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1 Introduction

Let A be a real algebraic plane projective curve of degree m, i.e. a real homoge-
neous polynomial in three variables of degree m considered up to multiplication
by a non-zero real number. We suppose the curve to be non-singular, which
means that the polynomial does not have singular points in R® \ 0.

This polynomial has a well defined zero locus RA in the real projective plane
R P2 The set RA is a union of non-intersecting circles embedded in RP2. The
topological type of the pair (RP2, RA) is defined by the scheme of disposition
of the components of RA. This scheme is called the real scheme of curve A.

In 1900 D. Hilbert [Hi] included the following question in the 16-th problem
of his famous list : what kind of real schemes can be realized by non-singular
curves of a given degree ? The complete answer is known now only for curves
of degree not greater than 7.

To solve the problem it is necessary to work in two main directions : first,
to find the restrictions for the topological types of pairs (RP?, RA), and,
second, to give the constructions of curves for realizable real schemes. Many
deep and important results were obtained in the first direction using the modern
machinary of algebraic and differential topology (see, for example, the survey
papers [Vi 5], [Wi]). However, the methods of constructions had not been
seriously changed since the XIX century until 1980, when O. Viro proposed a
principaly new method to construct the curves (see [Vi 3], [Vi 4], [Vi 6], [Ri]).

In the present paper we discuss a special case of the Viro’s method, which
is proved to be useful and has some fruitful applications. In this case the Viro’s
method gives a possibility to construct curves using a simple combinatorial
procedure. Slight modifications of this method allow to construct different
objects like, for example, real polynomials in two variables with prescribed
collections of critical points (see [Sh]) and real polynomial vector fields in R2
with prescribed collections of non-degenerated singular points (see [It-Sh}).

I would like to thank V. Kharlamov and O. Viro for the useful comments
and discussions.



2 T-curves

2.1 Construction

Let m be a positive integer number and T be the triangle in R?
{x>0, y>0, z+y <m}.

Suppose that T is triangulated in such a way that the vertices of the triangles
are integer, and that some distribution of signs, a; ; = + at the vertices of the
triangulation, is given. Then there arises a naturally associated piecewise-linear
curve L in RP2.

The construction of L is the following.

Take copies

Tz = 5o(T), Ty =sy(T), Toy=s(T)

of T', where s = s; 05y and s, sy are reflections with respect to the coordinate
axes. Extend the triangulation of T to a symmetric triangulation of TU T, U
TyUTzy and extend the distribution of signs to a distribution on the vertices of
the extended triangulation which verifies the modular property: g*(a; jz'y?) =
ag(i,j)%'y’ for g = sz, sy and s (other words, the sign at a vertex is the sign of
the corresponding monomial in the quadrant containing the vertex).

If a triangle of the triangulation has vertices of different signs, select a
midline separating them. Denote by L’ the union of the selected midlines (see,
for example, Figure 1). It is contained in TUT, UT,UT;y. Glue by s the sides
of TUT; UTyUT,,. The resulting space T\ is homeomorphic to RP2. Take
the curve L to be the image of L’ in T,.

A pair (T, L) is called a chart of a real algebraic plane projective curve A,
if there exists a homeomorphism of pairs (T, L) — (RP2,RA).

Let us introduce two additional assumptions : the considered triangulation
of T is primitive and convez. The first condition means that all triangles are
of area 1/2 (or, equivalently, that all integer points of T are vertices of the
triangulation). The second one means that there exists a convex piecewise-
linear function T — R which is linear on each triangle of the triangulation
and not linear on the union of two triangles.

Theorem 2.1 (O. Viro) Under the assumptions made above on the triangula-
tion of the triangle T, there erists a non-singular real algebraic plane projective
curve A of degree m with the chart (T, L).

This statement is the special case of Viro’s theorem [Vi 4, Th. 1.4]. We will
not discuss a proof in the present paper. Let us just mention that the main
idea is to consider a polynomial

Qu(z,y) = Y aigaiy’tr®d)
(L9)€T

(where 14, j are integer numbers, t is a parameter, a; ; is the sign of the integer
point (i, ), and v is a convex function defining the triangulation of T') and to



remark that the projectivisation of the polynomial Q:(z,y) for sufficiently small
positive values of ¢ defines a curve with the required chart.

A curve having the chart (T, L) is called a T-curve. This notion was intro-
duced by S. Orevkov [Or1].

Theorem 2.1 gives a combinatorial way to construct the curves. One should
choose a primitive convex triangulation of the triangle T" and signs at the ver-
tices of the triangulation, and then, using the procedure described above, draw
the curve L.

Example The construction of a T-curve of degree 3 with two connected
components of the real point set is shown in Figure 1.

Let us write down a polynomial defining this curve. Take the convex
piecewise-linear function 7' — R with the values at the integer points pre-
sented in Figure 2. Then the polynomial is as follows :

3+t + ty + tx? — Ty + ty2 + 323 + t:c2y + ta:y2 + t3y3

We cannot precise an acceptable value of t. We are just able to say that for
a sufficiently small positive value of ¢ this polynomial defines our curve.

2.2 T-curves among all curves

It is natural to pose the following question : can the real scheme of an arbitrary
non-singular real algebraic plane projective curve be realized by a T-curve of
the same degree ?

One can immediately find a trivial restriction : evidently, the empty real
scheme of a curve of an even degree cannot be rea}i,zed by T-curves. We will
formulate another, more serious restriction. <~ ,/ I

Let us, first, give the necessary definitions. An M-curve is a curve having
the maximal possible number of connected components of the real point set for
a given degree. It was proved by Harnack [Har| that this maximal number is
equal to 51—":—112@—‘:31 + 1 for the degree m.

Each connected component of the real point set RA of a curve of even degree
is called an oval. It is embedded in RP? two-sidedly and divides RP? in two
parts. We call the part homeomorphic to a disk the interior of the oval.

A pair of ovals is called injective if one oval of this pair lies inside of the
other one. Let us denote by J the number of ovals of a curve containing inside
of them at least one injective pair. p

vove
Proposition 2.2 For a T-curve of degree m being an M-curve the following / +his ! ., “
inequality holds L
J <3m

This proposition has a purely combinatorial proof.
Remark that the Proposition 2.2 gives a strong restriction on the topology of
T-curves being M-curves. One can easily construct such a family of M-curves



of increasing degrees that the numbers J of the curves of this family would
depend quadratically in the degree.

There are many open questions in the subject under discussion. For exam-
ple, o

(i) how large is the class of T-curves (is it true that in a sense almost
all curves are T-curves) ?

((ii) is it true that a T-curve of degree m being an M-curve has no
ﬁmore than O(m) non-empty ovals ?

f

A statement similar to the statement of the Theorem 2.1 can be formu-
lated and be proved in any dimension. Shustin [Sh} proved that the num-
ber of connected components of T-surfaces of degree m is not greater than QUQ (l-, o
m3/6 + O(m?). However, Viro [Vi 1] constructed the surfaces of degree m with
(Tm3 — 24m? + 32m)/24 connected components for any m = 4l + 2 (I is a pos- e —H‘ QQ (
itive integer number). That means, in particular, that these surfaces are not —_—
T-surfaces.

We will give some constructions of curves using the Theorem 2.1 in the
following section. These examples show that the class of T-curves is sufficiently
rich. Subsection 3.2 is devoted to the counter-examples to Ragsdale conjecture,
subsection 3.3 - to the classification of M-curves with one non-empty oval.

3 Examples of T-curves

3.1 Construction of Harnack curves

In this subsection we will describe, using the Theorem 2.1, the construction of
some M-curves (a special case of Harnack curves). This construction will play
an important role in the subsections 3.2 and 3.3.

Let m = 2k be a positive even number, and T again be the triangle in R?
{x>0, y>0, z+y <m}.

An integer point of T is called even, if i, are both even, and odd if not.
Let us consider the following distribution of signs at the integer points of
the triangle T :

a point has the sign ”-”| if it is even, and has the sign ” 47, if it is
odd.

We will call this rule a Harnack distribution of signs.

We use the system of notations for the real schemes of non-singular curves
suggested by Viro [Vi 2]. The scheme consisting of a single oval is denoted by
the symbol < 1 >, the empty scheme - by the symbol < 0 >. If a symbol < A >
stands for some set of ovals, then the set of ovals obtained by addition of an oval



surrounding all old ovals is denoted by < 1 < A >>. If a scheme is the union
of two non-intersecting sets of ovals denoted by < A > and < B > respectively
with no oval of one set surrounding an oval of the other set, then this scheme
is denoted by the symbol < AU B >. Besides, if A is the notation for some set
of ovals then a part AU ... U A of another notation where A repeats n times

is denoted by n x A; a part n x 1 is denoted by n. 29
Proposition 3.1 An arbitrary primitive X 'angul‘gtio;z' of T with the

Harnack distribution of signs at the vertices produces a T-curve of degree m =
2k with the real scheme
2_ —1)(k -2
< E‘;_k__ﬁ_ili Ul W >>

Remark A curve with this real scheme has M%(ﬂ + 1 connected
components of the real point set. So, it is an M-curve.

Proof Let us, first, notice that the number of interior (i.e. lying strongly
inside of the triangle T') integer points is equal to gm—”l)ém—'zl, the number of

even interior points is equal to ﬁﬂék—_a, and the number of odd interior points
is equal to 5’1“-2;—3’“

Take an arbitrary even interior vertex of a triangulation of the triangle T.
It has the sign ”-”. All neighbouring vertices (i.e. the vertices connected with
the taken vertex by edges of the triangulation) are odd, and thus they all have
the sign ”+”. It means that the star of an even interior vertex contains an
oval of the curve L (the star of a vertex of the triangulation is the union of all
triangles of the triangulation containing this vertex). The number of such ovals

is equal to k=1)k=2)

2
Take now an odd interior vertex of the triangulation. It has the sign ”+”.

There are two vertices with ”-” and one vertex with ”+4” among three symmetric
images of the taken vertex under s = s; o sy and sz, sy (where s;, s, are the
reflections with respect to the coordinate axes). Consider the symmetric copy of
the taken vertex with the sign ”+4”. It is easy to verify, that all its neighbouring
vertices have the sign ”-”. It means again that the star of this copy contains
an oval of the curve L. The number of such ovals is equal to 3"22' Sk

Remark that

(k-1)(k—-2) 3k2-3k  (m—1)(m-2)
2 + 2 B 2

and, thus, we can have only one oval more.

This oval exists, because, for example, the curve L intersects the coordinate
axes.

To finish the proof it remains to notice that the union of the segments

{—y=-m, -m<z,y<m} U
{xSO, ZI:O, -msx,yﬁm} U {sz:ySO) —meL'yUSm}

is not contractible in T, and contains only the signs ”-”. It meens that 55—5—‘—35
ovals corresponding to odd interior points and containing the signs ”+” inside
of them are situated outside of the non-empty oval. e

L
05



3.2 Counter-examples to Ragdsdale conjecture

Let us consider a non-singular real algebraic plane projective curve of even
degree m = 2k. The real point set RA of this curve divides the real projective
plane RP? in two parts with a common boundary RA (these parts are the
subsets of RP? where a polynomial defining the curve has the positive or,
respectively, the negative values). One of these parts is non-orientable, we will
denote it by RP2. The other one will be denoted by RP?.

The topology of RP? and RPﬁ is closely connected with the topological
type of the pair (RP?, RA). Let p be the number of connected components of
RP2, and n + 1 be the number of connected components of RP? (exactly one
component of RP? is non-orientable).

The numbers p and n can be described in another way. An oval of a curve
is called even (resp. odd) if it lies inside of even (resp. odd) number of other
ovals of this curve.

It is easy to see that p is the number of even ovals of a curve, and n is the
number of odd ovals.

In 1906 V. Ragsdale [Ra] studing the results of Harnack’s and Hilbert’s
constructions proposed two conjectures :

2 _ 2 _
p B3k 3Kk 42
2 2
and k2 — 3k +2 3k2 — 3k + 2
p_nsi_:zi‘_j_, n_pHS_.:_é__if_

In 1938 1. Petrovsky [Pe] proved the second Ragsdale conjecture and also
proposed a conjecture similar to the first one :

3k2 —3k 42 <”3k2—3k+2

<
p— 2 7n—— 2

In 1980 O. Viro [Vi 2] constructed the curves of degree 2k with n = 35-2:23-&
for any even k > 4. These curves are counter-examples to the original Ragsdale
conjecture, but not to the conjecture of Petrovsky.

The following theorem gives the counter-examples to the ”corrected” Rags-
dale conjecture (or to the conjecture of Petrovsky) (see also [It]).

Theorem 3.2 For any integer number k > 1

a) there exists a non-singular real algebraic plane projective curve of degree
2k with

_ 3k —-3k+2 + (k—-3)2+4
- 2 8

b) there ezists a non-singular real algebraic plane projective curve of degree
2k with

2 __ 72
3k 23k+2+[(k 38)4»4]_1



Proof We will construct T-curves with the stated proprieties. Let us show,
first, how to construct a curve of degree m = 2k with p = 31‘&}’5*3 + 1.

Suppose that the hexagon S shown in Figure 3 is placed inside of the triangle
T={x>20, y>0, z+y < m} in such a way that his center has the
both coordinates odd. Any convex primitive triangulation of a convex part of a
convex polygon is extendable to a convex primitive triangulation of the polygon.
Inside of the hexagon S, let us take the convex primitive triangulation shown
in Figure 3 and extend it to T'.

To apply Theorem 2.1 we need to choose signs at the vertices in T'. Inside of
S put signs according to Figure 3, outside, use the Harnack rule of distribution
of signs (see subsection 3.1) : a vertex (4, j) gets sign 7", if 4, j are even, and
sign ”+” otherwise.

It is easy to calculate that the corresponding piecewise-linear curve L has
exactly one even oval more than the M-curve constructed in the subsection 3.1
(i.e. now p = %2—"—23—@‘—2 + 1). One can verify that the curve obtained has the
real scheme

<gﬁ1ﬁ:ﬁu1<2>U1<Q:jX&iQ—
2 2
This curve is an (M - 2)-curve (it means that the number of the connected
components of the real point set is equal to Mm_—?l -1).

4>>

Now, consider a partition of the triangle 7' shown in Figure 4. Let us take
in each marked hexagon the triangulation and the signs of S. The triangulation
of the union of the marked hexagons can be extended to the primitive convex
triangulation of T. Let us fix such an extension. Outside of the union of the

marked hexagons again shoose the signs at the vertices of the triangulation
using the Harnack rule.

One can calculate that for the corresponding piecewise-linear curve L

3k2 -3k+2
2

where a is the number of the marked sextagons, and

a:[(k—3)2+4]

p—_—-

8
The curve constructed has the following real scheme

2 _ 3k _ - -
< 8k—2a 1 cosur < B2 DE=D)

2 2 —d4g >>

To prove the part b) of the statement of the theorem, let us take again the
partition of the triangle T shown in Figure 4 with the triangulation and the
signs of each marked sextagon coinciding with the triangulation and the signs
of §. Fix, in addition, a triangulation of some part P of a neighbouhood of
the axe OY and the signs at the vertices of this triangulation as it shown in



Figure 5 (more precisely, only the case k = 1 mod 4 is presented in this figure, if
k # 1 mod 4 one should change a little the triangulation near the point (0, m)).
The chosen primitive convex triangulation of the union of the marked hexagons
and of the part P can be extended to a primitive convex triangulation of the
triangle T'. Outside of the union of the marked hexagons and of the part P, let
us shoose again the signs at the vertices of the triangulation using the Harnack
rule.
For the corresponding piecewise-linear curve L

2 _ _2\2
o 3k 23k+2+[(k :;)+4]

(the case k = 1 mod 4) or

2 _ 2
o 3k 23k:+2+[(k :;)+4]_1

(the case k Z1 mod 4). o

Recently, B. Haas [Has| constructed examples of T-curves of degree 2k with

p:

3k2—3k+2+ k2 —3k—6
2 6

3.3 M-curves with one non-empty oval

Recall that an M-curve is a curve with the maximal possible number of con-
nected components of the real point set for a given degree. This maximal
number is equal to _(Mlzm_—Zl + 1 for the degree m.

In this subsection we discuss a classification of the real schemes of M-curves
of the degree 2k = 4l + 2 with one non-empty oval.

Each non-singular curve of even degree with one non-empty oval has the
real scheme

<p—1lUl<n>>

Restrictions

We need to use here two well-known restrictions for the topology of real
plane projective curves (see, for example, the survey articles [Vi 5], [Wi}).

Gudkov - Rokhlin congruence

p—n=k?mod8 for an M-curve of degree 2k

Improved Petrousky inequalities

Let A be a curve of degree 2k. Denote by p_ (resp. by n_) the
number of even (resp. odd) ovals of RA bounding from the exterior



the components of RP?\ RA with the negative Euler characteristic.

Then
3k% — 3k + 2 3k? -3k +2
p—n_S———————-———-—l-——, n—P—+IS——+
2 2
Remark that p_ < 1, n_ = 0 in the case of curves with one non-empty

oval, and the improved Petrovsky inequalities give the following ones :

3k -3k +2 <3k2—3k+2

<
p-— 2 7n— 2

It is easy to see, using the Gudkov - Rokhlin congruence, that for M-curves
with one non-empty oval, the second inequality can be improved by 1 :

2-——
n$3k23k

Construction

The following theorem states that there is no other restristions (except the
Gudkov - Rokhlin congruence and the improved Petrovsky inequalities) for the
topology of M-curves of degree m = 4l + 2 with one non-empty oval.

Theorem 3.3 Suppose that m = 2k = 4l + 2, where | is a positive integer
number. Than for each positive integer numbers p,n such that

(m —1)(m —2)
) +

satisfying the Gudkov - Rokhlin congruence and the improved Petrovsky inequal-

ities there exists a real algebraic plane projective M-curve of degree m with the
real scheme

p+n= 1

<p-—-1lUl<n>>

Proof Recall that the Harnack distribution of signs in the vertices of a
triangulation is the rule :

a vertex (i, j) gets the sign ”-”, if i, j are both even, and it gets the
sign ”+” in the opposite case.

Let us call the inverse Harnack distribution of signs the following one :

a vertex (4, j) has the sign ”-”, if i, j are both odd, and has the sign
”4+” in the opposite case.

Remark that the inverse Harnack distribution of signs can be formulated as
the Harnack one for the 3-rd quadrant of the plane exchanging ”+” and ”-” :

an integer point (¢, j) of the 3-rd quadrant gets the sign ”+”, if 1, j
are both even, and it gets the sign ”-” in the opposite case.
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Thus, Proposition 3.1 is also true for the inverse Harnack distribution.

Let us divide the triangle T in two polygons T} and T» (T} is a quadrangle,
T>» is a triangle) by a segment with the following properties :

(i) the ends of the segment lie on the boundary of T' and are odd

. I ' K
integer points, /’

(ii) the segment contains no integer points except the ends.

Consider an arbitrary convex primitive triangulation in each polygon T}, T3
(the union of these triangulations is a convex primitive tirangulation of T', be-
cause the chosen segment does not contain vertices of the triangulations except
the ends). We can choose the Harnack distribution of signs in 7} and the inverse
Harnack distribution of signs in T, (these distributions are compatible on the
common boundary of the polygons due to the assuptions on the segment).

The arguments of the proof of Proposition 3.1 show again that the triangu-
lation and the distribution of signs described above give an M-curve with one
non-empty oval.

Compute the number of even ovals of this curve. Let P;, P be the numbers
of interior even points of 77 and T%, and N;, N, be the numbers of interior odd
points of these polygons.

It is easy to see that for the curve obtained Poin = 47' -
p=Pi+N2+1, n=N+P, Q\fnxf\j)"
Remark The Gudkov - Rokhlin congruence has a nice corollary: /\‘,\; .- P ’

P T, are congruent modulo 4.

To prove Theorem 3.3 it is enough now to divide the triangle T' by the seg-
ments with the described properties in sufficiently many parts and to choose in
each part an arbitrary convex primitive triangulation with an appropriate dis-
tribution of signs (the Harnack one or the inverse Harnack one) at the vertices.
In the case m = 2k = 4l + 2 a required partition of T is shown in Figure 6 (the
vertices on the axe OX have the coordinates (k+ (4i +2), 0) the vertices on the
axe OY - the coordinates (0, k+(4i+2)), and the vertices on the linez+y=m
- the coordinates (k =+ 41, k F 4i) with appropriate values of a non-negative in-
teger i). It is easy to verify that all possible (in the sense of the statement
of Theorem 3.3) pairs p,n can be realized using this partition. For example,
to realize two extremal cases one can take the Harnack distribution of signs in
T (the case p = ;3""’—, n= gk;lzék—'—z - a Harnack curve) or the Harnack
distribution in the quadrangle OABC and the inverse Harnack dlstrlbutlon in
T\ OABC (the opposite extremal case p = g——_—-mk——-—l +1, n= 3k? _3")
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