
(vi+1,v;) is an arc of Dy for each 1 <4 < p. A cycle is a walk (vy, vo, . . . s Vpy Vg ).

A circuit is a cycle (vy,va,... ,vp,v1) such that v; # v; for any ¢ # j.
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Definition 2. Let C be a cycle in Dy and fiz a direction of C. If C passes the

arc (4,7) uj} times forwardly and u;; times backwardly, then we define ug =
(U;;)lgqu,ua = (uj;)1<icj<d € R™. The vector uc := ul — ug is called the

incidence vector of C'.

For any vector u, u € ker(A4) N Z" if and only if there exists some cycle C
of Dy such that u is the incidence vector of C. Thus we can identify a cycle C
of Dy with the binomial fo := x"¢ — xUc € I,

We denote U4, the union of all reduced Grobner bases for 14, with respect to
all »¢. Uy, is called the universal Grébner basis for I4,. The universal Grobner
basis U4, is a universal test set for the family {IP4 . (b): b = Ap for some p €

Ng, ¢ € R} for fixed A [17,18].

C ] ‘} ' i
‘// )Tb’ L.k.. l‘\'
Proposition 4. Uy, = {fc: C is a circuit of D;}. Especially, the number of

elements in Ua, is of exponential order with respect to d.

Proof. Let fo = XY —xUc be a binomial correspmiding to a circuit C. We define
the cost vector ¢ = (¢5;)1<icj<a @8 ¢ij =0 if (¢,7) € C and ¢;; = 1 otherwise,
and a term order > such that x“¢ . x%. Then z9¢ € iny _(I4), and there
exists a binomial g := XU _xW e G... such that x' divides x4 . The choice
of ¢ and the inclusion supp(u;) C supp(uf) U supp(ug) implies supp(u;’) C
supp(ut)Usupp(ug), hellce/srﬁf;p(uj)Usupp(u;) C supp(ug)Usupp(fua). Since
s g

C is a circuit and g corrésponds a cycle in D,,, g corresponds}(/C, ie. fo=g.

Conversely, suppose that xtt—xv € G, . correspondyf;) a cycle C which is

/

not a circuit. Then C contains a circuit C’. For a suitable directic7/{upp(ug,) C

S
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supp(ug) and supp(ug, ) C supp(ug). Since C' is a circuit, each element in ul,
and u,, is either 0 or 1, and thus x"e' divides x16 and x"¢’ divides x"c. This
is contradiction for the definition of G, _. a

N
n PPy
2 AR

’I@} L4, is not homogeneous for the grading deg(z;;) = 1, but is homo-

4 B

geneous for the grading deg(z;;) = 5 — 1.

We call the grading deg(z;;) = 1 the standard grading, and the grading

deg(z;;) = j — i the graphical grading.

Proof. For any d, z12%93 ~ 213 € 14, and 12723 ¢ I4,. This implies that T4, 1s
not homogeneous for the standard grading.

Consider the graphical grading. Let C = (v1,va,...,vp,v1) be a circuit in
Dy, CF = {k: vy < vps1} and C~ := {k: vy, > vps1} (We set vpy1 := v;). The
binomial fo corresponding to C is fo = [icor Topvnes — [licc- Toppyvn- Then

fc 1s homogeneous because

deg( H kavk+1> _deg< H ka+luk) = Z (vk-i-l —vk) - Z (vk _Uk+1)

keC+ keC— keC+ keC-

p
= E(’Uk+1 - ’Uk) = 0.
k=1

Thus reduced Grobner basis exists for any ¢ € R™ \ {0} by Proposition 3.
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3.2. Grobner Bases for Acyclic Directed Graphs

For the case of incidence matrices of acyclic directed graphs or (undirected) bi-
partite graphs, Grébner bases can be obtained from those of acyclic tournament

graphs automatically using the following elimination theorem.

Theorem 2 (Elimination Theorem [4]). Fiz an integer 1 <1< n and let >
be a term order on K[z, x2,... ,z,] such that any monomial involving ot least
one of x1,...,x; 15 greater than all monomials in klzisr, ... ,zn). Let =" be o
a term order which is the restriction of > to k[zii1,...,z,]. If I is an ideal
in k[zy,zo,... ,2,] and G is a Grébner basis of I with respect to >, then G N /

klzi11,. .. yxn) is a Grobner basis for INk[ziyy, ... ,2,] with respect to >'. i

Let By be the vertex-arc incidence matrix of an acyclic directed graph Gy
with d vertices. We consider G4 as a subgraph of Dy, and let E(Dg) (resp.

E(Gg4)) be the arc set of Dy (resp. Gy).

Proposition 5. Ip, = I4, Nk[z;;: (1,5) € B(Gy)).

Proof. Tf f =x*(x*" —x"" ) € Ip, (where a, u™, u™ € Ng, x* € kfz;;: (4,5) €
E(Gg4)] and supp(u™) N supp(u~) = @), then there exists a cycle C in G4 such
that for a suitable orientation of C', u := ut — u~ is the incidence vector of C.
Then C is also a cycle in Dg, which implies that f € I4,Nk[z;;: (i,5) € BE(Gy)].

Conversely, let f = x®(x%" — x% ) € I, Nk[zi;: (4,5) € E(Gq)] (where
a, ut, u € Ng, x* € kfay: (i,5) € E(Gq)) and supp(u) N supp(u-) = ).
Since f € I,,, there exists a cycle C in Dy such that for a suitable orientation,
4

u:=u’ —u" is the incidence vector of C. Furthermore, since f € k[z;;: (z,5) €



10 Takayuki Ishizeki, Hiroshi Imai

E(Gy)), all arcs in C are contained in E(G4). Then C is also a cycle in G4, which

implies that f € Ig,. O

Let By, 4, be the (undirected) bipartite graph with the vertex sets V, W such
that |V =dy, [W| = dz, and Cq, 4, the vertex-edge incidence matrix of By, 4,.
We define the acyclic directed graph Gg, 4, from By, 4, by orienting each arc
of By, 4, from the vertex in V to that in W. Then we can consider G4, 4, 35 a
subgraph of Dy, ;q4,. Let {1,... ,d1} and {d; +1,... ,d; + d2} be the vertex set
of V.and W, C(’il ., the vertex-arc incidence matrix of Gg, 4,, and E(Gy, 4,) the

arc set of Gy, 4,
Proposition 6. Ic:il.dz = ch1’d2 = IA41+42 N k‘[.’tijl (Z,_]) S E(Gdl,dz)]'

Proof. The i-th row of Cjj . is same as the i-th row of Cy, 4, for 1 < i < d; and
as (—1) times the i-th rew ofC'dl;d;2 ford;+1 <1 < dy+dy. Thus IC; L= chl 4

1-.92 ’
since ker(C} ,4.) = ker(Cy, 4,).

The proof of the second equality is similar to that of Proposition 5. O

Thus we may consider Grobner bases of acycli;)/tournament graphs when we

consider those of acyclic directed graphs or bipartite graphs.

3.3. Some Gribner bases for I4,

In this section, we show that the elements in reduced Grébner bases with respect
to some specific term orders can be given in terms of graphs. As a corollary, we
can show that there exist term orders for which reduced Grobner bases remain

in polynomial order.
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Theorem 3. Let ¢ = (¢;5)1<i<j<dq be the cost vector such that c;; = j — i, and

> be the purely lezicographic order induced by the following variable ordering:
T~z = i<kor(i=kandj<l).
Then the reduced Grébner basis for I, with respect to = is
LGije = Tijain — T 1 < J < k}U{gijp = Tin@ji — TaTjp: 1 < j < k <1}

1)

In particular, the number of elements in this Gribner basis is equal to (‘;) + (Z).

The set {gijx: 7 < j < k} corresponds to all of the circuits of length three,
and {gijx: 1t < j < k < I} corresponds to some of the circuits of length four

uniquely determined for each four vertices i, j, k,[ (Figure 1).

Fig. 1. Circuit corresponding to g;;x (left) and circuit corresponding to g;;x; (right).

Proof. By Proposition 4, it suffices to show that any binomial which corresponds
to a circuit in Dy is ei‘;her contained in (1) or that its initial term is divisible by
the initial term of some element in (1).

Any binomial corresponding to a circuit of length 3 is contained in {g;;x}.

The circuits defined by four vertices 1 < j < k < I are C; := (3,4, k,1,1),

Cy = (4,4,0,k,%), Cs := (4,k,5,1,7) and their opposites. The binomial which
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corresponds to C or its opposite is z;;z 5 Ty — T, whose initial term TijTipTy iS
divisible by in, _(g;;x). Similarly, the initial term of binomial which corresponds
to Cz or its opposite is divisible by in,_(g:;;). The binomial which corresponds

to (3 or its opposite is g;;x.

Let C be a circuit of length more than five. Let v; be the vertex whose
label is minimum in C, and C := (v1,va,... ,vp, v1). Without loss of generality,
we set v; < vy,. Let fc be the binomial corresponding to C, then in, _(fc) is
the product of all variables whose associated arcs have the same direction as
(vi,v2) on C. If vy < vg, then (vi,v2) and (vy,vs) have the same direction on
C. Thus both z,,,, and z,,,, appear in in, _(fc), and in, _(fc) is divisible by
-, (Gorvsw;) (Figure 2 left). If v, > vs, then since vz < vy < w,, there exists
k(3 <k <p-1) such that v; < vy < vy < vy1. Then both Tyyv, A0 Typq,,,
appear in in, (fc), and in, (fc) is divisible by iny_(gv,opvs0,,) (Figure 2

right). O

Vicer

Fig. 2. zy,v, and 2y, (left) or 24,4, and Tugvgy, (right) appear in in. (f¢).

Corollary 1. Let = be any term order and ¢ = (c13,... , €14, Ca3, - - - 1Cd—1,d) €

R™ satisfy c;j + cjr > cip for any i < j < k and cip + ¢t > ¢y + ¢k for any
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i < j <k <1l Then the reduced Gribner basis for 14, with respect to > is

same as the basis (1) in Theorem 3.

Proof. Let »' be the term order defined in Theorem 3. Then in, (gijx) =
Tij%jk = Ny (gijk) since ¢ + cjr > ciky and iny_(gije1) = TikTji = iy (Gijrt)
since ¢ + ¢jp > ¢y + ¢jx. Thus in, _(La,) = in.(I4,), which implies that the

reduced Grobner basis for 4, with respect to >, is same as the basis (1). 0O

Theorem 4. Let ¢ = (¢ij)1<i<j<a be the cost vector such that ci; = j—1, and

>~ be the purely lexicographic order induced by the following variable ordering:
Tij = T j—i<l—k OT(j—izl—k andz<k)
Then the reduced Griébner basis for I4, with respect to = is

{gijk =TT Tk 1< g < k} U {gijkl = THZje — Tkt 1<) < k< l}
(2)

In particular, the number of elements in this Grébner basis is equal to (‘;) + (i).

The set {g;;x: ¢ < j < k} corresponds to all of the circuits of length three in
Dy, and {gijr: ¢ < j < k < I} corresponds to the set of circuits of length four

same as in Figure 1 but the direction of each circuit is opposite.

Proof. Any binomial corresponds to a circuit of length 3 is contained in {g;;x}
The circuits defined by four vertices i < j < k < [ are C1 := (3,5, k,1,1),
Cy = (1,5,1,k,t), C3 := (i,k,3,1,%) and their opposites. The binomial which

corresponds to Cy or its opposite is z;;Z;, &k — 4, whose initial term T35 TipTh
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is divisible by in. _(gi;%). The binomial which corresponds to C, or its opposite
is =(zijzj1 ~ zipxar). If its initial term is x5z, it is divisible by iny_(gij1). On
the other hand, if initial term is z;;zx;, it is divisible by i1y _(giki)- The binomial
which corresponds to Cj or its opposite is g;;x;.

Let C' be a circuit of length more than five. Let (vy,vs) (v; < v2) be the arc
which the difference of labels is minimum in C, and C := (v,v;,... ,Up, V1)
Let fo be the binomial corresponding to C, then in. _(fc) is the product of all
variables whose associated arcs have the same direction with (vq,v2) on C.

If vy < v3, then both z,,,, and z,,,, appear in in,._(fc), and iny_(fc) is
divisible by in. _(gu,vyv,). Similarly, if v, < v, then in, _(fc) is divisible by
e (Gupvyo)-

Let v3 < vy and vy < v,. Then v3 < v; < vy < vp by the definition of v;
and v. If there exists some ¢ such that v, < vgy1 < vy49, then iny (fc) is
divisible by in. (gu,v,41v,42)- Consider the case that there does not exist such
q. Let vs < vy < wsy1 < vy (Figure 3 left). Then vy, 2 < v,1; by assumption, and
Us+2 < v1 by the definition of v; and v,. Thus there must be some r (3 < r <
p— 1) such that v, < v1 < vy < v.,; (Figure 3 right) since v3 < v; < v < ip..

Then in, (fc) is divisible by iny _(gy, vyup0,41)- O

vy v, label vy v, label

Fig. 3. If vs < v1 < w41 < v2, Vep2 < ) (left). Then v, < v; < v2 < vr+1(3r) (right).
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Corollary 2. Let >~ be any term order and ¢ = (C12,...,C14,C23,--- ,Cd—1,d) €
R™ satisfy ci; + cjp > cip for any ¢ < j < k and ¢ + ¢ji, > ¢ + ¢ for any
1 < j <k <1l Then the reduced Grobner basis for 14, with respect to = s

same as the basis (2) in Theorem 4.

Proof. Let ' be the term order defined in Theorem 4. Then in, (gijx) =
Tigxjp = iny(gijk) since Cij + Cjr > Cik, and in>c(gijkl) =TTk = in>:(gijkl)
since ¢y + ¢jx > ¢k + ¢jr. Thus iny _(I4,) = in.:(I4,), which implies that the

reduced Grobner basis for 14, with respect to . is same as the basis (2). O

Theorem 5. Let ¢ = (cij)1<i<j<a e the cost vector such that ¢;j = j — i, and

> be the purely lexzicographic order induced by the following variable ordering:
T Ty = i<kor(i=kandj>l).
Then the reduced Grébner basis for 14, with respect to > is
{95 = ®ij — Tiit1Tigri42 " zi_1;:0<j—1} (3)

In particular, the number of elements in this Grébner basis is equal to (‘21) —{d-1).

The set {g;;: ¢ < j — 1} corresponds to all of the fundamental circuits of Dy

for the spanning tree T':= {(5, + 1): 1 <1 < d}.

Proof. Let C be a circuit which is not a fundamental circuit of T. Let v; be the
vertex whose label is minimum in C, and C := (v1,v2, ... ,vp, v1). Without loss
of generality, we set vz < v,. Then the variable z,,,, appears in the initial term

of the associated binomial fc. Thus in, (fc) is divisible by in, _(gy,0,)- a
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Corollary 3. Let » be any term order and ¢ = (c13,... ,C14,Ca3, - . - 1 Cd—1,4) €
R™ satisfy ci; > ;541 +Civ1,i42++- “+c¢j-1,; for anyi < j—1. Then the reduced
Grébner basis for 14, with respect to = is same as the basis (3) in Theorem 5.
Proof. Let >' be the term order defined in Theorem 5. Then ing (gi5) = zij =
ins(g45) since ¢;; > ¢; 141+ Cip1ipa + o +ecjo1,5. Thusing (14,) =in.. (14,),
which implies that the reduced Grébner basis for I4, with respect to =, is same

as the basis (3). O

4. Bounds for the Size of Grobner Bases

The degree of reduced Grébner basis is the maximum of the degree of polynomials
in the Grébner basis. Generally the degree of any reduced Grébner basis for
toric ideals is of exponential order with respect to the number of rows in the
matrix [15], but the cardinality is not well understood. For the case of the toric
ideals of acyclic tournament graphs, since those vertex-arc incidence matrices
are unimodular, the degrees and the cardinalities of the reduced Grobner bases

may be bounded.

4.1. Bounds for the Degrees - the Case of Graphical Grading

Proposition 7. The lower bound for the degrees of reduced Grébner bases for

T4, with respect to the graphical grading is d — 2.

Proof. Because of the definition of Grébner basis, any reduced Grobner basis
contains some element g such that its initial term in(g) divides the initial term of

the binomial f := 1 g_124_1,g—%14 Which corresponds to the cycle (1,d—1, d, 1).
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If the initial term in(f) of f is in(f) = 14, then in(g) = T4 and the degree
of in(g) is equal to d — 1. If in(f) = ©1,4—1%4-1,4, then in(g) must contain the
variable z; 4 1. In fact, if in(g) does not contain z; 41, then in(g9) = z4-1,4.
But since any cycle which passes the arc (d — 1, d) always passes at least one of
the arc (i,d — 1) (1 < i < d — 2) from the vertex ¢ to the vertex d — 1, in(g)

contains the variable z; 4, this is contradiction. Thus deg(g) > d — 2. O

Proposition 8. The upper bound for the degrees of reduced Grébner bases for

I4, with respect to the graphical grading is (d — 1)2.

Proof. The length of each circuit in Dy is at most d. But the direction of at least
one arc is opposite since Dy is acyclic. Thus each term of elements in reduced
Grobner bases contains at most d — 1 variables. Since the degree of each variable
is less than d — 1, the degree of each element in the reduced Grobner bases is at

most (d — 1)2. i

4.2. Bounds for the Degrees — the Case of Standard Grading

Proposition 9. The minimum degree of the reduced Grébner bases for 14, with
respect to the standard grading is 2. The basis in Theorem & is an ezample

achieving this degree.

Proof. The length of a circuit in Dy is at least 3, but the direction of at least

one arc is opposite. Thus the degree of reduced Groébner bases is at least 2. O
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Proposition 10. The mazimum degree of the reduced Grébner bases for T4,
with respect to the standard grading is d — 1. The basis in Theorem § is an

example achieving this degree.

Proof. The length of a circuit in Dy is at most d. But the direction of at least
one arc is opposite since Dy is acyclic. Thus, in any circuit the number of arcs
whose directions are the same is at most d — 1, which implies the upper bound

of the degree is d — 1. a

4.3. Bounds for the Cardinalities of Gribner Bases

Proposition 11. The minimum cardinality of the reduced Grébner bases for 14,
18 (g) —(d—1). The basis we have shown in Theorem 5 is the ezample achieving

this cardinality.

Proof. Because of Proposition 2, the cardinality of the reduced Grobner basis
is more than that of the basis for I4,. Since 14, corresponds to the cycle space
of Dy, the cardinality of the basis for I4, is equal to the dimension of the cycle

space, which is () — (d — 1). 0

To analyze the upper bound for the cardinalities of the reduced Grobner
bases, we calculate all reduced Gréobner bases for small d using TiGERS [10].
Table 1 is the result for d = 4, 5, 6, 7.

For the case of d = 7, the number of reduced Grébner bases and the maximum
of the cardinality are both too large, so we could not know the correct values.

For d <5, the reduced Grobner basis in Theorem 3 is the example achieving
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d # GB | max cardinality | min cardinality
4 10 5 3
5 211 15 6
6 48312 37 10
7 > 37665 > 75 15

Table 1. Number of reduced Grobner bases, maximum and minimum of cardinality.

maximum cardinality, but for d > 6 the maximum cardinality is little larger
than the cardinality of Grébner basis in Theorem 3. For d = 6, we do not know
what cost vectors produce the Grobner bases of cardinality 37. The reduced
Grobner bases which achieve the maximum cardinality seem to be complicated

and difficult to characterize.

Problem 1. Are the cardinalities of reduced Grobner bases for I4, of polyno-

mial order with respect to d?

5. Applications to the Minimum Cost Flow Problems

5.1. Conti-Traverso Algorithm

Conti and Traverso [5] introduced a Grobner basis for solving IP4 . _(b). We de-
scribe the condensed version of Conti-Traverso Algorithm(See [16]). This version

is useful for highlighting the main computational step involved.
Algorithm 1 (Conti-Traverso Algorithm).

Input: A € 24" beZ4 ce Rf and a cost vector ¢

Output: A solution u for IP4 . _(b)
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1. Compute the reduced Grbner basis G, _ of I4 with respect to ~..
2. Find any feasible solution v of IP4 .(b).
3. Compute the normal form x" of x¥ by G, _.

4. Output u. u is the solution of IP4 . (b).

5.2. Applications to Minimum Cost Flow Problems

Using Algorithm 1, the reduced Grobner bases for I4, can be applied to the min-
imum cost flow problems on D, or the subgraphs of Dy, or to the transportation
problem on the bipartite graphs Bg, 4,. In this case, this algorithm is similar
to the cycle canceling algorithm, that is, for a feasible flow the algorithm itera-
tively finds a negative cost directed cycle in the residual network and augments
flows on this cycle. If the residual network contains no negative cost cycle, then
the flow is the minimum cost flow [1]. The minimum mean cycle-canceling algo-
rithm [9] is known as a strongly polynomial time algorithm, which depends only
on the number of vertices d and arcs n. Using this algorithm, from any feasible
flow, we can obtain the minimum cost flow by canceling minimum mean cycle
at most O(dn®logd) times. The cycle canceling algorithm can be considered as
a special case of Conti-Traverso algorithm to use the universal Grébner basis in
each step.

Conti-Traverso algorithm for the minimum cost flow problem shows that we
can obtain the minimum cost flow by augmenting flows only on the negative
cost directed cycles which correspond to the reduced Grébner bases. Although

the result in Section 4 shows that it is difficult to analyze the size of reduced
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Grébner bases, Conti-Traverso algorithm is efficient since the number of cycles
to augment (i.e. the cardinality of the reduced Grébner basis) is much smaller
than that in other cycle canceling algorithms (i.e. the number of all cycles in the

graph).

Problem 2. Can the time complexity of Conti-Traverso algorithm for the min-

imum cost flow problem be bounded with respect to d?

6. Applications to the Hypergeometric Systems on the Group of

;
Unipotent Matrices //'/ :'j
i v’g
In this section we consider Ay as a set of integer points /
: /
Ag={ais,{.. ,a14,203,... ,84_14}

in RY where a;; corresponds to the arc (3, §).

We consider the following system of differential equation with coordinates

Zij,0§i<j§d. '

71 d
of of :
—ZZija7ij+ Z ijb—;j—k:ajf, ]:1,2,...,d (4)
i=1 k=j+1
of *f .
— = 0< k<d 5
0z;1, 8Zij(92jk’ SE<ISES ( )
where o = (a, ... ,aq) € C? such that Z;l:l aj = 0. Gelfand, Graev and Post-

nikov [8] showed that the number of linearly independent solutions of (4), (5)
in a neighborhood of a generic point is equal to the normalized volume of

conv(Ay U {0}) (0 is the origin of R¢), and this normalized volume is equal
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to the Catalan number

cor=i("ar)

Using our result, we can give an alternative proof from the viewpoint of Grébner

bases of acyclic tournament graphs. For more details and proofs, see [12].

6.1. Regular Triangulations, Standard Trees and Anti-standard Trees

Assume that a subset A = {a;,...,a,} C Z? is the set of n points in R%.

Definition 3. Let ¢ = dimconv(4). T = {T1,...,Tp} is a triangulation of

conv(A) if

1. T, CA, |Ty| =q+1, dimconv(T;) = q.
2. UY_, conv(T;) = conv(A4).

3. conv(T;) Neconv(T;) = conv(T; NT;) (i # 7).

Sturmfels [16, Chapter 8] showed that for each point set A and generic term

order >, we can define a triangulation of A with respect to >.

Definition 4. Let >~ be a generic term order and \/in. (I4) a radical ideal of the
initial ideal in, (14). Then we can define the triangulation A, (I4) as follows:
A, (Ip) = {conv(F): FCA, H x; ¢ \/in>(IA)}.

ira;€F

We call A, (I4) the regular triangulation of A with respect >.

Definition 5. Let ¢ = dimconv(A). Then we define the normalized volume of
conv(A) as q! times the Euclidean Uolume\of conv(A).

i
v
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Hilbert polynomial H4(r) of k[z1,...,z4]/I4 is the k-dimension of the r-th
graded component of k[z1,...,z4]/I4 for r /0.
,'
Theorem 6 ([16]). Let ¢ = dimconv(A4). T}Len g! times the leading coefficient
!

of the Hilbert polynomial Ha(r) of k[z1,... sz]/IA is equal to the normalized

i
i
i

volume of conv(A).
Definition 6. Triangulation T = {T,... ,T,} of conv(A) is unimodular if for
any T; € T, the normalized volume of T; is equal to 1. The matriz A is also

called unimodular if all triangulations of coﬁv(A) are unimodular.

Proposition 12 ([16]). Suppose that I4 be a homogeneous with respect to the
standard grading. Then the initial ideal in, (14) is square-free (i.e. \/in, (I4) =
in, (14)) if and only if the corresponding regular triangulation A, (I4) of conv(A)

is unimodular.

Definition 7. Let T be a tree on the set {1,2,...,d}.

— T is admissible if there are no 1 < i <:j < k < d such that both (i,j) and
(j, k) are edges of T.

— T is standard if T is admissible and there are no 1 <i < j <k <1< d such
that both (i, k) and (4,1) are edges of T.

—~ T s anti-standard of T is admissible and there are no 1 <i<j<k<l<d

such that both (i,1) and (j,k) are edges of T.
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Theorem 7 ([8]). Let

Tsr = < conv U a;; U{0} ) : ST is standard tree on {1,... ,d}
(i.4)€ST

Tar =  conv U a;; U{0} | : AT is anti-standard tree on {1,...,d}
(i,5)€ AT

Then both Tst and Tar give unimodular triangulations of A4 U’{O}.

Theorem 8 ([14]). The number of standard trees (resp. anti-standard trees) on

the set {1,2,... ,d} is equal to the Catalan number

cer=a(’asy’)

|
i
!

6.2. Dimension of Hypergeometric Systems on the Group of Uni*otent Matrices

f
We consider the (d + 1) x (n + 1) matrix ;
|
As 0
A,d = C R4H1
11
where ‘1 is a row vector whose components are all 1, and 0 is & column zero
vector. Then the toric ideal of A’y is homogeneous for the standard grading.
Thus we can relate the Grobner bases of acyclic tournament graphs with the
regular triangufations of conv(AL).

In the rest of this section, we discuss the toric ideal of A’;. We associate the

point a;; € Ag with the point aj; := (%) € A’y and the variable z;; in the

polynomial ring k[x,zo] := k[Z12,...,%14,%23,... ,Td-1,4, %0, and the point

0 € R™ with af, := ((1]) € A’y and the variable zo in k[x, o).

J

/
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Remark 1. ‘

/

1. The triangulation A 05 conv(A'y) can be associated wi!jé;h the triangulation
of conv(A4y4 U {0}) by projecting A to the hyperplangf Tgi; = 0 in RO
Thus the normalized volume of conv(A'y) is equal to that of conv(44,U{0}),
and these number is equal to the number of standard trees (or anti-standard
trees) on {1,... ,d} by Theorem 7.

2.1f x* — x¥V € I4, and deg(x") — deg(xY) = k, then x" — xVzk € I4,.
Conversely, if x* — xVzf € L4, then x" — xV € Iy4,.

Remark 2. When d = 3, then A} is a unimodular matrix. On the other hand, A/,

is not unimodular for d > 4. For example, in the case of d = 4,
2
{93122724 — T14%23734,213T24 — £14%23,L13%34 — T12%24,

T13Tg — T12%23,T14T0 — T12%24,T24Tq — $23$34}

is a reduced Grobner basis for 14, with respect to the lexicographic term order

induced by the variable ordering

ZTo = Ty3 > T4 > T12 >~ T14 > T23 > T34,
thus even among the variables z13,... ,24_; 4, unimodularity is broken.

Theorem 3 shows that I4s, is generated by {x;;z;, —Tix®o: 1 <i < j <k <
dy U{zgpzy —zyxs: 1 <i < j<k<l<d}, and Theorem 4 shows that 14,
is generated by {zgrx — zuzo: 1 < i < j <k < d}yU{zyzjr — zipzi: 1 <
i < j < k <1< d}. Thus in these cases, we can extend each term order -
in Theorem 3 (resp. Theorem 4) to the term order >' on k[x,zo] such that

in, (IAJ) = in>’ (IA’J)'
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Corollary 4.
f

(¢) For the lexicographic term order indu!:ed by the variable ordering

!
Ty >z e i<kor(i=k anHj<l), xij > xo for any i < j,
i

the initial ideal of Ly, is ({z;jz: 1§§ i <j<k<d}U{rgzg:l1<i<
J<k<l<d}).

(t7) For the lezicographic term order ind%‘ced by the variable ordering
Ty =T j—i<l-kor(j—i=1l+kandj<l), z;; = o for anyi < j,

the initial ideal of I/, is ({zjz8: 1;’5 i<j<k<diU{zgzjp:1<i<

j<k<l<d}).

Thus we get two regular unimodular tri:angulations Ay, A, of A' 4 by applying
Definition 4. The normalized volume of conv(A’4) can be obtained by calculating
the Hilbert polynomial of k[x, o]/ 4:,.

As a matter of fact, F C A’y is the face of A; (resp. As) if and only if the set
{(4,5): as; € F} is standard tree (resp. anti-standard tree). Thus by Theorem 7,
we obtain the result of Gelfand, Graev and Postnikov [8] about the number
of linearly independent solutions of the system (4), (5) in a neighborhood of a

generic point.

Theorem 9. The number of linearly independent solutions of the system (4), (5)

in a neighborhood of a generic point is equal to the Catalan number

Car = %l(é(dd_‘ll)).
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