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Towards the Maximal Number of Components
of a Nonsingular-Surface of Degree 5 in RP?
T

V. Kharlamov and 1. Itenberg

81. Introduction

The problem of determining the maximal number of connected components of a
surface of given degree m in RP? was posed by Hilbert in 1900 (see the 16th problem
of his famous list). Despite developments in the last decades in the topology of real
algebraic varieties, the answer is still unknown, except in the trivial cases m < 3 and
the case m = 4. In this last case the maximal number of components is equal to 10
(surfaces with 10 components were constructed by Rohn [Ro] in 1886; a proof of the
maximality was given by Kharlamov [Kh1]in 1972).

It is well known that to determine the maximal number of components it suffices
to consider nonsingular surfaces: by a small variation, any singular surface can be
replaced by a nonsingular one with at least the same number of components.

A standard application of the Smith and Comessatti inequalities (see §3) gives the
following estimate: the number of components of a nonsingular surface of degree m
in RP? is less than or equal to (5m> — 18m? 4 25m)/12. In particular, it cannot be
more than 25 for m = 5.

Kharlamov [Kh2] constructed a surface of degree 5 in RP? with 21 components.
(The surface constructed is an M -surface: the total Z,-homology group has the same
rank as that of its complexification; see §3)

In the present paper we construct a nonsingular surface of degree 5 in RP? with
22 components. We follow the scheme of [Kh2]} and use, in addition, some elements
of Itenberg’s recent construction [It] of counter-examples to the Ragsdale conjecture
{see [Ral).

§2. Construction

2.1. An equivariant analog of Horikawa’s theorem. By a real algebraic (or analytic)
manifold we mean a complex manifold supplied with complex conjugation. For a real

variety X we denote the set of its real points by RX and the set of complex points by
CX.
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Let X be the standard nonsingular model of the real cone defined in P? by the
equation xj + x{ = x3 + x3. Following Horikawa [Ho], consider an irreducible curve
B on > satisfying the following conditions:

{1} 1ts intersection number with a linear generator of 2, is equal to 6;

(i) itsintersection number with the inverse image of the vertex of the cone is equal
to I
(ii1) it has only two singular points, these points are ordinary triple points and they
both lie on the same linear generator L.
We shall call it the Horikawa curve.

Denote by W the surface obtained from X, by blowing-up the two singular points
of the Horikawa curve B, and by L and B the proper transforms of L and B under
this blowing-up. Then take a double covering S — W with branch locus B U L. Such
4 covering exists because of (i)(iii) and is unique.

The inverse image of L is a nonsingular rational curve with self-intersection number
- 1. Contracting it to a point, we get a nonsingular surface; denote it by S.

If the Horikawa curve is real, the surface S acquires, in the usual way, two canonical
real structures. They are liftings of the complex conjugation of W. They differ by the
covering transformation and both can be projected to S; we also call canonical the two
resulting real structures on S.

PROPOSITION 1. Let the Horikawa curve B be real and let S be supplied with one
of its canonical real structures. Then there exists an equivariant deformation of S to a
nonsingular surface of degree 5 in RP?.

ProoF. Take a versal deformation p: L — M of S. By Horikawa’s theorem (see
[Ho, Theorem 3]), M consists of two smooth irreducible components M, and M,
ntersecting normally; dimg My = dime M, = 40, dime My N M, = 39. Points of
My \ My M, correspond to quintic surfaces and points of M, \ My N M, to coverings
of P! x P!, The standard versality arguments show that the deformation may be made
equivariant. It remains to notice that the corresponding antiholomorphic involution
does not interchange irreducible components of M (they are of different nature) and
that RAM, and RM|, as fixed point sets of an antitholomorphic involution on smooth
complex manifolds, are smooth connected manifolds; they intersect normally and

dimp M, = dimg M, = 40, dimr My N M, =39. O

2.2. A special case of Viro’s theorem. Let P be a convex polygon in R? with integer
vertices that verifies the following condition: it is contained in the triangle

A={x20,y>20,x+y <m}, m e N,

and it contains the vertices x = 0, y = m and x = m, y = 0. In the sequel, such
a polygon will serve as a Newton polygon of curves of degree m with a singularity at
the origin prescribed by the Newton polygonal line T'(P), which is, by definition, the
union of sides of P facing the origin.

Suppose that P is triangulated, that the vertices of the triangles are integer and
that some distribution of signs, «; ; = +, at the vertices of the triangulation is given,
Then there arises a naturally associated piecewise-linear curve L in RP2.

The construction of L is the following.
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Take the copies

P, =5.(P), Py =5,(P), Pxy=s(P),
Ay =sx(A), Ay =5p(A), Axy =s(4)

of Pand A, where s = s, o 53 and sy, s, are reflections with respect to the coordinate
axes. Extend the triangulation of P to a symmetric triangulation of P, = PUP,UP;, U
P, and extend the distribution of signs to a distribution at the vertices of the extended
triangulation so that it verifies the modular property: g*(a; jx'y7) = ag(; jyx'y7 for
g = Sx, Sy, and s (in other words, the sign at a vertex is the sign of the corresponding
monomial in the quadrant containing the vertex).

If a triangle of the triangulation has vertices of different signs, select a midline
separating them. If a midline comes to I'(P) at a point b, select also the segment
joining b to the origin. Denote by L, the union of the selected midlines and segments.
[t is contained in T, = AU A UA, UA,,. Glue the sides of 7. by s. The resulting
space T is homeomorphic to RP>. Take the curve L to be the image of L, in T.

A pair (T, L) is called a chart of a real plane algebraic curve A if there exists a
homeomorphism (7, L) — (RP?,RA) that maps each segment of L joining the origin
and an edge of I'( P) to the branch of 4 corresponding to this edge.

A curve A is called regular if it does not have singular points outside of the origin.

Let us introduce two additional assumptions: the triangulation of P considered is
primitive and convex. The first condition means that all triangles are of area 1/2 (or,
equivalently, that all integer points of P are vertices of the triangulation). The second
one means that there exists a convex piecewise-linear function P — R which is linear
on each triangle of the triangulation and not linear on the union of two triangles.

The following statement is a special case of Viro’s theorem [Vil, Theorem 1.4]:

PROPOSITION 2. Under the assumptions made above concerning the polygon P and
its triangulation, there exists a real regular curve A in RP* with chart (T, L).

2.3. A lemma. We say that a real curve in P? is of class H , if
(1) its Newton diagram is the pentagon II presented in Figure 1,
(ii) there are three branches corresponding to the edge BC of the diagram, they
are smooth and each of them is tangent with simple inflection to another.

FIGURE 1
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FIGURE 2

We say that a real curve in P? is of class I-NI~, if
(i} its Newton diagram is the quadrangle IT presented in Figure 2,
(i1) the truncation f gp of the polynomial f defining the curve is equal to

px(y = ax®)(y = bx¥)(y — ex?),

where y # 0, a, b, ¢ are real numbers and a, b, ¢ are pairwise different.
Curves of class H have 4 branches at the origin, three of them are smooth and
pairwise tangent with simple inflection; the same is true for that class H. (The principal
difference between these two classes is that a curve of class H is degenerate at the origin

with respect to the Newton diagram and a curve of class H is nondegenerate. )

LemMa 3. Up to a homeomorphism of the plane, each real regular curve C of class
H is equivalent to a real regular curve C of class H. Moreover, a homeomorphism may
be chosen to transform three tangent branches of C 1o three tangent branches of C.

Proor. Let o
Ox,y) = > ajjx'y’
(i.))en
be a polynomial which defines a real regular curve of class 17 and let
F(x,p) =yx(y — ax*)(y — bx¥)(y — cx?)

be the truncation of Q on BD.
Take a linear function v in two variables with integer coefficients vanishing at each
point of BD and positive at the other points of IT and put

Qjlx) = D gy e
(i jrel
+yx(y = X7 —ax)(y — x? = bx*)(y — x* —ex?) = T(x, »).
For any real 7, the curve Q; = 0 is of class H. Following the same lines as in [Vi2]
in the proof of the theorem on the smoothing of quasi-homogeneous singularities,
one verifies that for any sufficiently small positive value of ¢ there exist two radi,

r» > r. > (. such that the curve Q) = 0 is approximated
{a) inside of the disc D, of radius r| centered at the origin, by the curve

px(v = x7 —ax)(p = x? —bxH(y — x? —ex?) = 0;
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(b) outside of the disc D- of radius r, centered at the origin, by the curve Q = 0;
{¢) in the annulus D, \ Dy, by the curve T = 0.
Thus for a sufficiently small positive ¢ the curve Q; = 0 is regular and topologically
equivalent to the initial curve Q = 0 and a homeomorphism of the plane, mapping one
into another, may be chosen to transform tangent branches into tangent branches. [

2.4. The curve.

PROPOSITION 4. There exists a real regular curve of class H of the isotopy type
represented in Figure 3 (the letters a, b, c mark the three branches with common tangent).

ProOF. By Lemma 3, it suffices to realize the given isotopy type by a real regular
curve of class H .

Any convex primitive triangulation of a convex part of a convex polygon is ex-
tendible to a convex primitive triangulation of the polygon. Inside the part BK MN
of the quadrangle I1, take the convex primitive triangulation shown in Figure 4 and
extend it to I1.

FIGURE 3

FIGURE 4
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FIGURE 5

To apply Proposition 2, we need to choose signs on the vertices in II. Inside
BKMN put signs according to Figure 4, outside, use the following rule: the vertex

(i, j) acquires sign *—""if 7, j are even, and the sign “4+” otherwise.
The corresponding piecewise-linear curve L is of the required isotopy type (see
Figure 5) and Proposition 2 gives the desired result. ]

2.5. The surface.

THEOREM 5. There exists a nonsingular surface of degree S in RP* having 21 con-
nected components homeomorphic to the sphere and one component homeomorphic to
the sphere with 7 Mébius bands.

Proor. To each real regular curve of class H corresponds a Horikawa curve:
make two consecutive blowing-ups at the origin, the second one corresponding to the
direction of the tangent line / to the parabolic branches, and then contract the proper
transform of / to a point; thus we get £, and a Horikawa curve on it.

Let us start with the curve 4 constructed in 2.4. Then, applying Proposition 1, we
obtain a nonsingular surface of degree 5 in RP* homeomorphic to RS (see 2.1). The
surface RS is the real part of a nonsingular real model of the two-sheeted covering Y
of P2, ramified along 4. Choosing the appropriate real structure on Y from the two
canonical ones (namely, take the one for which RS is situated over the dark regions in
Figure 3), we get, according to Proposition 4, exactly 21 connected components home-
omorphic to the sphere and one additional component. It now suffices to note that
this component is not orientable and to calculate its Euler characteristic by retracing
blowing-ups:

r=2-142(1-2)=34+0+(1-2)=-5
{on the nonsingular model RS of R Y, the singular point is replaced by a wedge of two
circles). |
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3. Limits of the method

3.1. Known restrictions on the topological type of a real surface. We mention three
well-known results (see, for example, the survey articles [Wi, Kh3]): for a nonsingular
real projective surface X,

(a) x(RX) <h"(CX)-2(p — 1) (Comessatti inequality),
where 7 is the Euler characteristic and p is the number of linearly independent real
algebraic classes in H-(CX;R);

(b) B.(RX) < B.(CX) — 2¢ (Smith inequality),
where 8, is the rank of the total Z,-homology group and p + ¢ is the number of linearly
independent algebraic classes (not only real ones) in H,(CX;R);

(c) if B.(RX) = B.(CX), then

y(RX)=a(CX)mod 16 (Rokhlin congruence).

3.2. Application to surfaces of degree 5. If X is a nonsingular surface of degree 5,
then

h(CX)=45 f.(CX)=55 and o(CX)=-35.
Thus, according to the Smith and Comessatti inequalities, the number of components
of a surface of degree 5 in RP? is not greater than 25.

PROPOSITION 6. The real part RS of a Horikawa surface S cannot have more than
24 connected components. If the singular points of a Horikawa curve B are real, then
RS has no more than 23 components.

PrOOF. First, consider the case when the singular points are real.

Then the surface I has at least 4 independent real algebraic cycles: the inverse
image of the vertex of the cone, the inverse images of the singular points of B and the
hyperplane section. So this is also the case for S. Thus

Z(RS) =1+ 7(RS) <1+ (A"(CS)—2.3) = h"(CS) — 4 =41,
Po(RS) = (x(RS) + B.(RS))/4 < 24.

Moreover, if f)(RS) = 24, then f.(RS) = 55 and y(RS) = 41. The last combination
contradicts the Rokhlin congruence.
If the singular points are imaginary, then p > 3 and ¢ > 1. Thus
<

yRST< L4+ (A"(CS)~2-2)=43,  B.(RS) < B.(CS) —2=53
and we obtain the bound Sy(RS) < 24 again. O

3.3. Concluding remarks. A. It was conjectured by V. Arnold (see [Vi3]) that a
nonsingular surface of degree m in RP? has at most

(m* —m+3((=1)"" +1))/6
components. Viro [Vi3] showed that for any even m > 6 the conjecture is not true.
The surface constructed in the present paper provides a counter-example for m = 5
(for m < 4 the conjecture is true).

B. Real double planes RY ramified along real plane curves constructed by Itenberg
in [It] have more than (2 + 4"'(CY))/2 components. For a surface X of degree 5 in
RP

(2+n"1(CX))/2 =235,
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and one may expect that a clever direct application of Viro’s construction can give
examples of surfaces of degree 5 with at least 24 components.

C. The case of M-surfaces, f.(RX) = B,(CX), is always of particular interest.
By 3.1, an M-surface of degree 5 in RP? may have 5, 9, 13, 17, 21, or 25 connected
components. Examples with 5, 94, 13, 17, and 21 components were constructed
by Kharlamov [Kh2]. If M -surfaces with 25 components really exist, then, again
according to 3.1, they may be only of the following topological types:

481 P(2), 23SUS(HIIPI), 23STSQ)IP, 22SUS() ISP,

where S is the sphere, P is the projective plane, S(q) and P(q) are the sphere and the
projective plane with g handles. The two last types are not realizable (the fourth was
excluded by Viro, the third by Kharlamov; see [Khd]). The problem of the existence of
M -surfaces of degree 5 of the two other topological types 24S11P(2), 23STLS (1)IIP(1)
is open.

D. Taking the other canonical real structure (see 2.1) on the Horikawa surface
constructed in 2.5, one gets a surface with real part homeomorphic to SI1S (2)11.P(20).
In particular, here f; = 45 = h""!. The same value is given by M-surfaces having 5
components (see C above). It would be interesting to construct surfaces of degree 5
with larger f3.
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