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the sharpness of the second Petrovsky inequality.

1. Introduction
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ABSTRACT. The paper is devoted to the construction of counter-examples
to the Ragsdale conjecture, an old and an important conjecture in the
topology of real algebraic curves. The constructed counter-examples are
T-curves, i.e. curves which can be obtained by a combinatorial proce-
dure based on Viro’s method of construction of real algebraic varieties with
prescribed topology. T-curves are also used in the paper to obtain a classi-
fication of M-curves of degree 4! + 2 with one non-empty oval, and to show

1991 Mathematics Subject Classification. Primary 14P25 ; Secondary 14H99.

In 1906 V. Ragsdale (8] analyzing the results of Harnack’s and Hilbert’s con-
structions proposed an important conjecture on the topology of real algebraic
curves. To formulate it let us consider a real algebraic plane projective curve of
even degree m = 2k, i.e. a real homogeneous polynomial of degree 2k in three
variables defined up to multiplication by a non-zero real number. We suppose a
curve to be non-singular, which means that a polynomial does not have singular

Such a curve A has a well defined zero locus RA in the real projective plane
RP?. The set RA is a union of non-intersecting circles embedded in R.PZ. The
topological type of the pair (RP?, RA) is defined by the scheme of disposition
of the components of RA. This scheme is called the real scheme of curve A.

The real point set RA of the curve A divides the real projective plane RP?
in two parts with a common boundary RA (these parts are the subsets of RP?
where a polynomial has positive or, respectively, negative values). One of these
parts is non-orientable, we will denote it by RP2. The other one will be denoted

The topology of RP? and RP% is closely connected with the topological
type of the pair (RP?, RA). Let p be the number of connected components of

thematical Society
0 + 8.25 per page
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The question on the sharp upper bound for the numbers P, n of curves of even
degrees is still open. One can obtain an upper bound using Harnack and Petro-
vsky inequalities. However, the known examples are far from this estimation.

The counter-examples constructed in this paper are T-curves, i.e. the curves
which can be obtained by a combinatorial procedure based on Viro’s method of
construction of real algebraic varieties (see, for example, [9], [10], [12], [13], [15]).
The definition of T-curves is given in the section 2, some of their properties are
discussed in the section 7.

We give two other applications of T-curves : classification of M-curves (i.e.
curves having the maximal possible number of connected components of the
real point set for a given degree) of degree 4! + 2 with one non-empty oval (in
the section 5, see also [4]), and construction of examples of curves showing the
sharpness of the second Petrovsky inequality (in the section 6).

I would like to thank S. Akbulut, V. Kharlamov and O. Viro for the useful
discussions.

2. T-curves

Let m be a positive integer number and T be the triangle
{(z, ) €R? 220, y>0, z+y<m).

Suppose that T is triangulated in such a way that the vertices of the triangles
are integer, and that some distribution of signs, a; ; = % at the vertices of the
triangulation, is given. Then there arises a naturally associated piecewise-linear
curve L in RP?.

The construction of L is the following..

Take copies T, = sz(T), T, = sy(T), Ty = s(T) of T, where s = g O 8y
and s;, s, are reflections with respect to the coordinate axes. Extend the
triangulation of T to a symmetric triangulation of TUT,UT,UT,, and extend the
distribution of signs to a distribution at the vertices of the extended triangulation
which verifies the modular property: g* (a:z'y7) = ag(i‘j)xiyj for g = sz, sy, s
(other words, the sign at a vertex is the sign of the corresponding monomial in
the quadrant containing the vertex).

If a triangle of the triangulation has vertices of different signs, select a midline
separating them. Denote by L’ the union of the selected midlines. It is contained
in TUT; UT, UT;y. Glue by s the sides of TUT, UT, U Tyy. The resulting
space T, is homeomorphic to RP2. Let us take the curve L to be the image of
L'inT.. ‘

A pair (T, L) is called a chart of a real algebraic plane projective curve A, if
there exists a homeomorphism of pairs (T, L) — (RP?2, RA).

Let us introduce two additional assumptions ;: the considered triangulation
of T' is primitive and conver. The first condition means that all triangles are
of area 1/2 (or, equivalently, that all integer points of T are vertices of the
triangulation). The second one means that there exists a convex piecewise-linear
function T' — R which is linear on each triangle of the triangulation and not
linear on the union of two triangles.

The following statement is the special case of Viro’s theorem (13, Th. 1.4].
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RP?, and n + 1 be the number of connected components of RP? (exactly one
component of RP? is non-orientable).

The numbers p and n can be described in another way. Each connected
component of the real point set RA of a curve of even degree is called an oval. It
divides RP? in two parts. We call the part homeomorphic to a disk the interior
of the oval.

An oval of a curve is called even (resp. odd) if it lies inside of an even (resp.
odd) number of other ovals of this curve.

It is easy to see that p is the number of even ovals of a curve, and n is the
number of odd ovals.

The statement of the Ragsdale conjecture is the following : for any curve of
degree 2k
3k? -3k +2 3k? — 3k +2
—_ 4+l ——
2 2
Ragsdale also proposed the other conjecture :

p<

2 2

p—n< 3k —3k+2’ n—p+l< 3k —3k+2
2 2

So, the first Ragsdale conjecture is a statement on the maximal possible num-
ber of connected components of RP2 and RP?. The second conjecture is a
statement on the maximal value of Euler characteristic of RPﬁ and RP2.

In 1938 I. Petrovsky [7] proved the second Ragsdale conjecture (the inequal-
ities of this conjecture are called now the Petrovsky inequalities) and also pro-
posed a conjecture similar to the first one :

3k% —3k+2 3k% —3k+2
<< — Pk
pP= 3 y NS 2

In 1980 O. Viro [11] constructed curves of degree 2k with n = gf—%k-_z for
any even k > 4. These curves are counter-examples to the original Ragsdale
conjecture, but not to the conjecture of Petrovsky.

The following theorem gives counter-examples to the "corrected” Ragsdale

conjecture (or to the conjecture of Petrovsky) (see also (3], [4]).

THEOREM 1.1. For any integer number k > 1
a) there erists a non-singular real algebraic plane projective curve of degree

2k with
3k2 —3k+2 + [(k—3)2+4]

p= 2 )

(where [a] denotes the mazimal integer not greater than a),
b) there ezists a non-singular real algebraic plane projective curve of degree

2k with
3k% — 3k +2 (k—3)2+4
5 + 3 -1

The proof of this theorem will be given in the section 4.

n=
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THEOREM 2.1 (O. VIRO). Under the assumptions made above on the triangu-
lation of the triangle T', there exists a non-singular real algebraic plane projective
curve A of degree m with the chart (T, L).

A curve having the chart (T, L) is called a T-curve. This notion was intro-
duced by S. Orevkov [6].

3. Construction of Harnack curves

Recall that an M-curve is a curve having the maximal possible number of
connected components of the real point set for a given degree. Harnack (2]
proved that this maximal number is equal to @:—1%('—"—‘22 + 1 for the degree m.

In this section we will describe, using Theorem 2.1, the construction of some
M-curves (a special case of Harnack curves). This construction will play an
important role in the sections 4, 5, 6.

Let m = 2k be a positive even number, and T again be the triangle
{(z, y) €R?, 220, y>0, z+y<m}.

An integer point (4, j) of T is called even, if ¢, j are both even, and odd if not.
The following distribution of signs at the integer points of the triangle T is
called Harnack distribution :

even points get sign ”-”, and odd points get sign "+".

We use the system of notations for the real schemes of non-singular curves
suggested by Viro [11]. The scheme consisting of a single oval is denoted by the
symbol < 1 >, the empty scheme - by the symbol < 0 >. If a symbol < 4 >
stands for some set of ovals, then the set of ovals obtained by addition of an oval
surrounding all old ovals is denoted by < 1 < A >>. If a scheme is the union
of two non-intersecting sets of ovals denoted by < A > and < B > respectively
with no oval of one set surrounding an oval of the other set, then this scheme is
denoted by the symbol < AU B >. Besides, if A is the notation for some set of
ovals then a part AU ... U A of another notation where A repeats n times is
denoted by n x A; a part n x 1 is denoted by n.

PROPOSITION 3.1. An arbitrary primitive convex triangulation of T with the
Harnack distribution of signs at the vertices produces a T-curve which is an
M-curve of degree m = 2k with the real scheme

k2 — 3k k—1)(k—
k™ -k 23 up< EZDE=2) 1)2(k D55

PROOF. Let us, first, notice that the number of interior (i.e. lying strongly

inside of the triangle T) integer points is equal to ﬁ";llzﬁﬂ'—a, the number of

even interior points is equal to (lc——l—)Q(—k_—z)

3k%—-3k
5

, and the number of odd interior points

is equal to
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If an interior vertex (i, ) is even, then its star St(i, j) contains an oval of the
curve L (this oval surrounds ”-"). If an interior vertex (4,7) is odd, then one
of the symmetric copies of the star St(4,7) (namely, the copy in the quadrant
{(z,y) | sign(z) = (~1)7, sign(y) = (—=1)*}) contains an oval of L (this oval
surrounds ”+7).

We have found @;1229";2) ovals and, thus, the curve L can have only one

oval more. This oval exists, because, for example, the curve L intersects the
coordinate axes.

To finish the proof it remains to notice that the union of the segments
{z—y=-m, -m<z,y<m} U
{z<0,y=0, -m<=z,y<m} U {z=0,y<0, —-m < z,y < m}

is not contractable in T, and contains only the signs ”-”. It means that %22‘&
ovals corresponding to odd interior points and containing the sign ”+” inside of
them are situated outside of the non-empty oval. O

4. Construction of counter-examples to Ragsdale conjecture

Now we are able to describe a construction of counter-examples to Ragsdale
conjecture.

PROOF OF THEOREM 1.1. We will construct T-curves with the stated prop-
erties. Let us show, first, how to construct a curve of degree m = 2k with
p= Q’L}Sk—ﬂ + 1.

Suppose that the hexagon S shown in Figure 1 is placed inside of the triangle
T={z2>0, y>0, z+y< m} in such a way that the center of S has
both coordinates odd. Any convex primitive triangulation of a convex part of a
convex polygon is extendable to a convex primitive triangulation of the polygon.
Let us extend to T the convex primitive triangulation of S. Extend also the
distribution of signs using the Harnack distribution outside of §.

The corresponding piecewise-linear curve L has w + 1 even ovals, and
its real scheme is the following :

<3k2—3k—2 (k—1)(k—~2) -8

1
2 Qi< 2

Ul<2>>>

Suppose now that each marked hexagon presented in Figure 2 has the trian-
gulation and the signs of S. The triangulation of the union S of the marked
hexagons can be extended to a primitive convex triangulation of T. Let us fix
such an extension. Outside of S choose again the Harnack distribution of signs
at the vertices of the triangulation.

One can calculate that for the corresponding piecewise-linear curve L we have

3k% — 3k + 2
p=——+a

where a is the number of the marked hexagons, and ¢ = [(k—_%&].
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Improved Petrovsky inequalities for M-curves of degree 4l + 2 with one non-
empty oval can be rewritten (using the Gudkov - Rokhlin congruence and the
fact that p_ <1, n_ =0 in this case) as follows :

2 _ 2 _
pS3k 23k+2, n§3k . 3k

It turns out that the Gudkov - Rokhlin congruence and the improved Petro-
vsky inequalities are the only restrictions for the topology of M-curves of degree
41 + 2 with one non-empty oval.

THEOREM 5.1. Let m = 2k = 4l + 2, where | is a positive integer number.
Then for any positive integer numbers D, such that

(m —1)(m — 2)

p+n= 2

+1
satisfying the Gudkov - Rokhlin congruence and the improved Petrovsky inequal-

ities there exists a real algebraic plane projective M-curve of degree m with the
real scheme

<(p-DUl<n>>

PROOF. Let £,6 € {0,1}. Denote by H::G (resp. H_ ;) the following distri-
bution of signs at integer points :

a vertex (i, j) gets sign "+” (resp. ”-"), if i = £ mod 2, j = bémod?2,

and sign ”-" (resp. "+”) otherwise.

So, the Harnack distribution of signs, described in the section 3, is denoted
now by Hy,.

Remark that any distribution H :6 can be formulated as the Harnack one for

the appropriate quadrant of the plane (exchanging, if necessary, ”+” and 7"
Thus, Proposition 3.1 also holds true for any distribution H :6.

Let us divide the triangle T in two polygons T and 7% (where T3 is a quad-
rangle, T, is a triangle) by a segment with the following properties :

(i) the ends of the segment are odd points lying on the boundary of T,
(i) the segment does not contain integer points except the ends.

Consider an arbitrary convex primitive triangulation in each polygon T}, T
(the union of these triangulations is a convex primitive triangulation of T', be-
cause the chosen segment does not contain vertices of the triangulations except
the ends). Let us take the Harnack distribution of signs in T} and choose in T,
the only distribution H_ ¢ different from the Harnack one and compatible on the
common boundary of the polygons with the chosen distribution in T.

The arguments of the proof of Proposition 3.1 show again that the triangu-
lation and the distribution of signs described above give an M-curve with one
non-empty oval.

Let P, P, be the numbers of interior even points of T and Ty, and Ny, N,
be the numbers of interior odd points of these polygons.
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The constructed curve has the following real scheme

2 - —-2) -
—3k—2
<3_k_gu‘ 1< (k 1)(k2 2 8aUa><1<2>>>

To prove the part b) of the theorem, let us fix in addition to the triangulation
of S a triangulation of some part P of a neighbourhood of the axe OY and
the signs at the vertices of this triangulation as it is shown in Figure 3 (more
precisely, only the case k = 1 mod 4 is presented in this figure, if k Z 1 mod 4
one should change the triangulation near the point (0,m)). The chosen primitive
convex triangulation of SUP can be extended to a primitive convex triangulation

of the triangle T. Outside of SU P, let us take the Harnack distribution of signs
at the vertices of the triangulation.

For the corresponding piecewise-linear curve L

3k? ~3k+2 [(k—3)2+4}
5 +

(the case k =1 mod 4) or

3k2 — 3k + 2 [(k—3)2+4}
n = 2 + -1

(the case k # 1 mod 4). O

Recently, B. Haas [1] modified the presented construction and obtained ex-
amples of T-curves of degree 2k with

_3k2—3k+2+ k2 — 7k —10
B 2 6

5. M-curves with one non-empty oval

In this subsection we discuss a classification of the real schemes of M-curves
of degree 4! + 2 with one non-empty oval.

Let us start with two well-known restrictions for the topology of real plane
projective curves (see, for example, [14], [16]).

Gudkov - Rokhlin congruence
p—n=k*>mod8 for an M-curve of degree 2k

Improved Petrovsky inequalities

Let A be a curve of degree 2k. Denote by p_ (resp. by n_) the number of even

(resp. odd) ovals of RA bounding from the exterior the components of RP2\RA
with negative Euler characteristic. Then

3k? — 3k 2 -
p_n_S—;ig’ n_p_+15w
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One can see that for the curve obtained

p=N1+P+1, n=P +N,

To prove Theorem 5.1, we divide the triangle T by segments with the prop-
erties (i), (ii) as it shown in Figure 4 (the vertices on the axe OX have the
coordinates (k + (4i + 2), 0), the vertices on the axe OY have the coordinates
(0, k+ (4i + 2)), and the vertices on the line x + y = m have the coordinates
(k £ 4i, k F 44) with appropriate values of a non-negative integer z).

Let us take in the quadrangle OABC the Harnack distribution of signs. Now
we choose one of the distributions Hg, Hy ', in each triangle part of the subdi-
vision of T lying under the line z = y. Also, we choose one of the distributions
Hy o, Hi in each triangle part of the subdivision of T lying over the line z = y.

Finally, we choose in each part an arbitrary convex primitive triangulation
(actually, the real scheme of the resulting T-curve does not depend of this choice
of primitive triangulations). The chosen triangulation and distribution of signs
produce an M-curve with one non-empty oval. It is easy to verify that all possible
(in the sense of the statement of Theorem 5.1) pairs p, n can be realized using the
described construction. For example, to realize two extremal cases one can take
the Harnack distribution of signs in T (the case p = 3k2‘23k+2, n= (k_l)z(k_z),
a Harnack curve) or the Harnack distribution in the quadrangle OABC and
the distributions Hy, and Hy, in T\ OABC (for the opposite extremal case
p= S—M—k_lgk"” +1,n= —3’“2;3'“). O

6. Sharpness of the second Petrovsky inequality
It is well-known that the first Petrovsky inequality

3k? — 3k + 2
2

is sharp for any positive integer k. One can take, for example, a Harnack curve
of degree 2k with the real scheme

p—n<

2 _ — —
3k 2 3k ) . (K 1)2(k 2.

and contract all odd ovals. Let us explain how this contraction can be done for
T-curves described in the section 3. To contract an odd oval « in this case, one
can choose such a triangulation of the triangle 7" that the corresponding to «
interior even vertex would have exactly three neighbours, and then change the
sign of this vertex.

The sharpness of the second Petrovsky inequality
2 _
n—ptl< 3k 23k +2

is more difficult to show. A curve withn —p+1 = Ezfﬂ'—? is, evidently, a
counter-example to Ragsdale conjecture.
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PROPOSITION 6.1. The second Petrovsky inequality

2 _
nepi1< 3k 23k+2

15 sharp for any integer k > 4.
PRrROOF. To obtain the curves with

2 _
n—pt+1= 3k 23lc-+-2

for an even k > 4, one can take a curve constructed by Viro (see [11]) with the

real scheme

k2 — 3k 3k2 — 3k 4 2
< =ui< +

and contract all even empty ovals (it is possible in Viro’s construction).

Suppose now, that k is odd and k > 5, k # 7 (the case k = 7 we will consider
later). We can choose a positive number a and a non-negative number b such
that 6a + 8b + 4 = 2k. Let us consider a partition of the triangle T shown in
Figure 5, where the centers of the hexagons 51, ..., S,, Sa41, .rySat+b have the
second coordinates

3,.., 6(a—1)+3, 6(a—1) +11,..., 6(a — 1)+8+3
respectively. Suppose that the triangulation and the signs of each marked
hexagon coincide with the triangulation and the signs of the hexagon S (shown
in Figure 1). The chosen primitive convex triangulation of the union S of the
marked hexagons and of the part P’ of a neighbourhood of the axe OY can be
extended to a primitive convex triangulation of the triangle T. Moreover, this
extension can be chosen in such a way that any interior even vertex of T lying
in T\ (S U P’) would have exactly three neighbours. Now, let us put the sign
”+” at all integer points of T'\ (S U P’ ) except the even points lying on the
boundary of T', where we put the sign ”-”.
The corresponding T-curve has the real scheme

3k% -3k + 2
<(la+b)x1<2> U 1<T+—(a+b)>>

(in the case k = 9 the oval of the T-curve intersecting the coordinate axes is
shown in Figure 6).

Consider now the case k = 7. Take the partition of T shown in Figure 7.
We choose inside of the hexagon §) the triangulation and the signs of S. The
triangulation of S; and of the polygon P” with the vertices (0,5), (7,7), (8,86),
(6,5), (5,6) can be extended to a convex primitive triangulation of T in such a
way that any interior even vertex lying outside of S; and P” would have three
neighbours.

Let us take the Harnack distribution of signs at the integer points of the
quadrangle {(0,0), (0,5), (7,7),(14,0)} except the points of S; and P”. In the
triangle {(0,5), (0,14), (7,7)} we choose the distribution H{, (see section 5).

The corresponding T-curve has the real scheme <1 < 2> U1 <63>> It
rests to contract even empty ovals. It can be done changing ”-” for ”+” at the
interior even points of T\ (S; UP”). O
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7. How large is the class of T-curves ?

It is natural to pose the following question : can the real scheme of an arbitrary
non-singular real algebraic plane projective curve be realized by a T-curve of the
same degree 7

One can immediately find a trivial restriction : evidently, the empty real
scheme of a curve of an even degree cannot be realized by T-curves. We will
formulate another restriction.

Let us, first, give a necessary definition. A pair of ovals is called injective if
one oval of this pair lies inside of the other one. Denote by J the number of ovals
of a curve containing inside of them at least one injective pair.

THEOREM 7.1. For a T-curve of degree m being an M-curve the following
inequality holds

J <3m/2

To prepare the proof of Theorem 7.1 we will prove the Harnack inequality
(the number of components of the real point set of a curve of degree m is not
greater than Lﬁ:—%g—"—’_—zl + 1) for T-curves in a combinatorial way.

Take an arbitrary primitive triangulation of the triangle T' with some dis-
tribution of signs at the vertices. We will show that the number of connected
components of T, \ L is at most M"—l———gl +2.

Consider a sequence Uy, U, ... , U;, ... , where each U, is a union of some
triangles of the triangulation of T', the element U; consists of one triangle with
the side [(0;0),(1;0)], and U; is defined by induction as follows. Denote by +;
an edge of the triangulation lying on the boundary of U;_; but not on the
boundary of the triangle T (if such an edge does not exist, then U;_; coincides
with T' and the construction of the sequence is finished). Let I'; be the triangle
of the triangulation which does not belong to U;_; and has the side +;. Let v;
be the vertex of I'; which does not belong to ;. Then we take U; equal to the
union of all triangles of U;_; and of all triangles I" such that v; is a vertex of I",
and two other vertices of I' belong to U;_;.

Now, consider the symmetric copies

Uiz = s:(Ui), Uiy = sy(Us), U zy = s(Us)

of U;, where s = s; o s, and s;, s, again are reflections with respect to the
coordinate axes. Let V; = U; UU; ; UU;, UU, . Denote by C(i) the number
of connected components of T, \ L intersecting V;.

The following statements are easy to verify :

i) C(1) <3, and C(1) < 2 if all vertices of U; belong to the boundary of T,
i) CH) <CE-1)+1,
iii) C(:) < C(3 — 1), if the vertex v; belongs to the boundary of T
The number of interior integer points of the triangle T is equal to gm—_lém;z)
So, the number of connected components of T, \ L is at most ﬁm—_%ﬂ——r"l + 2.

One can obtain the statement below using the described combinatorial proof
of the Harnack inequality for T-curves.
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PROPOSITION 7.2. Let a convex primitive triangulation of the triangle T and
a distribution of signs at the vertices of this triangulation be chosen in such a
way that the resulting T-curve is an M-curve., If the star St(v) of an interior
vertez v does not intersect the boundary of T, then St(v) or one of its symmetric
copies contains an oval of the curve L.

PROOF. Let us construct a sequence Uy, ..., U, (where r = Q—nﬂ)ﬁ(ﬂﬂ -2)
as it was described in the proof of the Harnack inequality but verifying the
additional condition, that the last vertex v, coincides with v (it is possible,
because St(v) does not intersect the boundary of .

Our T-curve is an M-curve, thus C(i) should be equal to Ci—1)+1ifvis
an interior vertex. In particular, we have C(r) = C(r — 1) + 1, which means that
the star St(v) or one of its symmetric copies contains an oval of L. [J

The statement of Proposition 7.2 was, first, proved by V. Kharlamov [5] in a
different (non-combinatorial) way.

PROOF OF THEOREM 7.1. We will show that for a T-curve being an M-
curve any oval of the curve L surrounding an injective pair should intersect the
boundary of one of the triangles T, s,(T), 5y(T), s(T). It will give the proof
of the theorem, because the number of the points of intersection of L and the
boundary of these triangles is equal to 3m.

Suppose that 3 is an oval of L containing inside an injective pair and non-
intersecting the boundary of T', s.(T), s,(T), s(T). Let 8 lie, for example, inside
of T. Denote by 3, the exterior oval of the injective pair. All vertices inside of
f1 have stars non-intersecting the boundary of T. Let W be the union of the
stars of all vertices lying inside of 3; and let w be the number of interior points
of W. Then W and its symmetric copies contain at least w + 1 ovals of L (one
for each interior point of W as it was proved in Proposition 7.2, and also the
oval 31).

Consider a sequence Uy, Uy, ... » Ur described in the proof of the Harnack
inequality. Let ¢ be the minimal number such that v; lies inside of W. It is easy
to see that C(i) should be greater than C(i — 1) + 1. This contradiction proves
the theorem. O

Remark that the Theorem 7.1 gives a strong restriction on the topology of
T-curves being M-curves. One can easily construct such a family of M-curves of
ihcreasing degrees that the numbers J of the curves of this family would depend
quadratically in the degree.

The following question is open : is it true that a T-curve of degree m being
an M-curve has no more than O(m) non-empty ovals ?
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Figure 2. Partition for

part a) of Theorem 1.1
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Figure 4. Partition for Theorem 5.1
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Figuré 5. Partition for Proposition 6.1




COUNTER-EXAMPLES TO RAGSDALE CONJECTURE AND T-CURVES

Figure 6. Case k =9
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Figure 7. Case k =7




