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1. Introduction

In this paper we formulate a generalization of Descartes’ rule to the multivariate case.

Let P...., . P be real polynomials in k variables, and let Ay, ..., A, be the Newton polytopes
of these polynomials. Each polytope A; can be equipped with a distribution &; of signs at
its Integer points: a point gets the sign ("+” or ”—") of the coefficient of the corresponding
monomial of the polynomial F;, when this monomial appears in P;, and gets the sign 70" if
the corresponding monomial does not appear in the polynomial P;. A Newton polytope 4;
with a distribution of signs 6; is called a signed Newton diagram and is denoted by A;.

We associate in a combinatorial way a number n(A) to the collection A of signed Newton
diagrams A}, ..., Ay. We also introduce for any orthant m of R¥, a number n(A m). In the
univariate case, thls number for the halfline X > 0 is equal to the number of sign changes in
the list of coefficients of a polynomial.

We prove that it is always possible to construct real polynomials Q1, . . ., Qy in k variables
with the following properties.

(i) The signed Newton diagrams of @y, ..., @) coincide with A, ..., A;.
(ii) The set of common zeroes of Qy,...,Q in (C*)* is finite, and the number of real
common zeroes of @y, ..., Q in (R*)* is equal to n(A).
Furthermore, for any orthant m of R¥, there exist polynomials @, ..., Q). such that
(i') The signed Newton diagrams of @, ..., Q) coincide with A, ..., A4.
(i") The set of common zeroes of Q},...,Q% in (C*)* is finite, and the number of real
common zeroes of @, ..., Q} in an (open) orthant m is equal to n(A, m).
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The construction uses the Viro method [10], {11] (more precisely, a version proposed by
B. Sturmfels [8], which allows one to construct real complete intersections with prescribed
topology).
The following questions are natural to ask:
Is the number of real zeroes of Py, ..., P in a given (open) orthant m always at most
n(A,m) ?
Is the total number of real zeroes with nonzero coordinates always at most n(A) ?

There are two important cases where the answer to these questions is positive. In the uni-
variate case, this is the famous Descartes’ rule (see [4], [2]). If the number n(A) is equal to
the mixed volume of the polytopes Ai,..., Ak, then the answer to the second question is

also ves, according to Bernstein’s theorem [1].

2. Signed Newton diagrams and real zeroes

We consider k polynomials Py, ..., P, in k variables with real coefficients whose set of common
zeroes is finite. Let A,,..., Ay and Aq,...,A; be Newton polytopes and signed Newton
diagrams of these polynomials, respectively.

We perform the following construction (cf. [8]). Let w; be a real-valued function defined
on the set A; of integer points of A; equipped with ”+” or ”—” (not with ”0”). By taking
the lower convex hull in R¥+! of the graph of w; and then projecting each facet to R* x {0},
the function w, defines a polyhedral subdivision 7; of A;. Denote by Ay the Minkowski sum
of the polytopes Ay, ..., A; and by A the set

{ee Ay | a=a1+...+ a, wherea; € 4;}.
Let us define a function w : A — R as follows :
w(a) = min{wi(a1) + ... +wilax) | a1+ ...+ ax = a}.

Such a function w defines a polyhedral subdivision 7, of Aps. The vertices of 7, belong to
A. Each facet V of 7, has a unique representation

V=u+...+v

where v; is a face of 7;. Suppose that the functions wi,...,w; are generic: this means that
for any facet V of 7, equal to v, + ... + vg, we have

dim(V) = dim(v;) + ... + dim(vy).

A facet V = vy + ... + v of 7, is called a mized cell if dim(v;) = ... = dim(w) = 1.
Every mixed cell is affinely isomorphic to the regular k-dimensional cube. The indez of parity
p(V) of a mixed cell V = v; + ... + v is defined as follows: it is equal to the corank (over
Z/2Z) of the matrix V whose rows are composed of the coordinates modulo 2 of the vectors
v1, ..., vk (it is not difficult to see that this definition coincides with one given in [7]).

Let v; be one of the edges defining a mixed cell V. We call the edge v; alternating,
if the distribution of signs d; associates different signs to the endpoints of v;. We define a
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new k x (k + 1) matrix V by adding to V a (k + 1)-st column, taking the (i,k + 1) -th
element equal to O if the edge v; is alternating, and equal to 1 otherwise. A mixed cell V is
called contributing if rank(V) = rank(V). Let n(A,w) = £y 2°"), where V' ranges over all
contributing mixed cells of 7,,.

Example. Consider two triangles Ty, T» with vertices (2,0), (1,2), (0,1) and (2,0), (0,2),
(0, 1), respectively (see Figure 1).

Figure 1

Let A, = {(2,0), (1,2), (0,1}, (1,1)}; A2 = {(2,0), (0,2), (0,1)}. Suppose that the
points of the sets A; and A, are equipped with signs (”+” or ”—") as it is shown in Figure 1.

Consider the two functions w; : 4; — R and wy : Ay — R such that w,((2,0)) = 0,
wi((1,2)) = 3, wi((0,1)) = 3, wl((Ll)) =1, “)2((210)) =3, w2((0,2)) = 0, “)2((0)1)) =1
The corresponding mixed subdivision of the Minkowski sum of T; and T is shown in Figure 2.
It is easy to calculate the number n(A,w): in this case it is equal to 0 (there are two mixed
cells’with index of parity 1, but they are not contributing).

Consider now another pair of functions wj : A; — R and w} : A, — R such that
wi((2,0) = 3, wi((1,2)) = 0, w1 ((0,1)) = 3, wi((1,1)) = 1, wy((2,0)) = 3, wp((0,2)) = 1,
w5((0,1)) = 0. The corresponding mixed subdivision of the Minkowski sum of 7} and T is
shown in Figure 3. In this case n(A,w’) = 2 (there are two mixed cells with index of parity
(), and they are automatically contributing).

Theorem 1. There exist real polynomials Qy,...,Qx in k variables with respective signed
Newton diagrams Ay, ..., A, such that the number of common real zeroes in (R*)* of these
polynormials is equal to n(A,w).

Moreover, the polynomials @4, ..., Qk can be written down explicitly. Namely, let

QY (X) =Y xegulel) 3~ x o pnlar)
a? a;‘

where a} (resp. a;) ranges over all points of A; equipped with the sign "+ (resp. with the
sign "—"). Then for ¢ positive and sufficiently small, the number of common zeroes of the

polynomials Q1 ..., QW in (R*) is equal to n(A, w).
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Figure 2

Theorem 1 is a corollary of Viro’s theorem (see [10], [11]) adapted for the construction
of complete intersections by B. Sturmfels [8]. However, we give here a proof of Theorem 1,
which is rather easier than the proof of the general statement valid for complete intersections
of an arbitrary dimension. Theorem 1 is a slight strengthening of [7, Proposition 4.1.].

Before starting the proof of Theorem 1, let us make some definitions. To each open
orthant m of R* we associate a vector i of (Z/2Z)* in the following way: let (z1, ..., )
belong to m; then we put the i-th coordinate of 77 equal to 0 if z; > 0, and equal to 1
otherwise. We also associate to any integer point a; € A; a vector @; of (Z/2Z)* by replacing
each coordinate of a; by its parity (0 or 1).

Consider a composition of symmetries with respect to coordinate hyperplanes sending
the points of the positive orthant to the points of an orthant m. Let a,(m be the image of a
point a; under this composition. Now define the sign of a,(m) as follows :

sign(al(-m)) = (~1)%™sign(a,),

where @ - 7 stands for the scalar product (over Z/2Z) of the vectors @ and 7 and sign(a;)
stands for the sign associated by J; to a;.

Let V = v +...+wv, be a mixed cell of the subdivision 7, and let V(™ be the symmetric
copy of V' in the orthant m. Denote by a; and b; the endpoints of v; (i = 1,...,k). The
cell V™ is called alternating, if for any 4 = 1,..., k the signs sign(aﬁm)) and sign(bl(-m)) are
opposite.

Lemma 1. The number of alternating symmetric copies of a mized cell V is equal to 0 if V
is not contributing, and is equal to 2°V) if V is contributing.
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Figure 3

Proof. Let V' = v +...4v,. We can assume that every edge v; has the origin as an endpoint,
and that the sign of every v; at the origin is ”+” (translation of an edge v; or change the sign
at both the endpoints of v; preserves the property of being alternating for any symmetric
copy of V). Let us denote the endpoint of v; different from the origin by e;. The condition
that the symmetric copy VU™ in an orthant m is alternating means now that

€1 "M =&1,...,€ M = &g,

where ¢; is equal to 0 if e; has sign ”—", and is equal to 1 if ; has sign ”+”. Thus, we obtain
a system of & linear equations in k variables (the coordinates of 1) over Z/2Z. A solution of

this system exists iff rank(V) = rank(V'), in other words, iff V is contributing. The number
of solutions is equal to 2PV), where p(V) is the corank of the system. O

Let V"= v+ ...+ v; be a mixed cell of the subdivision 7,,, and let a, and b, be the endpoints
of v, A binomial system associated to the cell V is any system of k binomials of the form

X%+ G, X% =0,0=1,....k

where a; and §; are any real numbers such that sign(a,) = sign{as), sign(8s) = sign(by).
Denote by Vol(V') the volume of the cell V.

Lemma 2. A binomial system associated to a mized cell V has Vol(V) distinct zeroes in

(C*)k (cf. [5]) and ezactly one real zero in each open orthant of R* where the copy of the cell
is alternating.

Proof. Consider a system
Xobe — (_1)ety, 0=1,.. .,k
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where each v, is a positive real number, and &, is equal to 0 if the edge (ay, by) is alternating,
and is equal to 1 otherwise.
Let

log(X) = (log(zy), ..., log(zk)), arg(X) = (arg(z1),...,arg(zk))
log(| X' |) = (log(| 1 1), .-, log(] zx |))-
We have
< ap— by, log(X) > = log(ve) + eemi + 27 Nyt

where < ap — by, log(X) > stands for the scalar product over C of a; — b, and log(X) ; each
N¢ is an integer.

Remark that

<ag—bylog(| X |) > = log(ve)
and thus
<ag—bparg(X)> = em+ 21N,
All the solutions in (C*)* of the system

xor—be (_1)51,”’ { = 1,...,k

can be obtained by fixing a generic translation of V', choosing an integer point N = (NVy, ..., Ny)
in the image of V' under the fixed translation, and then finding the corresponding arg(X).

It is also clear now that the binomial system has one real zero in each orthant where the
copy of V is alternating. O

Let

‘/1 —_—U1,1+...+’Uk,1 Yy Vszvl,s+~--+vk,s
be all the mixed cells of the subdivision 7, and let a;; and b;; be the endpoints of v, ;.
Denote by B; the binomial system associated to the mixed cell V; with the coefficients of the

binomials coinciding with the corresponding coefficients of the initial polynomials P;. More
precisely, let B; be the system

g™ + figatv =0, i=1,... .k

where a;; and 3, ; are the coefficients of the monomials X% and X% of P,. Remark that
sign(a, ;) = sign(as;), sign(f;;) = sign(b;;). Denote by cﬁm) the number of solutions of B,

in an orthant m. By the previous lemma, the number cgm) is equal to 1 if the copy of the

mixed cell V; is alternating in the orthant m, and is equal to 0 otherwise.

Proposition 1. Fort positive and sufficiently small, the number of real zeroes of the system
QW(X) of polynomials
QE”(X) - Z aiXaitwi(ai)
a; €A

(where «; is the coefficient of monomial X* in the polynomial P;) in an open orthant m is

(m} (m).
equal to ¢;  + ...+ ¢cV;
the number of complez zeroes of QM (X) in (C*)* is equal to the mized volume of the polytopes
Apy A
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Proof. Let )\, : R¥ — R be the linear function coinciding with w on V; N A and let v; ;(a;) =
wi{a;) — Aj(a;) for any point a; of A;. The substitution of w; for v;; in the polynomial
QX)) = ¥, ca, X %2(e) ig the composition of the linear coordinate change

Li(zy,....zy) = (2,8, .., mthe)

(where —Ayj, ..., =\, are the coefficients of the linear function A;), with the multiplication
of the polynomial by a power of t. This operation does not change the number of common
zeroes of the polynomials in (C*)* or in any orthant of (R*)*.

Let K C (C*)* be a compact set, whose interior contains all the zeroes of the binomial
systems Vy,...,V, in (C*)*. There exists ¢, > 0 such that, for any ¢ € (0,¢,), the compact
sets L1(K), ..., Ly(K) are disjoint. It is easy to see that for any j =1,...,s,

Qgt) (Lj(Il, ...,.Z‘k)) = Eij (Bij(Il, .,.,.'I?k) + Ci(;)(Il, ...,(L‘k)) y

where B;; is the i-th polynomial of the binomial system Bj, each coefficient of the polynomial
(f‘f_,f) contains ¢ to a positive power ; each ; is a power of t. Then there exists t > 0 such
that for any t € (0,t¢,) and for any j =1,..., s, the polynomials

Qgt) (Lj(zlv ""xk))

have exactly Vol(V;) common zeroes in K and exactly cg-'") common zeroes in the intersection
of K with an orthant m.

We have shown that the polynomials Q\”(z1, ..., i) have at least Vol(V;) + . ..+ Vol(V,)
zeroes in (C*)F, and that exactly ¢ +... 4+ ¢ of these Vol(V}) + ... + Vol(V;) zeroes are
contained in an orthant m.

To complete the proof, it suffices to note that according to Bernstein’s theorem [1], the

polviiomials Q" (z1, ..., z4) cannot have more than Vol(V}) + . .. + Vol(V;) zeroes in (C*)t.00

Proposition 1, Lemmas 1 and 2 immediately give the statement of Theorem 1.

Remark. It is interesting to notice that we do not really need to apply Berastein’s theorem
at the end of the proof of Proposition 1. Moreover, as it was shown by B. Huber and
B. Sturmfels [5], Bernstein’s theorem can be proved using the combinatorial construction
described above.

The idea is to show first that for sufficiently small positive ¢, all zeroes in (C*)* of the
polynomials Qgt) (21, ..., zx) are close to the zeroes of the systems associated to the cells of the
subdivision 7,. If a cell V = v; + ... + v is not mixed, than the corresponding system does
not have zeroes in (C*)*. Thus the number of common zeroes in (C*)¥ of the polynomials
QE“(LL‘ 1y, 2¢) for sufficiently small positive  is equal to the sum of volumes of the mixed
cells. It is not difficult to see that the same property holds true for ¢ sufficiently close to 1, and
to conclude that for t = 1 the number of zeroes in (C*)* of the polynomials Q,(t) (x4, ..., Tk) is
not greater than the sum of volumes of the mixed cells.

Going back to Theorem 1, let us remark that we have also proved the following statement
{which is a particular case of [8, Theorem 5]).
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Theorem 2. If ¢ is positive and sufficiently small, then the number of real zeroes of the
polynomials
QU(X)= 3 auXx%tle) | =1,k
a; €A
(where «; 15 the coefficient of monomial X* in the polynomial P;) in an orthant m is equal
to the total number of alternating copies in m of all mized cells of the subdivision T,,.

We now define n(A,w;m) as the number of alternating copies in an orthant m of all mixed
cells of 7. Let n(A;m) (resp. n(A)) be the maximal number n(A,w;m) (resp. n(A,w))
for all possible choices of generic functions w;,...,ws. In fact, these choices are grouped
into finitely many equivalence classes: we say that two choices of generic functions w;, . . ., wy
are equivalent if they give the same subdivision 7, of Ays. There exists a one-to-one corre-
sponence between the subdivisions 7,, and convex (or regular) triangulations of the Cayley
polytope associated with Ay, ..., A (see [9]). Thus, the calculation of the numbers n(A; m)
and n(A) can be carried out once we have a list of all convex triangulations of the Cay-
ley polytope. To get such a list, one can use an algorithm due to J. De Loera [3] which
enumerates all convex triangulations of a point configuration in an affine space.

In the case of a univariate polynomial there are two orthants, numbered 0 (corresponding
to X > 0) and 1 (corresponding to X < 0). A signed Newton diagram is simply a list of
pairs of integers and associated signs, listed by increasing order of the integers. A mixed cell
is given by two consecutive integers in this list. If the difference of two consecutive integers
is even (resp. odd), the index of parity of the cell is 1 {resp. 0). The cell is contributing if
its index of parity is 0, or if its index of parity is 1 and the two corresponding integers have
different associated signs. The number n(A; 0) is the number of sign changes in the list of
associated signs.

The famous Descartes’ rule [4] states that the number of positive real zeroes of a poly-
nomial is not greater than the number of sign changes in the list of its coefficients.

The multivariate Descartes’ rule we propose is the following.

Conjecture. Suppose that k real polynomials in k variables with signed Newton diagrams
A1 .., Ay have o finite number of common real zeroes in (R*)*. Then

(1) the number of common zeroes of these polynomials in an open orthant m of R¥ is not
greater than n(A;m);

(2) the number of common zeroes of these polynomials in (R*)* is not greater than n(A)

A positive answer to the conjecture would imply the following result: if the maximal number
of monomials appearing in each of the polynomials is bounded by S, then the number of
zeroes of these polynomials in an open orthant is not greater than (S(S — 1)/2)*, and the
number of zeroes in (R*)* is not greater than (S(S ~ 1))*. A. Kushnirenko [6] conjectured
that the number of real zeroes of polynomials Py,..., P; in an open orthant is not greater
than (S; —1)...(S; — 1), where S; is the number of monomials of F;. A. Khovanskii [6]
proved that the number of real zeroes in an open orthant does not exceed (k -+ 2)5'25(5'+1)/2)
where S’ is the number of different monomials which occur in polynomials P;, i =1,...,k.

There is an important case when the second part of the conjecture stated above is true.
Namely, if one can find such functions wy, . ..,w; that all the mixed cells of the subdivision
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7, of Ay are of volume 1, then the number n(A,w) is equal to the mixed volume of the
polvtopes Aq, ..., Ay. Thus, the second statement of the conjecture in this case follows from
Bernstein’s theorem.

For example, let P, and P, be two polynomials in two variables, and let A} and A be
the Newton polygons of these polynomials. Suppose that each side of A; and A, is parallel
to one of the linesz =0,y =0, z+y =0, z —y = 0. Suppose also that each integer point of
Ay {resp. A;) corresponds to a nonzero monomial of Py (resp. P;). Then, clearly, there exist
generic functions wy and wy such that all the mixed cells of 7, are parallelograms of area 1.
Thus, the second statement of the conjecture is true for the polynomials P, and P;.

On the other hand, it is easy to find a pair of polygons A, and A, in R? such that for
any distributions of signs §; and d; at the integer points of A; and A,, the number n(A) is
Jess than the mixed area of A; and A,. For example, one can take as polygons A; and A,
the triangles shown in Figure 4. The mixed area of these triangles is equal to 5, however

n{A) < 3 for any distributions of signs 4; and 4.

[n]
a] a
—L - O—

Figure 4
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