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1. Introduction

The concept of a flow in a graph is a useful model in Operations Research,
and is also essentially identical to the concept of a current in an electrical
network. It is thus not surprising that the study of flows is a classical and
important topic in graph theory, which leads to rich developments and
generalizations in combinatorial optimization, polyhedral combinatorics
and matroid theory.

At first sight it seems that the dual concept of tension (or potential
difference) has less importance in the literature, and appears mainly in
scheduling and shortest-path problems. However, as observed by Tutte,
the whole theory of vertex-colorings of graphs can be formulated in terms
of tension, and this is indeed an essential part of graph theory which is
intimately related to the history of its development.

In the case of planar graphs, the duality between flow and tension
corresponds to the geometric duality of graphs represented in the plane.
This allows a reformulation of face-coloring properties of plane graphs in
terms of flow properties. For instance, one can show that the four-color
theorem is equivalent to the following statement:

Lvery bridgeless planar directed graph has an integer flow with all edge-
values in the set {+1, +2, +3}.
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This led Tutte to consider similar properties for arbitrary graphs. For
instance, he proposed the following 5-flow conjecture:

Every bridgeless directed graph has an integer flow with all edge-values
in the set {£1, £2, +3, *+4}.

The study of this kind of problem involves an extension of the usual
concept of flow, where the set of flow values is an arbitrary Abelian
group. Using this extended concept, it is possible to unify such problems
as Tutte’s 5-flow conjecture, the cycle double cover conjecture (every
bridgeless graph has a family of cycles which together cover each edge
twice) and Fulkerson’s conjecture (every bridgeless trivalent graph has six
1-factors which together cover each edge twice) into a single framework—
the class of nowhere-zero flow problems.

The interest of such an approach is that it brings together different
methods developed independently for various conjectures, and can also
help us to formulate new and pertinent problems. The present survey lays
more emphasis on the unity of the different nowhere-zero flow problems
than on their specific aspects.

In Section 2 we introduce the necessary definitions and notation. We
then present nowhere-zero k-flows in Section 3, and discuss the main
results and conjectures on the existence of such flows in Section 4.
Section 5 is devoted to the cycle double cover conjecture, Section 6 deals
with Fulkerson’s conjecture, and in Section 7 we present a conjecture
which implies the previous ones. Some results on special classes of graphs
are reviewed in Section 8, and the main contributions of the reduction
methods are outlined in Section 9. We conclude, in Section 10, by men-
tioning some relationships with other research topics.

2. Definitions and Notation

Our definition of a graph allows loops and multiple edges. For con-
venience, we shall not distinguish a graph G from the various digraphs
which can be obtained from G by assigning an orientation to each edge of
G. This motivates the following terminology: if, for each edge of a graph
G, we distinguish one initial end and one terminal end, we obtain a
directed graph which will be called an orientation of G.

If G is a directed graph, and if § < V(G), we denote by @™ (S) the
set of edges with initial end in S and terminal end not in S. We write
0w (S) = 0" (V(G) — S) and w(S) = 0" (S) U @ (S). A k-subset of
E(G) of the form @(S), where S is a proper non-empty subset of V(G),
is called a k-cut of G. Thus G is k-edge-connected if and only if it has no
I-cuts for [ < k, and a bridge is an edge which forms a 1-cut.
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If A is an Abelian group (with additive notation), and if G is a directed
graph, then an A-flow of G is a mapping ¢ from E(G) to A such that:

forall S ¢ V(G), D> @)= > ¢e) =0. (1)
eew*(S) eew (S)

The usual concept of flow corresponds to the case where A is Z or R.
We make the following remarks:

(¥) It is easy to see that the mapping @ is an A-flow if and only if
equation (1) is satisfied for all sets S consisting of a single vertex of G.

(i) It follows from (1) that an A-flow takes the value zero on each
bridge.

(i) Suppose we change the orientation of the edge e in G, and simul-
taneously replace @(e) by —@(e). Then (1) is still valid for all subsets S
of V(G), and hence the new mapping ¢’ is an A-flow in the new directed
graph.

(iv) If each element of A is its own opposite—for instance, if A = Z,*
for some k = 1—the situation is simpler. Condition (1) can then be
rewritten as:

forall S ¢ V(G), D ¢(e) =0,
e € w(S)
and this is clearly independent of the orientation of G.

The support o() of the A-flow @ of G is the set of edges e of G such
that p(e) # 0. @ is said to be a nowhere-zero flow if o(¢) = E(G). If ¢
takes all its values in B < A, then it is called a B-flow. We shall be
interested in the existence of B-flows for subsets B for which 0 ¢ B and
B = —B.

Note that the problem of the existence of a B-flow in a graph is trivial if
0 € B (consider the flow which takes the value 0 on every edge). On
the other hand, the condition 0 ¢ B implies that we are restricting our
attention to bridgeless graphs (see remark (it) ). Also, by remark (iif), the
condition B = —B implies that the following properties are equivalent for
a graph G:

(a) some orientation of G has a B-flow;

(b) every orientation of G has a B-flow.

When (@) and (b) hold, we simply say that G has a B-flow. Thus we are
studying a property of undirected graphs. The orientations will be used

only as a reference for defining flows. By remark (iv), this is unnecessary
if every element of A is its own opposite.
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3. Nowhere-zero k-flows
Face Colorings and Flows

Consider a directed graph G which is 2-cell-embedded in an orientable
surface S (see [56] and ST1, Chapter 2 for definitions). Assume that the
embedding is face-k-colorable—that is, the faces of the embedding can be
colored with k colors in such a way that each edge belongs to the
boundary of two faces with different colors. Consider the colors as the
elements of an additive group of order k—say, Z,. For each edge e, let
r(e) be the color of the face bounded by e on its right, and let /(e) be the
color of the face bounded by e on its left. Using remarks (i) and (iii) of
Section 2, we can easily check that the mapping r — [ from E(G) to Z; is
a Z,-flow of G. The face-coloring property is equivalent to the fact that
this flow is nowhere-zero. We can formulate this result as follows:

Theorem 3.1. If a graph has a face-k-colorable 2-cell embedding in some
orientable surface, then it has a nowhere-zero Z-flow. ||

More can be said for plane embeddings (see [49]):

Theorem 3.2. A plane graph is face-k-colorable if and only if it has a
nowhere-zero Z,-flow.

Sketch of proof. Each flow corresponds to a potential difference in the
dual graph (this is the duality of flows and tensions for plane graphs
mentioned in Section 1—see [36, Chapter 7]). This means that in the
graph, each flow can be obtained by assigning a value to each face, and
then assigning to each edge the difference between the value of the face
on the right and the value of the face on the left. In particular, each
nowhere-zero Z,-flow can be obtained from a face-k-coloring by the
process used to prove Theorem 3.1. ||

Some Equivalence Results

Theorem 3.2 led Tutte to study nowhere-zero Z,-flows for arbitrary
graphs. In particular he obtained two equivalence results that we now
present briefly.

It is clear that in Theorems 3.1 and 3.2, the group Z, can be replaced by
any other additive group of the same order. This is a general phenomenon
which is a consequence of Theorem 3.4 below.

For a graph G. and F ¢ E(G), we denote by r(F) the maximum
number of edges in a forest of G contained in F. We shall use the
following lemma, which is an immediate extension of a classical result:
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Lemma 3.3. Let G be a connected directed graph, and let T be a spanning
tree of G. Let A be an additive group, and let ¢ be any mapping from
E(G) — E(T) to A. Then there exists exactly one A-flow @ of G such that,
for each edge e of G not in T, @(e) = c(e). ||

The following result is due to Tutte [49]:

Theorem 3.4. Let A be a finite additive group of order A, and let G be a
directed graph. Then the number of nowhere-zero A-flows of G is

F(G,A) = 3 (=1)IE@—F }IFI-r(F)
Fc E(G)
Proof. It follows from Lemma 3.3 that, for every F ¢ E(G), A1 =7 js
the number of A-flows of the subgraph (V(G), F) of G. Equivalently,
AFI =) s the number of A-flows of G whose support is contained in F.
The result now follows by the inclusion—exclusion principle. ||

The polynomial F(G, 1) is called the flow polynomial of G. It is, in a
sense, dual to the classical chromatic polynomial, and can be evaluated
similarly by a deletion—contraction process (see [53]). $

Another important equivalence result was obtained by Tutte [49]: let &
be an integer, k = 2, and let G be a directed graph. A nowhere-zero
k-flow of G is a Z-flow ¢ of G such that 0 < |p(e)| < k for each e in
E(G).

Theorem 3.5. A directed graph G has a nowhere-zero k-flow if and only
if it has a nowhere-zero ZL-flow.

Sketch of proof. If we replace each edge-value of a nowhere-zero k-flow
of G by the corresponding value of Z,, we obtain a nowhere-zero Z,-flow.
Conversely, if we replace each edge-value of a nowhere-zero Z;-flow by
the corresponding integer in [1, £ — 1], we obtain a mapping f from E(G)
to {1, 2, ..., k — 1} which satisfies the following property:

for each vertex v of G,

2 floo— X fle) =0 (mod k).
cew ({v}) cco ({v)
We consider a new graph G’ obtained from G by adding a new vertex
joined to each other vertex by a new edge. The mapping f yields a Z-flow
f' of G’ which takes its values in {1, ..., kK — 1} for the edges of G, and
in kZ for the new edges. A result of Tutte on regular chain-groups [50,
Proposition 6.3] then allows us to derive from f’ a nowhere-zero k-flow
of G. || .
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Direct proofs of Theorem 3.5 can be found in [8] and [S8].
In view of Theorems 3.4 and 3.5, we define (as in [22]) a graph G to be
an Fy graph (for k = 2) if it satisfies the following equivalent properties:

(i) for some additive group A of order k, G has a nowhere-zero A-
flow;
(ii) for every additive group A of order k, G has a nowhere-zero
A-flow;
(#ii) G has a nowhere-zero k-flow.

Note that, by (iii), if G is an F, graph, then it is an F; graph for each
l = k.

Clea:ly a graph is an F, graph if and only if all of its vertices have even
degree (by property (i), with A = Z,). The following simple result gives
interesting examples for k = 3 and k = 4 (see [33], [48], [49]):

Theorem 3.6. Let G be a trivalent graph. Then
(i) G is an F; graph if and only if it is bipartite;
(ii) G is an F, graph if and only if it is edge-3-colorable.

Sketch of proof. Part (i) is proved by considering nowhere-zero Z;-flows
as orientations for which every vertex is a source or a sink.

Part (if) is proved by considering nowhere-zero Z,-flows as edge-colorings
with three colors. ||

4. k-flow Conjectures and Theorems
The 4-flow Conjecture

By Theorem 3.2, the four-color theorem (see [1]) is equivalent to the
result that every bridgeless planar graph is an F, graph. In [52] Tutte
conjectured the following stronger property:

The 4-flow conjecture. Every bridgeless graph with no subgraph con-
tractible to the Petersen graph is an F, graph.

This conjecture is discussed in [42]. In this direction, using the four-
color theorem and matroid theory, Walton and Welsh [54] proved that
every bridgeless graph with no subgraph contractible to the Kuratowski
graph K53 is an F, graph.

It is apparently not known whether the 4-flow conjecture is equivalent
to its restriction to trivalent graphs. This restriction can be formulated as
follows (see Theorem 3.6 (ii)):

The trivalent 4-flow conjecture. Every bridgeless trivalent graph with no
subgraph homeomorphic to the Petersen graph is edge-3-colorable.
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A first (small) step towards a proof of this conjecture is the result that
bridgeless trivalent graphs with crossing-number 1 are edge-3-colorable
(see [23], [13]). Of course, the proofs rely on the four-color theorem.

The 5-flow Conjecture

Tutte also looked for an analogue of the four-color theorem for arbitrary
graphs. In [49], he proposed the following conjecture:

The 5-flow conjecture. Every bridgeless graph is an Fs graph.

Since the Petersen graph is not an F, graph (Theorem 3.6 (if)), this
conjecture, if true, would be the best possible.

Tutte also proposed the weaker conjecture that there exists an integer
k = 5 such that every bridgeless graph is an F graph. This was proved for
k = 8 in 1975 independently by Kilpatrick [30] and Jaeger [20], [22], using
essentially the same method. This result is now superseded by the 6-flow
theorem of Seymour (see below). However, we shall present-a full proof
here, because it is fairly simple and uses auxiliary results which are
interesting for their own sake. We shall need two lemmas; the first one is
due to Kundu [31]:

Lemma 4.1. Every 2k-edge-connected graph (k = 1) contains k pairwise
edge-disjoint spanning trees.

Proof. Tutte [51] and Nash-Williams [35] have proved that a graph G
contains k pairwise edge-disjoint spanning trees if and only if, for each
partition P of V(G) into p blocks, the number m(P) of edges of G
joining different blocks is at least k(p — 1). This is clearly true ifp=11f
p=2,P={By, ..., B,}, and G is 2k-edge-connected, then

m(P) =} M o(B| = tpk) > k(p - 1. |

The proofs of the next lemma given in {22} and [30] rely on a formula
of Edmonds [10] on the minimum number of independent sets of a
matroid needed to cover the elements. We give here a simpler proof:

Lemma 4.2. Every 3-edge-connected graph has three spanning trees
with empty intersection.

Proof. Consider a 3-edge-connected graph G. Replacing every edge of
G by two parallel edges, we obtain a 6-edge-connected graph G'. By
Lemma 4.1, G’ has three pairwise edge-disjoint spanning trees. By iden-
tifying each of these trees with a tree of G, we obtain three spanning trees
of G with empty intersection. ||

We now prove the following 8-flow theorem:
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Theorem 4.3. Every bridgeless graph is an Fg graph.

Proof. 1t is easily seen that it is sufficient to prove the result for a 3-
edge-connected graph G (see Section 9 below). By Lemma 4.2, we can
find spanning trees Ty, T», T5 of G which have empty intersection. Using
Lemma 3.3, we can obtain Z,-flows ¢, @,, @3 of G such that ¢;(e) =1
for all e in E(G) — E(T;)(i = 1, 2, 3). Then (@,, @2, @3) defines in the
obvious way a nowhere-zero Z,’-flow of G.||

The 6-flow Theorem

We present here an outline of Seymour’s proof of this result, but from a

slightly different perspective.
Consider the following constructions for a graph G:

Cy: add an isolated vertex to G;
C,: add an edge within one connected component of G;
C,: add two edges joining two distinct connected components of G.

Let € be the class of graphs which can be obtained from the graph K; by
a finite number of constructions of the form Cy, C, and/or C,. The
following result implies that every graph in € is an F3 graph:

Theorem 4.4. Let G be a graph in 6, considered with an arbitrary
orientation. For each mapping c from E(G) to Zs, there exists a Zz-flow @
of G such that ¢(e) # c(e) for each e in E(G).

Proof. We proceed by induction on |E(G)|. If |[E(G)| = 0, there is
nothing to prove. Suppose that G’ is constructed from G using con-
struction C; or C», and let ¢’ be a mapping from E(G') to Z;. Let u be a
Z;-flow of G’ whose support is a cycle containing E(G') — E(G). Since
|E(G") — E(G)| = 2, we may use u to obtain a Zs-flow ' of G’ such
that ' (e) # ¢’ (e) for each e in E(G') — E(G). (¢’ is equal to i, —p or
the zero flow.) By the induction hypothesis, there exists a Zs-flow ¢ of G
such that @(e) # ¢’ (e) — ' (e), for each e in E(G). Then ¢' = ¢ + p' is
a Z,-flow of G’ such that ¢/ (e) # c’(e), for each e in E(G’). ||

We now present Seymour’s 6-flow theorem [41]:
Theorem 4.5. Every bridgeless graph is an F, graph.

Sketch of proof. It is sufficient to prove the result for a simple 3-connected
graph G (see Section 9 below). Seymour showed that there exist vertex-
disjoint cycles Cy, ..., C, of G such that the graph H obtained by
contracting the edges of these cycles belongs to 6. By Theorem 4.4, H
has a nowhere-zero Zs-flow, which can be extended to a Zs-flow @5 of
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G with E(G) — U C; c o(gs). Consider now a Z-flow ¢, of G with
i=1

o(@,) = U C. Then (g,, @3) defines a nowhere-zero (Z, X Zs)-flow
i=1
of G. ||

Seymour [41] has also given a sketch of a proof of the following result,
which yields an alternative proof of the 6-flow theorem:

Theorem 4.6. Let G be a 3-connected trivalent simple graph. Then there
exists a spanning tree T of G such that the contraction of the edges of
E(G) — T yields a graph which belongs to %. ||

In [58] Younger used Seymour’s proof to obtain a polynomial-time
algorithm for constructing a nowhere-zero 6-flow in any bridgeless graph.
For planar graphs this algorithm can be specialized to yield a nowhere-
zero S5-flow.

The 3-flow Conjecture

A theorem of Grotzsch [17] asserts that every loopless planar graph
without triangles is vertex-3-colorable. By duality and Theorem 3.2, this
can be reformulated as follows: every bridgeless planar graph without
3-cuts is an F; graph. This led Tutte to propose the following conjecture
(see [6, unsolved problem 48]); it is easy to see that it would be sufficient
to prove this conjecture for 4-edge-connected graphs.

The 3-flow conjecture. Every bridgeless graph without 3-cuts is an
F graph.

The following result appears in [20], [22]:
Theorem 4.7. Every bridgeless graph without 3-cuts is an F4 graph.

Proof. It is easy to show that it is sufficient to prove the result for
4-edge-connected graphs. By Lemma 4.1, any such graph G contains two
edge-disjoint spanning trees Ty, T,. By Lemma 3.3, there exists a Z,-flow
@;(i = 1, 2) of G such that E(G) — E(T;) ¢ o(g;). Then (¢, ¢) is a
nowhere-zero Z,*flow of G. ||

We propose the following conjecture:

The weak 3-flow conjecture. There exists an integer k such that every
k-edge-connected graph is an F; graph.

A possible approach to this conjecture would be to enlarge the class ‘€
introduced above to a class 6’, by allowing new constructions which
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preserve the F; property (for instance, insertion of a new vertex into an
edge, or identification of vertices). We might then ask whether there
exists an integer k such that every k-edge-connected graph is in €’.

A More General Conjecture

Let us call a graph mod (2p + 1)-orientable (p = 1) if it has an orientation
such that the out-degree of each vertex is congruent (modulo 2p + 1) to
the in-degree. We denote by U(Z,,,,) the subset {1, —1) of Z,,.,. We
then obtain the following result:

Theorem 4.8. For any graph G, and for any p = 1, the following
properties are equivalent:

() G is mod (2p + 1)-orientable;

(i)) G has a U(Zyp41)-flow;

(@) Ghasa (Z N ([-p — 1, =p] U [p, p + 1]))-flow;

(v) Ghasa (QN ([-1 — Up, =11 U [1, 1 + 1/p]))-flow.

Sketch of proof. The equivalence of (i) and (i) is immediate. The
equivalence of (iii) and (iv) is a special case of a well-known property of
flows. The equivalence of (ii) and (iif) is proved in two steps. The first
step is that (i) holds if and only if G has a (Z,,.1 N {p, p + 1})-flow;
this is easily proved by using an appropriate automorphism of Z,, . ,. The
equivalence between (iii) and the existence of a (Z,,.; N {p,p + 1})-
flow of G is then proved by the same method as Theorem 3.5. ||

Note that G is mod 3-orientable if and only if it is an F; graph.

For every p = 1, let M,,,, be the class of mod (2p + 1)-orientable
graphs. It follows from the equivalence of (i) and (iv) of Theorem 4.8 that
My, 1 € My, for all p” = p = 1. It is not difficult to check that, for
every p = 1, the complete graph K4, ., belongs to M,,,, — M5, 3. Hence
My, 1 C My,,y, for all p’ > p = 1. It is then tempting to conjecture
that the higher the edge-connectivity of a graph, the higher it is ranked
in the hierarchy M5 D Ms O ... D M,,.; D ... . To make this more
precise, the following conjecture (whose name is justified in Section 5) is
proposed in [25]:

The circular flow conjecture. For all p = 1, every 4p-edge-connected
graph is mod (2p + 1)-orientable.

Note that, for p = I, this conjecture is equivalent to the 3-flow con-
jecture. Moreover, it is easy to see that for p = 2, the conjecture implies
the 5-flow conjecture. Indeed, assume that every 8-edge-connected graph
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is mod 5-orientable” Consider a 3-edge-connected graph G and replace
each edge of G by three parallel edges. The resulting graph G’ is 9-edge-
connected, and hence mod 5-orientable. It is then easy to convert a
U(Zs)-flow of G’ into a nowhere-zero Zs-flow of G. The extension to all
bridgeless graphs is immediate (see Section 9).

Balanced Valuations

Like the four-color problem, the nowhere-zero flow problems presented
in this section lend themselves to various interesting reformulations. We
shall consider only one of these here.

A balanced valuation of a graph G is a mapping b from V(G) to Q such
that,

for all S ¢ V(G), | D b(v)| = |wg(S)].

veS
The following result is proved in [19]):

Theorem 4.9. Let p, q be integers with 1 < p < q. Then a graph G has a
Z N ([—q, —p] Y [p, q])-flow if and only if it has a balanced valuation of

the form mvf where w is a mapping from V (G) to Z such that, for all
v € V(G), w(v) and the degree of v have the same parity. ||

For instance, if we apply Theorem 4.9 with p = 1 and ¢ = 3 to trivalent
graphs, and if we then use Theorem 3.6(if), we obtain the following result
of Bondy [4]: a trivalent graph is edge-3-colorable if and only if it has a
balanced valuation with values in {—2, +2}. Similarly, it follows from
Theorem 4.9 that a 5-regular graph is an F5 graph if and only if it has a
balanced valuation with values in {—3, +3} (see [5]). More generally, all
the results and problems discussed above can be reformulated in terms
of balanced valuations. For instance, the 6-flow theorem asserts that
every bridgeless trivalent graph has a balanced valuation with values in
{-3, +3}, and the 5-flow conjecture asks whether 3 can be replaced by 3
in this statement.

5. The Double Cover Conjecture

A 2-cell embedding of a graph G on a surface is a strong embedding if
each face-boundary is a cycle. For instance, every embedding of a planar
2-connected graph in the plane is a strong embedding.

A cycle double cover of a graph G is a family of cycles of G such that
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every edge appears in exactly two cycles of this family. For instance, the
family of face-boundaries of a strong embedding of G is a cycle double
cover.

The following two conjectures appear in the literature (see [18], {32],
[39], [45] and [57]):
The strong embedding conjecture. Every 2-connected graph has a strong
embedding on some surface.

The double cover conjecture. Every bridgeless graph has a cycle double
cover.

The double cover conjecture is easily seen to be equivalent to its
restriction to 2-connected graphs. Hence, the strong embedding conjecture
implies the double cover conjecture. The first conjecture appears as a
topological motivation for the second one. Both problems are reviewed in
some detail in [26]. Our concern here is only with the double cover
conjecture which, as we shall see, can be viewed as a nowhere-zero flow
problem.

A cycle double cover is said to be k-colorable (k = 2} if we can color its
cycles with & colors in such a way that each edge appears on two cycles of
different colors. For instance, a cycle double cover consisting of k cycles
is k-colorable. The family of face-boundaries of a face-k-colorable strong
embedding of G is a k-colorable cycle double cover of G.

Let D, be the subset of Z,* consisting of those elements containing
exactly two 1s, and let ¢ = (@, ..., @) be a D,-flow of G. For each
i€ {1, ..., k}, choose a partition of o(¢;) into cycles of G. The union of
these & partitions is a k-colorable cycle double cover of G. Conversely, it
is easily seen that every k-colorable cycle double cover of G can be
obtained in this way from some D,-flow of G. Thus we obtain the
following reformulation of the double cover conjecture:

The double cover conjecture (second version). For every bridgeless
graph G, there exists an integer k = 2 such that G has a D-flow.

The following stronger conjecture appears in [8] and [37]:

The 5-colorable double cover conjecture. FEvery bridgeless graph has a
Ds-flow.

A cycle double cover is said to be orientable if one can orient each of
its cycles into a directed cycle in such a way that each edge appears once
in each direction in the resulting family of directed cycles. For instance,
the family of face-boundaries of a strong embedding of G in some orientable
surface is an orientable eycle double cover.
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Let Dy be the subset of Z*(k = 2) consisting of those elements (z;, ...,
zx) such that exactly one z; is 1, exactly one z; is —1, and all the other z;
are 0. It is easy to see that G has an orientable k-colorable cycle double
cover if and only if it has a D-flow.

Oriented versions of the previous conjectures can be stated as follows:

The orientable double cover conjecture. For every bridgeless graph G,
There exists an integer k = 2 such that G has a D, flow.

The 5-colorable orientable double cover conjecture. Every ,v:.&w&w&
graph has a Ds-flow.

These oriented versions are related to nowhere-zero k-flow problems.
Indeed, it is clear that the proof of Theorem 3.1 can be immediately
adapted to yield the following:

Theorem 5.1. I a graph has a Dy-flow (k = 2), then it is an F, graph. ||

Aninteresting consequence of this result is that the 5-colorable orientable
ao.c_u_m cover conjecture implies the S-flow conjecture. If we drop the
orientability of cycle double covers, we can prove only the following
result:

A,—.me..m:E WNN If a graph has a Dy-flow (k = 2), then it is an F,, graph for
p = 2080

Proof. Let @ = (¢, ..., @) be a Dy-flow of G. Let r = [logyk], and

let f be a one-to-one mapping from {1, ..., k} into Z,". For each i in

{1, ..., k}, let @; be the Z,"flow of G which takes the value f(i) on
k

o(@;) and the value 0 on E(G) — o(@). It is easy to check that > ¢ is
=1

a nowhere-zero Z,-flow of G. ||

Theorems 5.1 and 5.2 have the following converses for small values of
k; Theorem 5.4 was proved for trivalent graphs by Tutte [48]:
Theorem 5.3.  The following statemenis are equivalent for a graph G:
(i) G is an F, graph;
(ii) G has a Dy-flow;
(iii) G has a Dy-flow.
Proof. This is immediate. ||

Theorem 5.4. The following statements are equivalent for a graph G:
(i) G is an F; graph; .
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(ii) G has a Dy-flow.
Proof. This is the case p = 1 of [25, Proposition 2]l
Theorem 5.5. The following statements are equivalent for a graph G:
(i) G is an F, graph;

(i) G has a Ds-flow;

(iii) G has a Dy-flow;

(iv) G has a Dy-flow.

Proof. (i) = (i). If (@1, ¢;) is a nowhere-zero Z,>-flow of G, then
(@1, 2. @1 + @) is a Dy-flow of G.

(i) = (iii) (see [48]). Let (@1, @, @3) be a Dy-flow of G.Firi= 1,2,
3, let @; be a Z-flow of G which takes the value 1 or —1 on o(¢;) and the
value 0 on E(G) — o(g;). Let

¥= e - @ - @), vr =3 + @~ 9h),
¥y = Mgt — @5 + ¢b) and ¥, = 3(¢i + @ + @3).
Then (Y1, Y2, Y3, Ya) is a D,-flow of G.

(é#) = (iv). This is immediate.

(iv) = (i). This is Theorem 5.2 for k = 4. ||

The property of being mod (2p + 1)-orientable (see Section 4) can also
be studied in terms of cycle double covers of a special kind. Consider a
vector x = (xy, ..., X¢), where the x; belong to Z, or Z. Two of the
coordinates x; and x; are said to be cyclically consecutive if |j — i | =1or
k — 1. Let C, be the subset of D, consisting of those elements whose two
non-zero components are cyclically consecutive. Similarly, let C;. be the
subset of @.» consisting of those elements whose two non-zero com-
ponents are cyclically consecutive. The following result was proved in
{25]; Theorem 5.4 is the special case p = 1 of this result:

Theorem 5.6. A graph is mod (2p + 1)-orientable (p = 1) if and only if
it has a Cypir-flow. ||
It follows from Theorem 5.6 that the circular flow conjecture of Section 4

can be reformulated as follows:

The circular flow conjecture (sccond version). For all p = 1, every
ap-edge-connected graph has a Cypiyflow.

In support of this conjecture, the following result is proved in [25]:

Theorem 5.7. For all p = 1, every dp-edge-connected graph has a Cyp.y-

flow. ||
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For p = 1, this is essentially the nowhere-zero-4-flow result of Theorem
4.7. The proof of the general case also relies on Lemma 4.1.

6. Fulkerson’s Conjecture

We present here a conjecture of Fulkerson [15], which deals with 1-
factors of trivalent graphs and can be viewed as an edge-coloring problem.
As we shall see, it can be reformulated as a nowhere-zero flow problem.

Fulkerson’s conjecture. In every bridgeless trivalent graph, there exists a
family of six 1-factors such that each edge appears in exactly two of them.

A trivalent graph which satisfies this condition is said to have the
Fulkerson property. The following result is a characterization of this pro-
perty in terms of flows. We denote by Y the subset of Z,° consisting of
those elements containing exactly four 1s.

Theorem 6.1. Let G be a trivalent graph. Then G has the Fulkerson
property if and only if G has a Y-flow. )

Proof. Let (@1, @2, @3, @1, @s, @) be a Y-flow of G, and let v be a

vertex of G. Then

6 6

.M_ lo(@) N w({v})] = MAUA N M_ lo(@) N {e}| = da({v})] = 12.

= eew({v}) i=

Since |o(@;) N w({v})| € {0, 2} fori =1, ..., 6, we thus have

lo(@:) N w({v})] = 2. Hence, M; = E(G) — o(g) is a 1-factor of G, for

i=1, ...,6, and each edge of G belongs to exactly two of the sets M,.
Conversely, if GG has the Fulkerson property, then it is easy to construct

a Y-flow of G, since to every 1-factor M there corresponds a Z,-flow ¢

with o(@) = E(G) — M. ||

It is not difficult to show that, if every trivalent bridgeless graph has
a Y-flow, then the same property holds for all bridgeless graphs (see
Section 9). Hence we can reformulate Fulkerson’s conjecture as follows:

Fulkerson’s conjecture (second version). Every bridgeless graph has a
Y-flow.

This conjecture can also be viewed as part of a wider problem. For
p = 1, let Y, be the subset of Z, consisting of those elements with
exactly 2p 1s. Thus Y is the set D5 introduced in Section 5, and Y5 is the
set Y defined above. It follows from work of Seymour [40], and from an
easy extension of the above discussion, that for each bridgeless graph G,
the set P(G) of positive integers p such that & has a Y,-flow contains all
sufficiently large integers, or all sufficiently large even integers. Moreover,
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the first situation oceurs if G is trivalent and has no subgraph homcomorphic
to the Petersen graph—this should be compared with the trivalent 4-flow
conjecture. Any upper bound for min P(G), valid for all bridgcless
graphs G, would constitute important progress.

7. A Unifying Conjecture

So far we have encountered a number of conjectures in which B is a
subset of some additive group A, such that 0 ¢ B and B = —B, and every
bridgeless graph is conjectured to have a B-flow. Let us call this the
B-flow conjecture.

We present here a conjecture which implies all reasonable B-flow
conjectures when B is a subset of Z,*, for some integer k. This conjecture
appears in [24] in the context of binary spaces, but we reformulate it in
purely graph-theoretical terms.

In this section we consider Z, as a field—that is, we write Z; for
GF(2). It is well known that the set of Z,-flows of a graph G forms a
vector space over Z,. We denote this vector space by #(G) and its
dimension by u(G). Recall that a subdivision of a graph G is any graph
which can be obtained from G by inserting new vertices of degree 2 into
the edges.

Let G, and G, be two graphs. We write G, = G if there exists a
subdivision G} of G, with the following property: there exists a bijective
mapping B from E(G,) to E(G}) such that, for each Z,-flow @ of G,
@ o B is a Z,-flow of G,. We write G, = G, if G, = G; and G; = Gy.

For instance, denote by K3 the graph consisting of two vertices and
three parallel edges e;, e, €3 joining these two vertices, and let G be an
edge-3-colorable trivalent graph.

We show that K2 = G. For this, consider an edge-3-coloring of G, and
let M;(i = 1, 2, 3) be the set of edges of G of the ith color. For i=1,
2, 3, replace ¢; by a path P; of length {M;|, and let H be the resulting
subdivision of K3. There exists a bijective mapping f from E(G) to E(H)
such that E(P;) = B(M,)(i = 1, 2, 3). Then, for each Z,-flow ¢ of H
which is not identically zero, g o B is a Z,-flow of G whose support is a set
of bicolored cycles. Hence K3 = G.

The following result is easy to prove:

Thecrem 7.1. The relation < is a quasi-order—that is, it is reflexive and
transitive. If G, = G, then |E(G,)| = |E(G2)|, and p(Gy) = u(Ga);
moreover, equality holds in both inequalities if and only if G, = G;. Il

It follows that G; = G, if and only if %(G,) and F(G>) are isomorphic
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in a strong secnse—that is, if and only if the cycle matroids of G and G,
are isomorphic (for definitions, see Chapter 3 or [55]).

Let 6 be a class of graphs. A graph G is said to be ‘G-minimal if G
belongs to €, and G' = G whenever G' belongs to € and G' = G.

Theorem 7.2. For each graph G in G, there exists a ‘€-minimal graph G,
such that Gy = G.

Proof. This is an immediate consequence of Theorem 7.1. ||

Now let k be a positive integer, and let B be a subset of Z,* — {0}. The
following result motivates our study of the relation =:

Theorem 7.3. If G, and G, are two graphs with G, = G,, and if G, has
a B-flow, then G, also has a B-flow.

Proof. Let Gi be a subdivision of G, and let B be a bijective mapping
from E(G,) to E(G}) such that, for each Zyflow ¢ of G|, ¢ > Bis a
Z,flow of G,. If G, has a B-flow, G also has a B-flow (g1, ..., @)
Then (@, ° B, ..., @« ° B) is a B-flow of G,. || ’

From now on, € denotes the class of bridgeless graphs. It follows from
Theorems 7.2 and 7.3 that, for any B c Z,* — {0}, the B-flow conjecture
is equivalent to its restriction to 6-minimal graphs.

The only ¢-minimal graphs known so far (up to equivalence under =)
are the graph L consisting of one vertex and one loop at this vertex, the
graph K3 defined above and the Petersen graph P. Moreover, it is easy
to show that G is an F, graph if and only if L = G, and that G is an F,
graph if and only if L =< G or K3 = G.

In [24] we conjectured that L, K3 and P are the only ¢-minimal graphs,
up to equivalence under =. This conjecture essentially says that, for
B c Z,* — {0} (k = 1), the B-flow conjecture is true if and only if it
holds for L, K3 and P. Thus, for instance, our conjecture implies the
S-colorable double cover conjecture and Fulkerson’s conjecture. We now
reformulate our conjecture as a B-flow conjecture.

Let {@1, ¢2, ..., s} be a basis of the vector space F(P) of Z,-flows
of the Petersen graph P, and let X be the subset of Z,° consisting of the
fifteen elements of the form (@, (e), @a(e), ..., @s(e)), for e € E(P).
We then have the following result:

Theorem 7.4. The following properties are equivalent for a graph G:
(&) G has an X-flow;
(i L=GorKi=GorP=G. |
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It follows that the property for a graph G to have an X-flow is in-
dependent of the choice of the basis { @i, @2, ..., ¢s}. We therefore say
that G has a Petersen flow if G has an X-flow.

It is now clear that our conjecture about ¢-minimal graphs can be

reformulated as follows:
The Petersen flow conjecture. Every bridgeless graph has a Petersen

flow.

The Petersen flow conjecture can be restricted to trivalent graphs (see
Section 9). Moreover, it is easy to see that a trivalent graph G satisfies
the Petersen flow conjecture if and only if we can color its edges, using
the edges of the Petersen graph P as colors, in such a way that every
triple of mutually incident edges of G is colored as a similar triple of P.
Another simple formulation in terms of edge-5-colorings was recently
obtained in [27].

A similar approach via a quasi-order relation for arbitrary B-flow
problems is also undertaken in {27]. The quasi-order description and its
properties are more complicated in this general case, and are not presented

here.

8. Special Results

Most of the conjectures reviewed above are true for planar graphs and for
F, graphs. It is therefore natural to try to prove them for classes of graphs
which are either ‘nearly planar’ or ‘nearly F,’. This direction of research
offers a variety of open problems, which should be more tractable than
the general conjectures.

For graphs which are ‘nearly planar’, we could try, for instance, to
prove some of the conjectures for graphs of small orientable or non-
orientable genus. The first results we know in this direction were obtained
by Steinberg, who proved the 3-flow conjecture [43] and the 5-flow
conjecture [44] for graphs embeddable in the projective plane. More
recently, the 5-flow conjecture has been proved independently by Moller
et al. [34] and Fouquet [14] for graphs of orientable genus at most 2 and
graphs of non-orientable genus at most 4.

We now present some results concerning graphs which are ‘nearly Fy’.
We define a graph G to be a nearly-F, graph if it is possible to add a new
edge to G in order to obtain an F; graph. A graph G is a deletion-Fy4
graph if it is possible to delete an edge of G in order to obtain and Fj
graph.

Examples of nearly-F, graphs are the following (see [21] for the first
three classes):
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(i) F, w‘@\_ﬁ. adding a loop, or an edge parallel to an existing edge,
to an Fy graph yiclds an F, graph.

(%) %SES with a Hamiltonian path: by adding an edge, it is possible
to obtain a graph with a Hamiltonian cycle—such a graph is easily seen to
be an F, graph.

(i) trivalent graphs with a 2-factor having 0 or 2 odd components: if
the m-?oSn has no odd cycles, then the graph is an F, graph (Theorem
3.6(ii)), iroqomm if the 2-factor has two odd cycles, then its edges can be
ow_oana with two colors (0, 1) and (1, 0) in such a way that each vertex
with the exception of two vertices v and v', is bicolored; if we now join —“
and v' by a new edge, and color the edges yet uncolored with (1, 1), then
the resulting coloring of the edges defines a nowhere-zero N%.mosﬂ.

Q..& deletion-F, graphs: if the deletion of an edge ¢ yields an F, graph
adding a new edge parallel to ¢ clearly gives an F, graph. .

We now discuss some results on nearly-F, graphs, starting with the
5-flow conjecture (see [21]): .

Theorem 8.1. Every bridgeless nearly-Fy graph is an Fs graph.

%».ﬁl_ of proof. We must prove that if G is an Fygraph and if G — e is
bridgeless for some e e E(G), then G — ¢is an F; graph. It is possible to
choose an orientation of G which has a Zn{1, ,Nv 3})-flow . It is easy
to see that we may also assume that @(e) = 1.

If *(5) = {e} for some § c V(G), then

2 ele) = g(e) =1,

o €w (S)
and hence [~ (S)| = 1. But this contradicts the hypothesis that G — ¢ is
.cn.ﬁwa_@mm. It follows that there exists in G — e a directed path from the
initial end of e to its terminal end. Hence there exists a Z-flow uof G
such that u(e) = —1 and u(e') € {0, 1}, for all ¢’ in E(G) ~ {e}. It
follows that @ + u is a Z-flow of G which takes the value 0 on e w:g

values in {1, 4} elsewhere, and we may consider @ +
S of 5 2 y @ + u as a nowhere-zero

We next discuss some special cases of the double cover conjecture. The
following result is due to Celmins [8]:

Theorem 8.2. FEve 1 - oc ;
Defiom Every trivalent 3-edge-connected deletion-F, graph has a

Proof. Let G be 4 trivalent 3-edge-connected graph, and let e € E(G)
be such that G — e is an F, graph. It follows from the 3-edge-connectivity
of G that there exists a cycle C of G — e which contains both ends of e.




90 FRANGOIS JAEGER

Let @ be the Zo-flow of G — e with (@) = C, and let (@y, @2, p3) be a
Di-flow of G — e. Then it is easy to check that (@o, @0 + @1, o + P2,
i - G — e

ec,—,ﬂmnwwo_wwambww M eMmMﬂo a partition of C into two paths P’ and P". Let
@) be the Z,-flow of G with support P' U {e}, and let @§ be the Z,-flow
of G with support P” U {e}. Then (@6, 90 Yo + @1, Yo + P2, Po + @3)
is a Ds-flow of G. ||

The following result is due to Tarsi [47]; its proof relies on an ingenious
construction:
Theorem 8.3. Every bridgeless graph with a Hamiltonian path has a Dg-
flow. ||

9. Reductions

We consider here only ‘B-flow conjectures’, in the sense of Section 7—
that is, conjectures concerning the class of all bridgeless m_.wv:m.. The
approach presented in this section can, of course, be used m.On m:x kind of
nowhere-zero flow problem. For instance, the proof of Steinberg’s 3-flow
theorem for graphs embedded in the projective plane is a good example
of the use of reduction techniques. . .

We start by presenting the reduction of the B-flow conjecture .:.u trivalent
3-edge-connected graphs. In this section, A denotes an additive group
and B is any non-empty subset of A with 0 ¢ B, B = —B. Recall that
the B-flow conjecture states that every bridgeless graph has a B-flow. ﬁ\o
shall assume that the B-flow conjecture is true for the graph K3 defined in
Section 7; equivalently, there exist by, by, by in B such that by + by +
by = 0.

m,;o following result is a generalized version of [41, Proposition 2.1},

and is proved in a similar way:

Theorem 9.1.  Every minimal counter-example to the B-flow conjecture is
a simple trivalent 3-edge-connected graph.

Proof. A minimal counter-example G is clearly a loopless 2-edge-
connected graph, which is not an F, graph, and has at least 3 edges. If
{e1, €2} is a 2-cut of G, we can contract e; and obtain a m..oama..ooz.zooﬁa
graph which, by the minimality of G, has a m‘moi..,;_m easily ,v:o_am a
B-flow of G, and we have a contradiction. Hence G is 3-edge-connected,
and in particular has no vertices of degree smaller than 3.

We now assume that G has a vertex v of degree greater than 3. Then,
by a result of Fleischner [11], we can find two edges ¢, and e, ioE@E. to
v such that we obtain a bridgeless graph by deleting ¢, and e; and adding
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a new edge joining the ends of e,, e; distinct from v. By the minimality of
G, this graph has a B-flow, which easily gives a B-flow of G; again, we
get a contradiction.

We conclude that G is trivalent and 3-edge-connected; G must be
simple because otherwise G is isomorphic to K3, which is not a counter-
example. ||

Note that, by a well-known result, ‘3-edge-connected’ can be replaced
by ‘3-connected’ in Theorem 9.1.

We now assume that the B-flow conjecture is true for all F, graphs.
Hence, by Theorem 3.6(ii), every minimal counter-example to the B-flow
conjecture is a simple trivalent 3-edge-connected graph which is not edge-
3-colorable.

We call a 3-cut of a trivalent graph G trivial if it is of the form w({v})
for some vertex v of G. A snark (see [9] or [13]) is a trivalent, 3-edge-
connected, non-edge-3-colorable graph in which every 3-cut is trivial. We
now present a condition under which the B-flow conjecture can be reduced
to snarks.

Let G be a trivalent graph, and let v be a vertex of G. We choose an
orientation of G such that the three edges e,, e,, e3 incident to v have
initial end v. We say that v is B-specifiable if, for all by, b,, b5 in B such
that by + b, + b; = 0, there exists a B-flow ¢ of G such that ¢(e;) = b,
for i = 1, 2, 3. We say that B has the vertex-specification property if,
for every trivalent graph G which has a B-flow, every vertex of G is
B-specifiable.

Theorem 9.2.  If B has the vertex-specification property, then every minimal
counter-example to the B-flow conjecture is a snark.

Sketch of proof. Let G be a minimal counter-example, and assume that
G has a non-trivial 3-cut w(S), so that |S| = 2 and |V(G) - S| = 2. By
identifying the vertices of § to a single vertex, we obtain a bridgeless
trivalent graph G'. Similarly, by identifying the vertices of V(G) — Sto a
single vertex, we obtain a bridgeless trivalent graph G”. By the definition
of G, the graphs G' and G” have B-flows. The vertex-specification pro-
perty gives B-flows of G’ and G” which can be ‘pieced together’ into a B-
flow of G. This gives the required contradiction. ||

In most of the interesting cases, the vertex-specification property can
easily be proved using symmetry considerations. This is true, for instance,
when B is Dy, D, for k = 3 (see Section 5), or Y,, for p = 1 (see Section 6).
For B = Zs — {0}, the result is non-trivial. It is proved in [8], using the
contraction—deletion process associated with the computation of the flow
polynomial to obtain a stronger enumerative result.
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An even more difficult result is proved in [8]:

Theorem 9.3. Every minimal counter-example to the 5-flow conjecture is
a cyclically 5-edge-connected snark of girth at least 7.

Outline of proof. The proof that every minimal counter-example is cyc-
lically 5-edge-connected uses sophisticated enumerative methods analogous
to the Birkhoff—Lewis reduction of the 4-ring for the four-color problem
[3]. To see how the proof of the girth property works, consider, for
instance, a cycle C of length 6 in a minimal counter-example G. Delete
three edges which form a perfect matching of C. Since G is cyclically
S-edge-connected, the resulting graph G’ is bridgeless. It is then easy to
combine a nowhere-zero Zs-flow of G’ with a Zs-flow of G whose support
is C to obtain a nowhere-zero Zs-flow of G. This gives the required
contradiction. ||

An analogous result holds for counter-exampies to the 5-flow conjecture
which are minimal in the class of graphs embedded in a given surface S.
Such a graph G is simple, 3-edge-connected, trivalent, of girth at least 6,
and has no face-boundary of length less than 7 (see {14}, [34]). It follows
easily from Euler’s formula that |V(G)| < —14k(S), where k(S) is the
Euler characteristic of S. Hence the S-flow conjecture for graphs embedded
in a given surface has been reduced to a finite number of cases.

Finally, a similar result was recently obtained by Goddyn [16], for the

double cover conjecture:

Theorem 9.4. Every minimal counter-example to the double cover con-
jecture has girth at least 7. ||

Theorems 9.3 and 9.4 are interesting in view of the fact that no snark
with girth at least 7 is known. It is conjectured in [28] that such snarks do

not exist.

10. Conclusion

In this chapter we have presented a brief survey of a rich class of
problems which are rather strongly interrelated—the class of nowhere-
zero flow problems. The basic problems appear to be difficult, but a
number of reduction results and special results have been obtained, and
more can be done in this direction.

To conclude, we mention some relationships between nowhere-zero
flow problems and other areas of research.

The existence of nowhere-zero flows provides tools for obtaining cycle
covers of graphs (that is, families of cycles covering all edges) of short
total length. For instance, it is proved in [2] and [46] that every bridgeless
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graph G has a cycle cover of total length at most 3|E(G)!. It is shown
in [38] how some improvements could be derived from the validity of
various B-flow conjectures.

Recently, Bouchet has initiated the study of nowhere-zero k-flows in
bidirected graphs, proposing a ‘6-flow conjecture’ and proving a ‘216-flow
theorem’ [7]. This work has been pursued by different authors ([12], [29],
[59]), and the universal bound of 216 has been reduced to 30.

Finally, nowhere-zero flow problems have natural extensions to matroids
and chain groups. For instance, the double cover conjecture can be
viewed as a problem on binary matroids, and the 5-flow conjecture is a
special case of the study of the critical exponent of matroids representable
over GF(5) (see Chapter 3 and [55]). It is likely that a significant advance
on nowhere-zero flow problems would have interesting repercussions in
the study of more general matroid problems.
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