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Abstract

We generalize the Viro method of constructing real algebraic hypersur-
faces, based on the use of convex subdivisions of Newton polyhedra, to arbi-
trary subdivisions and triangulations and show that the combinatorial hyper-
surfaces appearing from arbitrary subdivisions satisfy the same topological
restrictions (congruences, inequalities etc.) as algebraic varieties.

Introduction

The Viro method of gluing polynomials appeared to be the most powerful construc-
tion of real algebraic varieties with prescribed topology [18], [19], [22] (see also [11],
(7], 11.5, [9]). It provides a nice interaction of real algebraic geometry, toric geom-

etry and combinatorics, and gives rise to various generalizations and applications
(7], [14], [15], [16], (8], [3].

Consider the simplest example of Viro’s construction. Let Ty C R?, d € N, be
the triangle with vertices (0, 0), (0, d), (d,0),
T Td=A1U...UAN

be a triangulation with the set of vertices V C Z? and let o : V — {£1} be
any function. Out of this combinatorial data we will construct continuous plane
curves. Denote by Ty), Tf), Tf’) the copies of T; under reflections with respect to
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Figure 1:

the coordinate axes with corresponding triangulations, and define o at the vertices
of new triangulations by

0(61i,€2j) = e’isgo(i,j), (7"]) € ‘/a €1,€2 = +1.

Now in any triangle of the triangulation of Tdqu’ UTéz) UTéa), having vertices with
different values of o, we draw the mean line separating the vertices with different
signs. The union C(7, 0) of all these mean lines is a broken line homeomorphic to a
disjoint union of circles and segments. Introduce natural maps:

o T,uTPUTOUuT® - RP?, ¥ :Int(T,uTM UTP T - R,

where @ is continuous onto, identifying antipodal points on d(TyUT, 51) U Tf) U T§3)),
and ¥ is a homeomorphism. We call the curves ®(C(r,0)) € RP?, ¥(C(r,0)) C R?
as projective and affine T-curves of degree d.

The Viro theorem states that the projective (affine) T-curve of degree d is isotopic
in RP? (resp. R?) to a non-singular algebraic projective (resp. affine) curve of
degree d, providing the triangulation 7 is convez (or coherent as in [7}), i.e. there
exists a convex piece-wise linear function v : T; — R, whose linearity domains are
just A;,...,Ax. The Viro theorem, in fact, endows the combinatorial broken line
C(7,0) with a rich structure, which implies a number of restrictions to the topology
of C(7,0) (see an account of known results in [23], [12], [21], {20]).

On the other hand, there are non-convez triangulations (see the simplest classical
example in Fig.1). There are examples of T-curves beyond the range of known
algebraic curves [13], and there is some similarity T-curves and algebraic curves:
up to degree 6 all T-curves are isotopic to algebraic ones [4], T-curves satisfy some
consequences of Bezout’s theorem [5] and the Harnack inequality [6]. The natural



question arising is if any T-curve is isotopic to an algebraic curve of the same degree,
and if not, how far T-curves may differ from algebraic curves.

In the present paper, for any T-curve, we construct a complexification, i.e. an
equivariant surface in CP? or C?, whose real part coincides with the given T-curve
(flexible curve in definitions of [21]). Then we show that the topology of such
complexifications is similar to the topology of the complexifications of real algebraic
curves and deduce that arbitrary T-curves satisfy all topological restrictions known
for real algebraic curves. Similar construction and results we obtain for higher-
dimensional T-hypersurfaces in the real projective and affine spaces.

The material is organized as follows: in section 1 we describe the general con-
struction of complexification, in section 2 we study topology of T-curves, section 3
is devoted to topology of T-hypersurfaces.

1 Complexification of T-hypersurfaces

1.1 Notations and definitions

Further on the term polyhedron (polygon) means a convex polyhedron (polygon) in
R", n > 2, whose vertices have non-negative integral coordinates.

Given a polynomial
Z i in
F= Ail...inz1l et Z:l y
i

1yenstn

by A(F) we denote its Newton polyhedron, the convex hall of the set
{(il, ...,’in) € Rn . Ai1...'in # 0} .
The truncation of F on a face § of A(F) is the polynomial

6 . oLt . . oin
F° = E Ai 2y

A polynomial F € C[zy, ..., 2] is called non-degenerate, if F and any truncation F?
on a proper face § of A(F) have a non-singular zero set in (C*)" (cf. [18]).

1.2 Complexification of the moment map

Let A C R® be a polyhedron, and let pa : (C*)® — I(A) be the moment map (see
(1], [2], [7], 6.1, {10]), where I(A) is the complement in A of the union of all its
proper faces,

_ Z(il,...,in)EA 'leil...|zn|in . (’1:1, ...,in)

D irssin)ED |zl |zn]t

.....

1 n
= Q... @

pa(z1, s 2a)

Put
C(I(A)) = {(w1, -orywn) € C* ¢ (Jwil, ..., lwa]) € I(A)},
and define the complezification CA of A to be the closure of CI(A) in C".
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Proposition 2 CA is a PL-manifold with boundary and the singular set

Sing(CA) U U CA .

=1 é=an{wg=0}
dimé§<dim A—-2

The real part RA of CA is the union of A with all its symmetric copies with respect
to the coordinate hyperplanes.

Proof. Straightforward. O

Define the complex moment map by

Crp: (C) = CUI(A)), Cualzt,zm) = @1, s s @wa),  (3)

where
23

Ja

As an easy consequence of classical results we state

z; = |z, v; = i=1,.,n, T=(T1,..,Tn)

Proposition 4 The map Cu, is surjective and commutes with the complex conju-
gation Conj. It is a diffeomorphism when dim A = n. The real part of C(I(A)) is
the image of (R*)".

1.3 Complex chart of a real polynomial

Let F' € Rz, ...,2,] be a non-degenerate polynomial with Newton polyhedron
A(F) = A. The closure CCh(F) C CA of the set Cu,({F = 0} N (C*)") is
called the (complex) chart of the polynomial F, and RCh(F) = CCh(F) N RA is
called the real chart of F.

Lemma 1 The set CCh(F)\Sing(CA) is a PL-submanifold in CA\Sing(CA) of
codimension 2 with boundary on OCA. It is smooth in CI(A) and invariant with
respect to Conj. For any proper face § of A of positive dimension,

CCh(F)NCs = CCh(F?®) .
Proof. Since the smoothness of CCh(F') in CI(A) is obvious, we have to consider
only the limit behavior of CCh(F') on dCI(A).
Step 1. We start with study of transformations simplifying the original problem.

First note that the multiplication of F by z{, a > 0, translates A into A’, so one
has the commutative diagram

(C) =225 CI(a)

1 ¢

L Cra)

~—

(C)r 22



where the vertical arrow means the subtraction of azi/|zx| from the k-th coordinate.
Hence this does not influence on the statement of Lemma.

Assume that A is contained in a hyperplane H = {i, = a} C R* = {(41, ..., i)}
Denote by A’ the projection of A into R*~! = {i, = 0} C R*. Then one has the
commutative diagram

c©y 2 CI(A)
| (6)
(Cr )t x Cr XL er(Ar) x {|2] = 1}

Hence the statement of Lemma for A is reduced to that for A’.

Assume that A is contained in a hyperplane H C R* = {(41,...,in)}. Thereis a
transformation a = (a;;) € SL(Z,n) which takes H into a hyperplane i, = const.
Then the coordinate change

n
— 18k —
ZE = sz * k=1,..,n,
Jj=1

with multiplication by (2} -...-2.)?, b >> 0, takes F into a polynomial G and moves
A to some polyhedron A’. As said above, this operation does not influence on the
statement of Lemma.

Step 2. The remarks in the first step reduce the problem on the intersection of
CCh(F) with 8CI(A) to the following case: dimA = n, A lies in the halfspace
i, > a, and 6 C A is a facet (face of codimension 1) lying on the hyperplane ¢, = a.
Let p € CCh(F) N CI(6). Then

p =lim Cup(7(%)) ,

where v : (0,¢) — {F = 0} N (C*)" is an analytic curve with y(¢) tending to the
hypersurface z, =0 as ¢t — 0:

Y(@t) = (21(t), ooy 2a(t)),  2n(t) = vat + O(?), 2 = e +O(t), k=1,...,n -1,

(7)
ALy ey U1 >0, U] = .o =un] =1,
Yy all .- af{‘_"(ilvl, ey bn1Un—1, QU ) + O(*T1)
C“A(’Y(t)) = . 1i1 in—1 - 1
ta Zal * et an__l + O(ta+ )
= Cpg(Q1v1, vy Qne1Un—1,t0) + O(t) , (8)

where the sum is taken over all points (i1,...,in—1,a) € 6. Since 0 = F(y(t)) =
F¥(ayv1, .., Qp_1Un_1, tvn) + O(t**1)) and F°(aqvs, ..., @n—1Vn_1,¥s) is of order a in
t, one obtains

F¥(anv1, ..y Gin1Un_t, ton) = 0,
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which together with (8) gives p € CCh(F?).
On the other hand, assuming p € CCh(F%) N CI(6), one has

p=Cuglonvy, ..., tn-1Vn_1, anv,), oy >0, el =1, k=1, ..,n,

é
F°(0qv1, ..., n1Un—1, anvy) = 0,

which means, in particular, that (a1, ..., @n_1va_1,0) is a non-singular intersection
point of {F' = 0} with the hyperplane z,, = 0. Hence there exists a curve 7 : (0,e) —
{F =0} N (C*)" as in (7), and we show p € CCh(F) in the previous manner.

Step 3. The problem on the boundary of CCh(F) similarly is reduced to the
study of the case dim A = n by induction in n.

Let 6 be a facet of A, which is not contained in a coordinate hyperplane. Then
dim(CCh(F?) N CI(§)) = dim CCh(F) -1,

which means CCh(F*®) N CI(6) is a part of the boundary of CCh(F). If two facets
01, 62 have a common face 8, of dimension n—2, which is not contained in a coordinate
hyperplane, then CCh(F® ) and CCh(F*) have a common boundary CCh(F®) (in
CA\Sing(CA)). Hence | JCCh(F®)\Sing(CA), where § runs through all facets of A,
not lying in coordinate hyperplanes, is a manifold of dimension dim CCh(F)—1 with-
out boundary, which is the boundary of CCh(F) in the complement of Sing(CA).

Let 6 be a facet of A lying in the coordinate plane w; = 0. Since § contains a
point (0,1, ..., %), 12 - ... - in # 0, the formulae (1), (3) define a smooth continuation
of Cpp on (C*)* U ({wy = 0}\{ws - ... - wr, # 0}). The non-degeneracy of F' implies
that {f = 0} is non-singular in (C*)" U ({21 = 0}\{z2 - ... - 2z, # 0}). Hence
CCH(F) NInt(CA) is a smooth manifold without boundary, and we are done. O

Corollary 9 Ifdim A =2, A C R?, then CCh(F) is a smooth surface with bound-

ary.
1.4 Gluing and projectivization of charts
Let us be given

e the simplex T} with the vertices

0,...,0), (d,0,...,0), (0,d,0,...,0), ..., (0,..,0,d) € R ,

and its subdivision S:
T::Alu...UAN

into equidimensional polyhedra (i.e. A; N A; is empty or a common proper
face),

e aset of real numbers A = {4;, ., (¢1,...,1n) € Ty NZ"}, such that A;,_; #0
if (43, ...,4,) is a vertex of A;,; 1 <i < N.
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Assume that the polynomials
Fi(zi,onza) = D> An.i2o2dr, k=1,..,N,
(31,.,in) €A
are non-degenerate. We define the gluing of the complex and real charts of Fi, ..., Fy
by
N N
CCMS, A) = | JCCh(Fy), RCh(S,A) = | JRCM(F) .
k=1 k=1

Lemma 2 CCh(S, A) is a PL-manifold in CT}, which is invariant with respect to
Conj, and

OCCh(S, A) = CCh(S, A)n C 8CT} .

Remark 1 Neither CCh(S, A), nor RCh(S, A) are smooth in general. Indeed, for
the polynomials

Fl(xay)=$(y—x—1)’ Fg(a:,y)=:vy—a:+1

with the Newton triangles

Ar = [(L 0)’ (1’ 1)a (2’ O)]a Ay = [(Ov 0)’ (1’ 0)’ (17 1)]

uAl({F1=0})={(2+3x, r+1 : x>0},

2+ 22 2+2x)
pa(m=on = { (B2 222) s >0}

have the common limit point (1,1/2) on the edge [(1,0), (1, 1)], and different tangent
lines

the curves

fuy

3
y:(a—l)x—a+§, y=z— =

[\

at this point.

Proof of Lemma 2. We have to consider only the gluing of charts on the coordinate
hyperplanes.

Step 1. Let us translate all the polyhedra by the vector (1,...,1) and multiply
all the polynomials by 2; - ... - z,. Denote the corresponding objects by the same
symbols with an additional tilde. Introduce the following deformation of the maps
C,U:Ak, k = 1,...,N:

Cug (21, 00y 2n) = Cun, (215 2n) + (tvy, ...y tUp),

21 Zn

L v =, te0,1).

|21 |2n|

Clearly, this is a homotopy, connecting Cu,, with Cug, , for any £ = 1,..,N.

Then Cl(Cpy ({Fx = 0})), the closure of Cp,({Fi = 0}), varies from CCh(Fy) to
CCh(Fy).

v =



Since Sing(CZ&k) =0, k=1,.., N,
N ~
= | CCh(Fy)
k=1

is a PL-manifold with boundary on 8<CT‘;‘, according to Lemma 1. Denote some
faces of T" as follows:

Tk =Tr N {ix =1}, TPk, ... ﬂTd (k;)

Put § = T7. By (5)
Co = {(wr,.ywa) : (Wi, W1, Weg, ooy wn) € CT7Y, || = 1}
> CTy! x S (10)

Similarly, by (6) K, N C§ is a PL-manifold of dimension 2n — 3 with boundary on
0C9, satisfying

N
Ky NCs = (U CCh(ﬁf)) x S1, (11)
=1

where the product structure is compatible with that in (10). Using the product
representations (10) and (11), we define

Dg(k) = {(wl) "'awn) : (wla ovy We—1, Wi, "'awn) € CTL?—I, lwkl < 1}

> CTP! x D?,

where D? is the closed 2-dimensional unit ball, and inside D7(k) the (2n — 2)-
dimensional manifold

N
M(k) = {(wy, ..y wn) * (w1, .o, We—1, 1, Weg1y ooy Wy) € U(CC’h(Ff), |we| < 1}
=1

N
=~ (U CCh(f;’)) x D?
=1

with boundary on dD%(k) and such that

N
M(k)nCé = | JCCR(F') .
=1
Similarly, given 6 = T} (ky, ..., ks), we have by (5), (6)
Cs 2 CT7~* x (ST,

8



=1

N
KiNCs = (U (CCh(ff)) x (812,
and one defines

Ds(k‘l,...,k‘s) = {(wl,...,wn) : (wj)#kl k, € (CT;—S, |wk1|,...,|wk,

<1}

> CT}™* x (D),

and the (2n — 2)-dimensional manifold

.....

=1

N
= (U c0h<ff>> x (D)
=1

with boundary on 0D%(ky, ..., ks) and such that

N
M(ky, ..., k) N C5 = | JCCh(FY) .

=1

It can easily be shown that

L=cryul) U Dik,.k)

s=11<k1<...<ks

is the convex hull of (Ci? in C*, and

/cluLnJ U Mk, .. k)

s=11<k1<...<ks

is a PL-manifold in 7; of codimension 2 with boundary on 87;.
Step 2. To connect the previous picture with the original one we introduce the
following deformation of the maps Cpu,:
Cug (21, os 2n) = Cug(21, oy 2n) + (t01, ..., tU),

- v = 2n
|z1 I 3 n IZnI H)
Clearly, this is a homotopy, connecting Cu; with Cuz. Similarly, Cl(Cpuy ,({Fr =

0})), the closure of Cu,, ({Fx = 0}), varies from CCh(Fy) to CCh(F}) as t runs
from 0 to 1.

V1 t€[0,1].

Now, for any t € (0,1), in the same way one constructs similar objects:



¢ complexifications of polyhedra
N
CAke = CUCa, ((C)), €T3, = | CAwy,
k=1
e gluing of charts in CT},

Ke =] CUCpa, {F = 0})),

k=1
a PL-manifold of codimension 2 with boundary on oCT},,
e completion of CT}, up to its convex hull

'Z; = CT(?,t U U U Dz,t(klﬁ cery ks),

s=11<k1<...<k,

where
D:il,t(kla ey ks) = {(wla "'awn) : (wj)j;ékl,.‘.,k, € CT;_S, Iwk1'1 ceey Iwk,l S t}
= CI;™ x (D*(t))°
D?(t) is a disc of radius ¢,
® a (2n — 2)-dimensional manifold
Mt(kl, coey ks) = {(wl, ceey wn) :
N
(wj)j¢k1,---,ks € UCI(C:U’M({F!& = 0}))’ |wkll’ ) I'wk,l < t}

=1

~ (U CUCpg ({FF = om) x (D*(t))*

=1

e a PL-manifold

/ctuo U Mk, k) (12)

s=11<k1<...<k,

of codimension 2 in 7; with boundary on 87;.

If ¢ varies from 1 to 0, 7; contracts from 7; to CT? and the manifold (12) naturally
contracts into manifold CCh(S, .A) with boundary on 8CT}. O

Evidently, CT} is homeomorphic to the closed unit ball in C*. The group S* =
{lv|{ = 1} acts freely on 8CT? by

v e S, (21,.,2,) €ICT} = (21v,..., 2,0) € OCTY .

10



Proposition 13 The quotient CT} /S is equivariantly homeomorphic to CP™.

Proof. We shall define this homeomorphism explicitly. The composition of the
modified moment map for 77" with a homothety

d
T Lz e |20l

Cu(z1, .oy 2n) (21 oeey Zn)
defines an equivariant homeomorphism C* — Int(CT}). Consider the inverse map

o ~ ) _ (w1, ooy wy)
(Cu)™ : Int(CTG) — €, (Cp) ™ (wr, ooy wn) = d—w|— .. = Jwa|

It naturally extends up to the map
Van : CTy — CP",  v(wy, ..., ws) = (d = |w1| — ... = |wa], w1, ..., w,) .

It commutes with Conj, is surjective, and sends orbits of the S'-action on oCT}
into the points of the infinitely far hyperplane in CP*. O

Definition 1 In the previous notation, in the case A = T? we define the projective
gluing of charts as

PCCR(S, A) = v4,(CCh(S, A)) C CP" .

Lemma 3 In the previous notation, PCCh(S, A) is a PL-submanifold in CP™ of
codimension 2, invariant with respect to Conj.

Proof. We have to verify only that the quotient of CCh(S,.A) by the S'-action
on OCCh(S, A) is a closed manifold.

Let us consider the following automorphism of the torus (C*)™:

1

(Z1) o 20) = (278 27 29, o0y 27 2),

which comes from the permutation of projective coordinates in CP™ > (C*)*

oyt iUn)— (V1Yo Y2t Yn), 2= %, k=1,..,n.
0

It generates the automorphism of Z"
(il, ceey ’I,n) = (d - ’il = e T ’in, ’122, ceey Zn),

which maps T7 into itself interchanging the facet with vertices (d,0,...,0),
(0,d,0,...,0),..., (0,...,0,d) and the facet, lying in the coordinate hyperplane i; = 0.
The latter automorphism, clearly, extends up to automorphism of CT'? /S? compat-
ible with the structure of projective space. On the other hand, a neighborhood of
(0CT})/S* in CT}/S! is send by the automorphism defined into a neighborhood
of CT7(1) (in the notation of Step 1 in the proof of Lemma, 2), but we have shown
above that CCh(S, A) is a PL-manifold there, that completes the proof. O

11



2 Topology of T-curves

3 Topology of T-hypersurfaces

References

[1] Atiyah, M. F.: Convexity and commuting Hamiltonians. Bull. Lond. Math. Soc.
14 (1982), 1-15.

[2] Atiyah, M. F.: Angular momentum, convex polyhedra and algebraic geometry.
Proc. Edinburgh Math. Soc. 26 (1983), 121-138.

[3] Biran, P.: Constructing new ample divisors out of old ones. Preprint, Tel Aviv
University, 1997.

[4] de Loera, J. A. and Wicklin, F. J.: On the need of convezity in patchworking.
Preprint, University of Minnesota, 1997.

[5] de Loera, J. A.: 7?7

[6] Haas, B:. The Ragsdale conjecture for mazimal T-curves. Preprint, 1977, Uni-
versitat Basel.

[7] Gelfand, I.M., Kapranov, M.M., Zelevinski, A.V.: Discriminants, resultants
and multidimensional determinants. Birkhauser, Boston, 1994.

[8] Itenberg, I. and Shustin, E.: Singular points and limit cycles of planar polyno-
mial vector fields. Preprint, Université de Rennes I, 1997.

[9] Itenberg, I. and Viro, O.: Patchworking algebraic curves disproves the Ragsdale
conjecture. Math. Intelligencer 18 (1996), no. 4, 19-28.

[10] Oda, T.: Convez bodies and algebraic geometry. Springer-Verlag, Berlin etc,
1988.

[11] Risler, J.-J.: Construction d’hypersurfaces réelles [d’apres Viro]. Séminaire
N.Bourbaki, no. 763, vol. 1992-93, Novembre 1992.

[12] Rokhlin, V.A.: Complex topological characteristics of real algebraic curves.
Russ. Math. Surveys 33 (1978), no. 5, 85-98.

[13] Santos, F. Improved counterezamples to the Ragsdale conjecture. Preprint, Uni-
versidad de Cantabria, 1994.

[14} Shustin, E.: Real plane algebraic curves with prescribed singularities. Topology
32 (1993), no. 4, 845-856.

[15] Shustin, E.: Critical points of real polynomials, subdivisions of Newton poly-
hedra and topology of real algebraic hypersurfaces. Amer. Math. Soc. Transl.
(2) 173 (1996), 203-223.

12



[16] Shustin, E.: Gluing of singular and critical points. Topology, to appear.

[17] Sturmfels, B.: Viro’s theorem for complete intersections. Ann. Scuola Norm.
Sup. Pisa Cl. Sci. (4) 21 (1994), no. 3, 377-386.

[18] Viro, O. Ya.: Gluing of algebraic hypersurfaces, smoothing of singularities and
construction of curves. Proc. Leningrad Int. Topological Conf., Leningrad, Aug.
1983, Nauka, Leningrad, 1983, p. 149-197 (Russian).

[19] Viro, O. Ya.: Gluing of plane real algebraic curves and construction of curves of
degrees 6 and 7. Lect. Notes Math. 1060, Springer, Berlin etc., 1984, p. 187-200.

[20] Viro, O.Ya.: Real plane curves of degrees 7 and 8: new prohibitions. Math.
USSR Izvestia 23 (1984), 409-422.

[21] Viro, O.Ya.: Progress in the topology of real algebraic varieties over the last
six years. Rus. Math. Surv. 41 (1986), no. 3, 55-82.

[22] Viro, O.Ya.: Real algebraic plane curves: constructions with controlled topol-
ogy. Leningrad Math. J. 1 (1990), 1059-1134.

[23] Wilson, G.: Hilbert’s sixteenth problem. Topology 17 (1978), no. 1, 53-73.

13






-4




The Geometry Center

The National Science & Technology Research Center for \
Computation and Visualization of Geometric Structures ;

University of Minnesota
1300 South Second Street * Minneapolis, Minnesota 55454
Phone (612) 626-0888 * Fax (612) 626-7131
admin@geom.umn.edu




SCENE 0: Title COVWQ C‘FIOV) < bﬂ

Viro’s Patchworking disproves
Ragsdale’s Conjecture

SCENE I: Hilbert Problem

Voice of Hilbert:(8) "Who of us would not
be glad to lift the veil behind which the
future lies hidden; to cast a

glance at the next advances of our
science?

NZ2:(10) Are any of the 23 questions posed by
David Hilbert in his famous address to the
International Congress of mathematicians
still unsolved?

N1:(12) Yes, several. For example,
Hilbert’s 16th problem, which is concerned
with the ways that nonsingular level

sets of polynomials can be arranged in

the projective plane.

NzZ:(7) Nonsingular? The projective plane?

SCENE II: Saddle Slice

Nl:(1l4) Sorry. Let me back up.

For a polynomial of two variables, a
level set is the set of points in the
domain that is mapped up

to a certain height. Usually, these
points form a curve.

N2:(7) I see. Like representing a
hyperbola as the set of points

on which a quadratic polynomial is
constant.

SCENE III: Complicated Slice

N1:(20) Exactly. And we can consider more
complicated polynomials as well.

As we change the height or LEVEL,

then typically the level set also changes.
But the level set can change its

topology only by passing through

singular states in which some point on the
curve does not have a well-defined

tangent line.

N2:(7) So "nonsingular" means that we
don’'t consider these transitional states.

Nl:(1) That’s right.

SCENE IV: Projective Plane

N2:{5) And what about this "projective

Picture of Hilbert

Title of Compte Rendu

Title of Hilbert’s address

Show RP*2 square with ovals.
Some nested, others not.

He Lot \,ML v

Dissolve initial scene.

Show saddle surface with
intersecting plane and
corresponding level set in domain.

Dissolve previous graph and level se
Replace with complicated graph.
Begin slicing.

Animation of changing levels.

Fade out surface



plane"....

N1:(18) Algebraic geometers discovered that

it is easier to study level sets in the
projective plane. Geometrically, think

of shrinking down the entire affine plane
into a square, and then gluing together
opposite edges identified with a

twist.

N2:(12) I can see how this simplifies
things! By gluing together the opposite
edges, the two hyperbolas have joined
to become a single topological circle!

SCENE V: Highlight

N1:(9) Exactly! And notice that sometimes
the so-called ovals are nested, (PAUSE)
but sometimes they are disjoint.

N2:(2) So Hilbert’s 16th problem is...

N1:(10) ...to determine all possible
arrangements of ovals that arise as the

nonsingular level set of a polynomial... ﬁi\\\

N2:(4) ...when we think of the ovals as
sitting inside the projective plane!

SCENE VI: Mobius-Disk

Nl:(12) Very good. You're

Right again. Note that an

oval divides the projective plane into
two pieces:

the outside of the

oval is a Mobius strip...

N2: (NA) Oh, I see. Because we;ve glued the
opposite edges together with
a twist!

SCENE VII: 0Odd/Even Ovals

N1:(10) ...whereas the inside of the oval
is a disk.

We call an oval that lies inside

an even number of other ovals,

an "even oval."

N2:(9) Let me guess: ovals that lie inside
an ODD number of other ovals are called
"odd ovals"?

Nl:(1l) Naturally.

N2:(5) Why would anyone care about the
numbers of even and odd ovals?

Transform previous level set into
square model of RP"2

Highlight opposite edges.
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Trace point on hyperbola around cur:
It vanishes through the line at
infinity then reappears on the othe:
side.

Show examples of each.

Animation of changing levels
of interesting example.
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Show two pieces.

Send painted arrow through edge of
Mobius to show that it reenters RP*:
with a twist of orientation.

Highlight even ovals.

Highlight odd ovals.



N1:(17) {(Laughs) Mathematical insight, I
guess! The difference between
these gquantities is the Euler
characteristic of some region.
So these numbers are tied to the topology
of real and complex level sets in
subtle ways. T g

o

AN

SCENE VIII: Ragsdale

N2:(5) Wow! And the insightful person who
thought of this was...?

N1l:(23) Virginia Ragsdale. She graduated
from Guilford College in 1892, pursued
her PhD at Bryn Mawr, and visited
Germany to study with Felix Klein and
David Hilbert.

She conjectured a quadratic

bound on the number of positive and
negative ovals that can exist for
poiynomials of even degree.

N2:(4) So what happened with the
Ragsdale Conjecture?

N1:(11) After almost 90 years,

a counter-example was recently found
using a new method of constructing
algebraic curvesg!

N2: (1) A new methoed?

SCENE IX: Four Copies

Nl1:(14) Oleg Viro invented a combinatorial
method to build a MODEL of a nonsingular
level set. Start with the integer lattice
points in a right triangle with legs of
length d.

N2:(5) Is d still the degree of the
polynomial that we are studying?

N1l:(10) Correct. Now triangulate this
region, and then reflect it four
times to form a diamond.

N2:(6) This wouldn’t have anything to do
with the projective plane, would it?

N1l:(12) Very good! You’ve anticipated the
next step! Glue together antipodal
segments on the edge of the diamond to
form a projective plane.

N2:(8) Okay, so we have a model of the
projective plane, but how do we use
this to create a curve?

~

Highlight region bounded by
positive and negative ovals.

Picture of Ragsdale

In general,
p <= (3d"2 -6d +8)/8

Lot awd  oddd f v

d=10 ==> Max Ovals=37
Conjectured Max P=32

1lst quadrant lattice points

Triangulate and replicate

Highlight glued edges



SCENE X: Add Signs

N1l:(16) Specify either a plus sign Show signs in 1st quadrant.
or a minus sign for all of the vertices

in the first quadrant. Then extend

these signs to other quadrants by

flipping the sign of odd columns Flip into 2nd quadrant.

and odd rows. Flip into 3rd and 4th.

SCENE XI: T-Curve

N1 (cont):(11) Now, if these signs n woui, e (7
represented the value of a polynomial at X\Ll S‘SV\ .‘{& & \5}% . \/
selected points in the projective plane, (5& AQw eviw dh\ﬂu )

how would you find the level

set of ZERO for this polynomial?

N2:(5) Well, I'd separate the positive Divide one triangle.
regions from the negative regions!

N1:(11) Right! So whenever a triangle Divide all triangles.
has vertices of different signs,

draw a segment separating the positive

vertices from the negative.

N2:(13) If we do this for all of the triangles,
then we get a collection of topological

ovals! But is this connected to the

level sets we looked at before? Can

we find a polynomial corresponding to

this curve?

N1:(17) A powerful theory started by
Viro says that if the triangulation has
a property called "convexity", then we
can produce a polynomial whose level set

has the same topology as Fade out discrete model;
the piecewise linear curve that we Fade in continuous curve with
constructed! same topology

SCENE XIT: Counter-example

N2:(6) Incredible! and how did this
resolve the Ragsdale Conjecture?

N1:(14) Using this construction,

sometimes called PATCHWORKING, Ilya Display Itenberg’s triangulation
Itenberg found a triangulation and sign and curve.

distribution that provided a

counterexample to Ragsdale’s

conjecture.

N2:(2) You‘re right! There are euUew . \/
are 32 positive ovals there!
Then the story is over.

N1l:(24) Far from it! Hilbert’s 16th problem

is still unsolved, Construct octahedron...
But now we have an algorithm Triangulate interior...
that can be used to add signs to vertices..

construct examples of algebraic curves, add surface!



or even a surface inside a model
of projective three-space!

SCENE XIII: Surface

N2:(8) So any time I use Viro’s combinatorial
algorithm to produce a curve or a surface or
even a higher-dimensional object...

N1l:(8) ...you are guaranteed that you
found the topological type of a
level set of some polynomial!

N2:(4) Wow. It sounds like magic.

N1l:(5) It’'s better than magic, it’'s
mathematics!

SCENE XIV: Credits (15 seconds MAX)

Written by DeLoera/Wicklin
Voices, Music.
Software: Pisces, Geomview, StageManager

Thanks to Springer-Verlag and Guilford College

The Geometry Center

Rotate surface.

Delete coordinate planes.
Rotate till end.






