TOPOLOGY OF T-SURFACES

ILia ITENBERG

ABSTRACT. The paper is devoted to surfaces which can be obtained using a simple
combinatorial procedure called the T-construction. The class of T-surfaces is suf-
ficiently rich: for example, we construct T-surfaces of an arbitrary degree in RP3
which are M-surfaces. We also present a construction of T-surfaces in RP3 with
dim Hi(RX;Z/2) > h'''(CX), where RX and CX are the real and the complex
point sets of the surface.

1. INTRODUCTION

The subject of the paper is T-surfaces, i. e. real algebraic surfaces which can be
constructed in a simple combinatorial fashion : one can patchwork them from the
pieces which essentially are planes.

The construction of combinatorial patchworking (or T-construction) works in
any dimension. We restrict ourself here by the case of surfaces. The general T-
construction can be formulated in a completely similar way (the combinatorial
patchwork construction in the case of curves is described in [I-V], [I1], [I2]). The
T-construction is a particular case of the Viro theorem (see [V2], [V3], [V5], [V6],
[Ri]).

The results on topology of T-surfaces presented in the paper are concentrated
around the following conjecture proposed by O. Viro ([V4]) : let X be a nonsingular
simply connected compact complex surface with an antiholomorphic involution
¢: X — X; then dim H1(RX;Z/2) < hM1(X), where RX is the fixed point set of
the involution c.

This conjecture is related to Ragsdale conjecture (see [Ra]) concerning the topol-
ogy of real algebraic curves. To formulate the Ragsdale conjecture, let us denote

the number of even ovals of a nonsingular real algebraic plane projective curve of
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2 ILIA ITENBERG

degree 2k by p (an oval of a nonsingular curve of an even degree is called even (resp.
odd), if it lies inside of even (resp. odd) number of other ovals of this curve), and

denote the number of odd ovals by n.

Ragsdale conjecture. For a nonsingular real algebraic plane projective curve of
degree 2k
3k? -3k +2 <3k2——3k

9 » P>

p<

Any counter-example to the inequality p < -3-&2:-2—% produces a counter-example
to Viro’s conjecture: one can take a double plane ramified along the complex point
set of a counter-example to Ragsdale conjecture with appropriate choice of a lifting
of the involution of complex conjugation. Thus, the counter-examples to Ragsdale
conjecture obtained in (I1] (see, also, [I2], [I-V]) show that Viro’s conjecture is not
true. The counter-examples to Ragsdale conjecture are constructed as T-curves.
So, it is natural to try to use the combinatorial patchwork construction in order to
construct counter-examples to Viro’s conjecture which are real algebraic surfaces
in RP3.

We show in sections 3 and 4 that under some conditions of ”maximality” of
the triangulation participating in the combinatorial patchwork construction, Viro’s
conjecture is true for the resulting T-surfaces. However, using a ”nonmaximal”
triangulation (see exact definitions in section 2), we can obtain a T-surface X in
RP? with dim H (RX;Z/2) > h'"1(CX) (see section 6).

We also construct T-surfaces of any degree in RP? which are M-surfaces (it
means that the total Z/2-homology group of the real point set has the same rank

as that of the complexification; see section 5).

I would like to thank V. Kharlamov and O. Viro for the useful discussions.

2. T-CONSTRUCTION

Let m be a positive integer number (it would be the degree of the surface un-
der construction) and T be the tetrahedron in R?® with vertices (0,0, 0), (0,0, m),
(0,m,0), (m,0,0). Let us take a triangulation 7 of T with vertices having integer
coordinates. Suppose that a distribution of signs at the vertices of 7 is given. The

sign (plus or minus) at the vertex with coordinates (3,7,!) is denoted by é; ;.
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Take copies

T, = so(T), T, = s,(T), T = s.(T)
Tpy =83 08y(T), Tur=5508,(T), Ty =5y08,(T) ,Tyy, =8508y08,(T)

of T', where s;, s, s, are reflections with respect to the coordinate planes. Denote

by T, the octahedron
TUTL,UTL,UT, UTy UT,, UT,, UTyy..

Extend the triangulation 7 to a symmetric triangulation of T, and the distribution
of signs ¢; ;; to a distribution at the vertices of the extended triangulation by the
following rule: passing from a vertex to its mirror image with respect to a coordinate
plane we preserve its sign if the distance from the vertex to the plane is even, and
change the sign if the distance is odd.

If a tetrahedron of the triangulation of T, has vertices of different signs, select
a piece of the plane (triangle or quadrangle) being the convex hull of the middle
points of the edges having endpoints of opposite signs. Denote by S the union
of the selected pieces. It is a piecewise-linear surface contained in 7T,. Glue by
Sz 0 8y, 0 s, the facets of T,. The resulting space T is homeomorphic to the real
projective space RP3. Denote by S the image of S in T.

Let us introduce an additional assumption: the triangulation 7 of T is conver.
This means that there exists a convex piecewise-linear function v : T' — R whose

domains of linearity coincide with the tetrahedrons of 7.

Theorem 2.1 (O. Viro). Under the assumptions made above on the triangulation
7 of T, there exist a nonsingular real algebraic surface X of degree m in RP2 and

a homeomorphism RP® — T mapping the set of real points RX of X onto S.

Moreover, a polynomial defining the surface X can be written down explicitly:
if t is positive and sufficiently small, the polynomial
Z 8 juzhalwhry T I D
(i,5,H)ev

(where V is the set of vertices of 7) defines a surface with the properties described

in Theorem 2.1.
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We consider two special types of triangulations of T. A triangulation 7 of T
is called primitive if all the tetrahedrons of 7 are of volume 1/6. A T-surface
constructed using a primitive triangulation is called primitive.

A triangulation 7/ of T is called mazimal if all the integer points of T' are vertices
of /. Clearly, any primitive triangulation is maximal. The notions of primitive
and maximal triangulations coincide in dimension 2. The situation is different in

dimension 3 : there exist maximal triangulations of T' which are not primitive.

3. EULER CHARACTERISTIC OF T-SURFACE

Let us consider a k-dimensional simplex @ having vertices with integer coordi-
nates and belonging to the orthant {x; > 0} of R™. We call the simplex @ elemen-
tary if the reductions modulo 2 of the vertices of @ are independent (generate an
affine space of dimension k over Z/2).

Suppose that a distribution of signs at the vertices of the simplex @ is given.
Let us take the distributions of signs at the vertices of the symmetric copies of Q

using the following generalization of the rule formulated in section 2 :

the symmetric copy of a vertex a in an orthant b gets the sign (—l)a'gsign(a),
where @ is the reduction modulo 2 of the vertex a ; the i-th coordinate of
the vector b in (Z/2)" is equal to 0 (resp. to 1) if &; > 0 (resp. z; < 0) for
a point (z1,...,,) in the interior of the orthant b; and & - b denotes the

standard scalar product of two vectors in (Z/2)".
We call a symmetric copy of @ nonempty if it has vertices of different signs.

Proposition 3.1. If the simplex Q is elementary and does not belong to a coordi-

nate hyperplane, then Q has exactly 2™ — 2% nonempty symmetric copies.
Proof. Let us, first, remark that the map a@ — a- b is linear over Z /2. The following
operations do not change the property of any symmetric copy of @ to be nonempty:

(1) parallel translation of @,
(2) changing of signs at all the vertices of Q.

Thus, we can suppose that the reduction @y modulo 2 of a vertex vo of @Q is 0

in (Z/2)", and that the vertex vy has the sign ”4”. Denote the other vertices of
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@ and their reductions modulo 2 by vy,...,vx and #4,... , Uk respectively. The
condition that the copy of @ in an orthant b is empty (i. e. is not nonempty) can

be expressed by a system of linear equations

Fi-b=€1, ... Tk b=ex,

where ¢; = 0 if the sign of the vertex v; is positive, and €; = 1 if the sign of v; is
negative. The unknowns of the system are the coordinates of b. A solution of the
system does exist because the rank of the system is equal to k (the simplex @ is
elementary). Moreover, the dimension of the space of solutions is equal to n — k.
It means that the number of solutions is equal to 2*~*, another words, the simplex

Q has exactly 2” — 2% nonempty copies. [

Proposition 3.1 is similar to Lemma 1 in [I-R].

Now we are able to calculate the Euler characteristic of a primitive T-surface.

Theorem 3.2. If X is a primitive T-surface in RP3, then the Euler characteristic
x(RX) of the real point set of X is equal to the signature o(CX) of the complex

point set of X. Another words, if X is a primitive T-surface of degree m in RP3,

then
m3  4m
RX)= —— 4 —.
x(RX) 5 T3

Proof. Let us take an arbitrary primitive triangulation 7 of the tetrahedron T and
an arbitrary distribution of signs at the integer points of T. The piecewise-linear
surface S has a natural cell subdivision: each cell is the intersection of § with a
simplex of the triangulation of T.

All the simplices of 7 are elementary. The number of simplices of 7 of any
dimension is fixed (the number of simplices of any dimension contained in each face
of T is also fixed). Thus, we can calculate the Euler characteristic of S according
to Proposition 3.1.

The triangulation 7 contains

m3 tetrahedrons,

2m3 + 2m? triangles, and 4m? of them are contained in the facets of T,
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7m3/6 + 3m? 4+ 11m/6 edges, 6m? of them are contained in the facets of T,
and 6m of them are contained in the edges of T,

(m + 1)(m + 2)(m + 3)/6 vertices.

We obtain that the described cell subdivision of S contains 7m? two-dimensional
cells, 12m3 edges and 14m3/3 + 4m/3 vertices. Thus,

m3  4dm

xRX)=—-—+—=0(CX). O
3 3
Theorem 3.3. If X is a T-surface constructed using a mazimal triangulation of

the tetrahedron T, then x(RX) > o(CX).

Proof. Let us, first, remark that all simplices of dimension < 2 of a maximal trian-
gulation 7/ of T are elementary. Denote by q the number of tetrahedrons of 7/. If
any tetrahedron of 7/ is elementary than, repeating the calculation of the proof of
Theorem 3.2, we obtain x(S) = 2m3/3 — q + 4m/3.

Each nonelementary tetrahedron of 7/ has at least 6 nonempty copies, because
the rank of the corresponding system of linear equations (see the proof of Proposi-

tion 3.1) is equal to 2. Thus,

~ 2m3 4m
x(RX) = x(S5) > - —q+T—q’,

where ¢’ is the number of nonelementary tetrahedrons of 7/. It remains to remark
that ¢ + ¢’ < m?, and we obtain

m3  4m

X(RX) 2 ——+— =0(CX). O

CASE OF PRIMITIVE OR MAXIMAL TRIANGULATION

As we saw in section 3, the Euler characteristic of a primitive T-surface in RP3
is determined by the degree and is equal to the signature o(CX) of the complex
point set of the surface.

For a real algebraic surface X (or, more generally, for a real algebraic variety of

any dimension), we have Smith inequality (see, for example, [Wi]) :

b.(RX) < b.(CX)
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between the ranks of total Z/2-homology groups of the real and of the complex
point sets of X. If b,(RX) = b,(CX), the surface X is called an M-surface. We
denote by b;(Y) the rank of i-th homology group of Y with Z/2-coefficients.

Let us mention two congruences (see [Wil).

Rokhlin congruence. If X is an M-surface, then

x(RX) = ¢(CX) mod 16.

Kharlamov-Gudkov-Krahnov congruence. If X is an (M-1)-surface (another

words, if b.(RX) = b.(CX) —2), then
x(RX) = ¢(CX) + 2mod 16.

Rokhlin congruence and Theorem 3.2 show that we can expect to construct prim-
itive T-surfaces which are M-surfaces. We will see in section 5 that such surfaces do
really exist in any degree. On the other hand, there are no (M-1)-surfaces among
primitive T-surfaces in RP? according to Kharlamov-Gudkov-Krahnov congruence

and Theorem 3.2.

Theorem 4.1. If X is a primitive T-surface in RP® then
bi(RX) < hPH(CX), bo(RX) < h2(CX) + 1.

Remarks. Theorem 4.1 states that Viro’s conjecture holds in the case of
primitive T-surfaces.

The inequality bo(RX) < h%°(CX) + 1 for primitive T-surfaces was proved by
E. Shustin in [Sh.

Proof of Theorem 4.1. Using the Smith inequality
b (RX) < b, (CX) =m3 — 4m? + 6m
(where m is the degree of X)) and the equality

3
4
X(RX) = 0(CX) = - + =
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proved in Theorem 3.2, we immediately obtain

3

bi(RX) < hMHCX) = 2% —2m? + 7—3@
and
3 11
bo(RX) < h29(CX) +1 = % —m?+ —6’3 O

Viro’s conjecture also holds in the case of T-surfaces constructed using maximal

triangulations. i
_No chase

to
o]

Theorem 4.2. If X is a T-surface constructed using a mazximal triangulation of

the tetrahedron T, then

e e o oo e T i s i e e e i e

b
bi(RX) < hMH(CX). ?ﬁ?f;@
y e —'—l—/—‘“——--—’w“ ‘['_‘O \/ N2 C'/ E
Proof. The Smith inequality and the inequality x(RX) > o(CX) proved in Theo- (Dnyr( Lo
rem 3.3, give again the desired inequality o {'\/\ (/VU,/
A “]’(’A/( O v

by(RX) < M (CX). O porels

5. M-SURFACES

We describe, first, a special primitive triangulation p of T' suggested by O. Viro.
We show that the T-construction using the triangulation p and an appropriate dis-
tribution of signs at the integer points of T' gives an M-surface of degree m in RP3.
In fact, the surfaces given by the procedure described below are homeomorphic to
ones constructed (not as T-surfaces) by O. Viro in [V1].

Let us divide the tetrahedron T by the planes z = [, and denote by P, the polytop
{(z,y,2) €T : 1<z<1+4+1, 1=0,...,m—1}.
Choose an arbitrary primitive convex triangulation of each triangle
T;=Tn{z=1}, 1=0,..., m—1

(a triangulation of the triangle 7T} is called primitive if all its triangles are of area

1/2, or, equivalently, if all the integer points of T} are vertices of the triangulation).
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Each polytop P, is triangulated as follows. If | is even, take the join J; of the
side of T} lying in the zz-coordinate plane and of the side of Tj; lying in the plane
T+ y+ 2z =m. If| is odd, take as J; the join of the side of T} lying in the plane
z 4y + z = m and of the side of Tj;1 lying in the z2-coordinate plane. The join J

is naturally triangulated into the joins of segments

((4,0,0),G+1,0,D], [(m—-(1+1)—451l+1),(m—(U+1)—(G+1),7+1,1+1)],

i=0,...,m—1-1, j=0,...,m—1-2
if [ is even, and J; is triangulated into the joins of segments

(m—=1-34,5,0),(m—1-(G+1),7+1,D], [(50,1+1),(¢+1,0,1+1)],

i=0,..., m—1-2 5=0,...,m—1-1

if | is odd.

The polytop P, is the union of J; and of two tetrahedrons. These tetrahedrons
can be triangulated into the cones over the triangles of the chosen triangulations of
T; and of Tj4;.

Clearly, the described triangulation p of T is primitive and convex. Let us choose

a following distribution of signs at the integer points of T :

a point (4,7,1) gets the sign ”+” ifi = j = | = Omod 2 or
I = 1 mod2andij = 0mod2;

”n "

and it gets the sign otherwise.

Proposition 5.1. A T-surface X constructed using the triangulation p and the
distribution of signs described is an M-surface. The real point set RX of X is
homeomorphic to the disjoint union of st —m? + HT"‘ — 1 spheres and a sphere
with ﬂsi —m?+ -76—m handles if m is even or a projective plane with st —m2+ 1'—"6_—3

handles if m is odd.

Proof. It is easy to verify that any integer point r lying strongly inside of T has a
symmetric copy s(r) with the following property : all the neighbouring vertices of
s(r) (i. e. vertices connected with s(r) by an edge of the triangulation) have the

same sign, and this sign is opposite to the sign of s(r). It means that the surface
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S has a connected component homeomorphic to a sphere contained in the star of
s(r).

We found % —m?4Un ] = h2:9(CX) components of §. There is at least one
component of S more, because the surface S intersects the coordinate planes. On
the other hand, according to Theorem 4.1, the number of connected components
of RX does not exceed h*>°(CX) + 1. Thus, the real point set RX has exactly
h?%(CX) + 1 connected components.

Using the equalities

x(RX) = o(CX), bo(RX) =h*°(CX) +1,
we get b, (RX) = b,(CX), i. e. X is an M-surface. Furthermore,
b (RX) = h"1(CX),

and, thus, the topological type of RX coincides with one described in the statement

of Proposition. O

6. COUNTER-EXAMPLES TO VIRO’S CONJECTURE

We saw in section 4 that Viro’s conjecture is true for T-surfaces constructed
using a maximal triangulation. Surprisingly enough, a nonmaximal triangulation
of T can produce a T-surface X in RP? with b;(RX) > hV1(CX).

Let us describe, first, the construction of an extension of a triangulation of the
triangle Top = T N {z = 0}.

Suppose that m is even and that a primitive triangulation 7o of Tp with the
vertices having integer coordinates is given. Divide the tetrahedron T into two
parts TN {z > 2} and T N {z < 2} by the plane z = 2. Take in the first part the
triangulation coinciding with the triangulation p described in the construction of
M-surfaces.

Divide now the second part T N {z < 2} by the plane z + y + kz = m (where
m = 2k) into the tetrahedron T with vertices (0,0,0), (m,0,0), (0,m,0), (0,0,2)
and the cone C with the vertex (0, 0, 2) over

{(z,9,2) €T : z+y+2z2=m, 0<2< 2}
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To triangulate the tetrahedron T, we take the cones over all the triangles of 7o,
and subdivide (in the unique possible way) the cones containing integer points of

the plane z = 1 in order to obtain a maximal triangulation of T.

To describe the triangulation of the cone C, let us consider the cone C with the
vertex (k 4+ 1,0,1) over the triangle TN {z + y + k2 = m}. The rest of the cone C
is divided into two parts by the plane z = 1. Denote the lower part (contained in
Cn{0< z<1}) by Co, and denote the upper part (contained in CN {1 < z < 2})
by C.

The triangulation of the triangle TN {x +y+ kz = m} is already fixed (it comes
from the triangulation of T'). Thus, we can triangulate the cone ¢ by the cones with

the vertex (k4 1,0, 1) over the triangles of the triangulation of TN{z+y+kz = m}.

Subdivide Cy taking the cone C’ with the vertex (0,m,0) over the facet of Co
belonging to the plane z = 1, and the join J’ of segments [(m, 0,0), (0, m,0)] and
[(k+1,0,1),(m~1,0,1)]. Let us choose an arbitrary primitive convex triangulation
of the quadrangle Co N {z = 1}. It gives a natural primitive triangulation of C’
(taking the cones over the triangles of the chosen triangulation of Co N {z = 1}).
The join J’ is triangulated by the joins of segments [(m— 3, ,0), (m—j—1,j+1,0)]
and {(4,0,1), (i + 1,0,1)] (wherei =k +1,... , m—2;j=0,...,m—1).

It remains to triangulate the part C;. Subdivide C} into the join of segments
[(m —1,0,1),(0,m — 1,1)] and [(0,0,2), (m — 2,0,2)] (triangulated by the joins of
segments [(m — 7 — 1,5,1),(m —j — 2,7 + 1,1)] and [(3,0,2), (i + 1,0, 2)], where
i=0,..., m—3;j=0,...,m—2) and the naturally triangulated cones : with the
vertex (0,0,2) (resp. (0,m — 1,1)) over the quadrangle Cy N {z = 1} (resp. over
the triangle To = T N {z = 2}).

The described maximal triangulation of T is called the extension of the triangu-

lation 79 and is denoted by ext(7o).

It is easy to see that if 7o is convex then ext(rp) is also convex. Almost all
tetrahedrons of ext(rp) are of volume 1/6. The only tetrahedrons of a greater
volume (more precisely, of volume 1/3) are the cones with the vertex (0,0, 2) over
the odd triangles of 79 (we call a triangle of 7o odd if it does not have a vertex with

the both even coordinates).
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Suppose now that a distribution &y of signs at the integer points of Tp is given.
Let us describe a distribution ext(dg) of signs at the integer points of T' which we
call an extension of 6. In the part T N {z > 2} we take the distribution of signs
described in the construction of M-surfaces. It remains, thus, to fix a distribution

of signs at the integer points of TN {z = 1}. We do it as follows:

take an arbitrary distribution in TN {z =1} N {z + y < k},

all the integer points of the segment [(k, 0, 1), (0, k, 1)] but the point (0, k, 1)
get the sign ”-",

for the other points of T} we apply the rule : a point (i,7,1) gets the sign

"." if ¢ and j are both odd, and the sign ”+” otherwise.

Let us take a triangulation 7¢ and a distribution 6} of signs at the integer points of
Ty producing a counter-example to Ragsdale conjecture with p = ﬁ:{?lﬁz +1 (see
[I11], [12], (I-V]). The triangulation 74 can be obtained placing the hexagon H shown
in Figure 1 inside of Ty (on suppose that m > 10) in such a way that the center
of H has both the nonzero coordinates odd, and extending, then, the triangulation
of H to a primitive convex triangulation of Ty. To obtain a distribution of signs at
the integer points of Ty, we complete the distribution presented in Figure 1 by the
rule :

”»n

a point (7, 7,0) gets the sign if 7 and j are even, and i + j < m,
a point (7, j,0) gets the sign ”+” otherwise.
Remark that this distribution of signs at the integer points of Tj is slightly different

form the distribution described in [I1], [12], [I-V].

Proposition 6.1. The mazimal triangulation ext(r}) and a distribution of signs
ext(6}) produce a T-surface X of degree m in RP3 with

m3  4m

x(RX) = -5+ 3 bo(RX) = h2%(CX) -2

The real point set RX of X is homeomorphic to the disjoint union
o
m 11m
(F—mQ “—'——5>SZI|52|I53 27m5

of & — m? 4+ Hdm llm — 5 spheres, a sphere with 2 handles and a sphere with

1’5— m? + 77?” — 5 handles.
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Proof. Let us, first, calculate x(RX). It was already remarked that almost all tetra-
hedrons of ext(rd) are of volume 1/6. The only tetrahedrons of greater volume (of
volume 1/3) are the cones over the odd triangles of 7. Each of these tetrahedrons
of volume 1/3 has 6 nonempty symmetric copies (a tetrahedron of volume 1/3 of a
maximal triangulation has 6 nonempty copies if the product of signs at its vertices
is positive, and it has 8 nonempty copies if the product of signs is negative). Thus,
the arguments of the proof of Theorems 3.2 and 3.3 show that x(RX) = o(CX).

Calculate now the number of connected components of S. Exactly as in the
proof of Theorem 5.1, any integer point lying strongly inside of (T'N{z >2})UC
has a symmetric copy with the star containing a component of S homeomorphic to
a sphere. It is easy to see that the stars of integer points lying strongly inside of
T and belonging to the segment [(k,0,1),(0,k,1)] also contain the components of
S homeomorphic to a sphere. Consider the integer points lying strongly inside of
the tetrahedron T. Let us call even interior points of Ty the integer points (4, 7, 0)
such that i > 0,5 > 0, i+j < m, i and j are both even. There is a correspondence
between the even interior points of Ty and the points of Int(T) N Z3 : any integer
point lying strongly inside of T is a middle point of a segment joining the point
(0,0,2) and an even interior point of Ty. We denote the middle point of a segment
((0,0,2),7] (where r is an even interior point of Tg) by f(r).

Suppose that an even interior point r does not belong to the hexagon H. Then
r has the sign ”-". If f(r) has also the sign ”-”, then the union of stars of r and
of f(r) (in the triangulation of T,) contains a component of S homeomorphic to
a sphere. If f(r) has the sign ”+”, then the union of stars of r and of s.(f(r))
contains a component of S homeomorphic to a sphere.

We have found h%9(CX) — 4 spheres of S (a sphere was associated to any integer
point lying strongly inside of T" except 4 points of the form f(r), where r is an
even interior point of Ty belonging to the hexagon H). There are two connected
components of S more. One component is homeomorphic to a sphere with two
handles and lies inside of H U s,(H), where H is a cone with the vertex (0,0, 2)
over H. The remaining part of S is connected. The number b1(S) can be calculated

via the Euler characteristic. 0O
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Theorem 6.2. If m is an even integer number not less than 10, then there erists

an (M-2)-surface X of degree m in RP® such that bj(RX) = h1(CX) + 2.

Proof. Let us take the triangulation ext(r) of T and the distribution of signs
ext(8)) at the integer points of T. According to Proposition 6.1 the resulting

surface S is homeomorphic to

3
m o 1lm o
(-—6— —m ———5) SIS ] Sm2 oy zms
Remove now 4 vertices of the form f(r), where r is an even interior point of Tp
belonging to H (see the proof of Proposition 6.1), with all the adjacent edges.
Denote the new triangulation (which is nonmaximal) by ext/(7¢) and consider the
surface S’ constructed using ext’(7¢) and the restriction ext’(6§) of the distribution

ext(6)) to the set of vertices of ext’(r}). Clearly, the surface S’ is homeomorphic

to
m3 11m
(5 -+ 5 =5) T TS s

because we added 4 handles to the component homeomorphic to S8 _ 5, 7m -

Thus, the number of by (S’) is equal to

Using counter-examples of degree 2k to Ragsdale conjecture with more than
w +1 even ovals (see [[1], [I2], [I-V]), one can construct surfaces X of degree
2k in RP? with b;(RX) > hb1(CX) + 2.

Theorem 6.3. If m = 2k is an even integer not less than 10, then there exists a

surface X of degree m in RP3 such that

(where fu] denotes the greatest integer which does not exceed u).

Proof. We start from a triangulation 7¢ and a distribution 8§ of signs at the integer

points of Ty giving a counter-example to Ragsdale conjecture with

_ 3k*—3k+2

p 5 + a,
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where a = [ﬁk;?—g—té] (see [I1], [12], [I-V]). The triangulation 7§ can be obtained in
the following way. Consider the partition of the triangle To shown in Figure 2. Let
us take in each shadowed hexagon the triangulation (and the signs) of the hexagon
H. The triangulation of the union of the shadowed hexagons can be extended to a
primitive convex triangulation 7§ of Tp. To obtain the distribution 6§ of signs at
the integer points of Ty, we choose the signs outside of the union of the shadowed
hexagons again using the rule :

»n o

a point (i, j,0) gets the sign if i and j are even, and i + 7 < m,

a point (i, 7,0) gets the sign ”+” otherwise.
Consider the triangulation ext(7§) of T and the distribution ext(6§) of signs at

the integer points of T. The resulting surface S is homeomorphic to

3
m 5 1lm QII II

Remove now the vertices of the triangulation ext(r§) (with adjacent edges) of the
form f(r), where r is an even interior point of Tp belonging to one of the shadowed
hexagons, and take the restriction ext’(63) of the distribution ext(6§) to the vertices

of the new triangulation ext’(r¢). We obtain a surface S’ homeomorphic to

3
m 9 11m 2 l I | I

with
2m3

bi(8) = —— —2m? + m +2a. O
3 3
Remarks.

1. Removing, if necessary, some of shadowed hexagons in the construction of
Theorem 6.3, we get counter-examples to Viro’s conjecture with the real point set

homeomorphic to

m3 11m
(? - m2 + —6— -1 —4(1.) SQHQSQHS'—";—m2+1§E—a’

_a2
WhGI‘G(LIl,...,[k 3 +4}.

8
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2. The counter-example of the smallest degree in RP? given by Theorems 6.2
and 6.3 is a surface of degree 10. The real point set of this surface is homeomorphic

to

805% [ [ Sz [ | Soas-

It is unknown if there exist counter-examples of degree less than 10. The smallest

degree we can expect for a counter-example ira’s conjecture is degree 5.

Ao ci=.

e o T,

3. Repeat»iné‘tﬁe ﬁgaéedure described above for the new cou?lfé}—examp es to
Ragsdale conjecture constructed by B. Haas [Ha|, one can construct surfaces X of
degree 2k in RP? with

bi(RX) = hHH(CX) + 24/,

2 -
where a’ = {-—————k "76'”“6}.

4. We can obtain counter-examples to Viro’s conjecture which are asymptotically
better than the examples described above: there exist T-surfaces X of degree 2k in
RP? with b (RX) = RV (CX) + 24, where A = k3/24+ terms of smaller degrees.
To construct such surfaces, we divide the tetrahedron T by the planes z = 2l (where
I =1,...k—1), and define a triangulation and a distribution of signs in each part
of the subdivision using the procedure described in the proof of Theorem 6.3 for

TN{0<z<2}.

REFERENCES

{Ha| B. Haas, Les multilucarnes: Nouveauz contre-exemples & la conjecture de Ragsdale, C. R.
Acad. Sci. Paris (to appear).

[(I1] 1. Itenberg, Contre-exemples d la conjecture de Ragsdale, C. R. Acad. Sci. Paris, Ser. 1.
317 (1993), 277-282.

[12] I Itenberg, Counter-ezamples to Ragsdale Conjecture and T-curves, Contemporary Math-
ematics 182 (1995), 55-72.

[I-R] I. Itenberg, M.-F. Roy, Multivariate Descartes’ rule (to appear).

(I-V] 1. Ttenberg, O. Viro, Patchworking algebraic curves disproves the Ragsdale conjecture,
Preprint, Uppsala University, 1995.

[Ra] V. Ragsdale, On the arrangement of the real branches of plane algebaric curves, Amer. J.
Math. 28 (1906), 377-404.

[Ri] J.-J. Risler, Construction d’hypersurfaces réelles [d’aprés Viro], Séminaire N.Bourbaki, no.
763, vol. 1992-93, Novembre 1992.

[Sh] E. Shustin, Critical points of real polynomials, subdivisions of Newton polyhedra and topol-
ogy of real algebraic hypersurfaces, Advances in Sov. Math. (1995) (to appear).

[V1] O. Viro, Construction of M-surfaces, Functional Anal. Appl. 13 (1979).

[V2] O. Viro, Gluing of algebraic hypersurfaces, smoothing of singularities and construction of
curves, Proc. Leningrad Int. Topological Conf. (Leningrad, Aug. 1983), Nauka, Leningrad,
1983, pp. 149-197. (Russian)



TOPOLOGY OF T-SURFACES 17

[V3] O. Viro, Gluing of plane real algebraic curves and construction of curves of degrees 6
and 7, Lect. Notes Math., vol. 1060, Springer, Berlin, 1984, pp. 187-200.

[V4] O. Viro, Progress in the topology of real algebraic varieties over the last siz years, Rus.
Math. Surv. 41 (1986), no. 3, 55-82.

[V5] O. Viro, Real algebraic plane curves: constructions with controlled topology, Leningrad
Math. J. 1 (1990), 1059-1134.

[V6] O. Viro, Patchworking real algebraic varieties, Preprint, Uppsala University, 1994.

[Wi] G. Wilson, Hilbert’s sizteenth problem, Topology 17 (1978), no. 1, 53-73.

INSTITUT DE RECHERCHE MATHEMATIQUE DE RENNES, CAMPUS DE BEAULIEU 35042 RENNES
CEDEX FRANCE. E-mail: ILIA.ITENBERGQUNIV-RENNES].FR

~>@ o wn l cs ¢ L/ «‘ (A l 3"0 U Lo -

‘)k O < £ Ve L;N - Pou'/“ O(@)‘/VWQ/'«* Q&{ ‘vla(d/ozqé' C/a‘}/f”?

o e ondeaid o Aot T fec
e Ues qudvor T 0V 00T Sl e

- /'

AU G 0 \nshEY

T



