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Abstract

We present some results about the topological structure of con-
figuration spaces of arbitrary polygons in the plane, i.e. poaint sets
(Pry Py, ..., P) in R? with given distances [P; = Pij1]. The configu-
ration space of such a polygon is the set of all realizations, modulo the
group of proper isomnetries of B2, We first describe the local structure
of these spaces. We prove that the configuration spaces are orientable,
we compute the number of components and we present a simple com-
binatorial criterion for connectedness. Furthermore we show how Lo
compute the Buler-characteristic and we give a complete list of the
possible types of configuration spaces for planar pentagons. Our re-
sults constitute an extension of a result found by T.F. Havel about the

configuration space of the planar equilateral pentagon linkage (see the
theorem in the lutroduction below).

1 Introduction

Point sets with fixed distances between certain pairs of points appear in
many branches, so in chemistry (molecules), mechanics (bar mechanisms,
linkages) and architecture (frameworks). In the abstract mathematical world,
we can assign to these structures a weighted graph ¢ = kW), w: kb —
R.. V isthe set of atoms in a molecule or the set of flexible joints of a bar
mechanism. An edge of the graph suggests that between the corresponding
atoms there is a force retaining the relative position of the atoms, or that
there is a rigid bar between the corresponding joints in the mechanism.

Given a weighted graph as above, at least two important questions arise:

1. Is there a realization ¢ : V — RY such that |ip(v;) — e(v;)] =
w({viv;}) for all {v;v;} € E ? (Realization problem)



2. What is the set of all possible realizations (modulo the group of proper
isometries of RY)? (Descriptlion of the configuration space)

Above all, we investigate the second question for the simplest nontrivial
case: cycle graphs in R2.

The starting point is a rather surprising result (see (8] or [4] p. 199):

Theorem (Havel, 1987) Thc topological structure of the configuration
space of the planar equilateral pentagon linkage is that of a compact, con-
necled and orientable two-dimensional manifold of genus /4.

In the proof, the oriented area of the pentagon is used as a Morse function.
With the help of this function it is possible to reconstruct the configuration

space. Unfortunately, for arbitrary polygons, the oriented area is very hard
to handle. '

Gibson and Newstead studied planar 4-bar mechanisms with methods of
algebraic geometry (see [7]). They found that for planar 4-gons, the confi-
guration spaces consist either of one or of two circles (if they are manifolds).
These results furnish the key for our new method: These two compact, one-

dimensional manifolds appear also as level surfaces of the height—{unction
on a two-dimensional torus (sce [10]).

So we consider a higher-dimensional torus and define a simple Morse function
on it in such a way that the configuration space of a given p'olygou appears
as level surface of this. function. Then we use a surgery technique for level
surfaces to reconstruct the configuration space.

In Section 2 we give exact definitions. In Sections 3 we mention the main
results and we prove them in Section 4. In Section 5, we explain how to
compute the Euler-characteristic of a configuration space and we present
another proof of Havel’s theorem

2 Definitions

Although we will deal ounly with cycle graphs, we define the configuration
space of an arbitrary weighted graph.

We identify a n-tuple of points (P, Poy..oy Py) in R with an element of
(RY)* = R¥ and define an equivalence relation ~ as follows:



(P oy, 1) ~ (Q4,Q, . H@u) == Thereis a (proper) isometry
v of RY with (P, Py,..., 1%)
= (rQl ) 7'Q'Z) R 7'Qn)

Let G be the group of (proper) isometries of R¢and N = {1,2,...,n}. We
sel X4 := R/ ~ and consider the map & X4x X4 — Ry defined by

AIPL QD) = min max |Pi= g0l .

It is not hard to prove that (X“, J) is a metric space ( see [9]).

Definition 1 Let G = (V, E,w), w:E — R, be a finite weighted graph.
A (not necessarily injective) map ¢ : V. — X4 with le(vi) = ©(v;)] =
w(vi, ;) Jor all viv; € E is called a realization. The sel of all realizations
is called configuration space of G and is denoted by X é‘,..

Note that we take X4 instead of RY. So X & is aset of equivalence classes, but
we will often identify a representative with its class and write (P, Py, P
when we mean [(/, 1,..., ).

Notation: A weighted cycle graph ¢, can be characterized by a "length-
vector” | = (Iy,1,,...,1,) delined by {; := w({vivig1}). In this case, we
denote the associated configuration space by X { instead of X & . Here and
in the following, indices are computed modn.

3 Results

We consider realizations in the plane. Let | = (hyly... 1) € R4, >3

be a length-vector and let X { be the configuration space of the associated
cycle graph.

For a general weighted graph it is a difficult problem to decide whether a
realization in L2 or Y exists, For cycle graphs, the answer is very simple
and we have a good cvharacterization of the set of all length-vectors for

which the configuration space is not empty.



Assumption 1 1. Necessary and sufficient conditions for the existence
of a realization in R? are

n
I < Z lyy 1=1,2,...,n
o

2. The sct of all length-vectors | == (hiy 2y 0y) for which o realization
czisls is a cone A" generated by (3) vectors €9 € R® defined by

61'."=={ 1, fk=iorifk=j

0o, elsewhere

t

In the following, we assume that ! is a point of the cone A" described above,
so the configuration space is not empty.

X} is a subset of the metric space X* (see Section 2). In the next two
theorems we describe e-neighborhoads of a point (Pl =[(P, Py..., )] in

X2,

Theorem 1 Let (P, By,..., P,) be in XP with dim aff {Py, Py, ..., P} =
2. Then there is a neighborhood of (P00, 1) in X} homeomorphic to
Rr-3,

Theorem 2 Let (P, Py,..., Py) be in X? with dim aff (P, Py, P} =
1. There czists a neighborhood of (P, Py ..., PY) homeomorphic to a cone
defined by

n—1

Z ozl =0

=2
The number of coefficients with «; < 0 can be interpreted and easily calcu-
lated as an indez of a Morse function (sec Lemma 8 in Section j ).

The next theorems contain some general results about the global structure
of X2
‘ .



Theorem 3 Letl = (Iy,l,,...,1,) be fiz. If

:l:ll ’I'iIZ“l'""l‘:tln;éO

Jor any choice of the signs, then X2 is a compact and orientable (n - 3)-
dimensional manifold.

Theorem 4 Letv : N — N be a permutation of N = {1,2,...,n}., We
setl, = () bozy - - o lu@y). Then Xii is homcomorphic lo X2,

Theorem 5 For fized I, the space X 2 consists of at most two topological
componcnls.

If X} has two topological components, then these components are'manifolds
and they are diffeomorphic.

From theorem 4 we know that the order of the li’s doesn’t matter. So we
can assume ly < Iy <...<!,. The next result is very surprising:

Theorem 6 Forl = (I),l,,...,1,) with |, < I, S .. Sy the space X7 is
connected if and only if l,_y + ly_y < Iy + b+ eilya+1,.

It is easy now to see that for example the vector | = (e,¢,...,¢, LL,1)e
(R4)", (e small), gives us a disconnected configuration space for any n > 3.

Using Theorem 4,Theorem 5 and Theorem 6, we can give a complete list
of the possible Lypes of conliguration spaces for planar 5 -gons (if they are
manifolds).

o |



Theorem 7 We assume ly < Iy < ... <ly and scl ¢ := hdtlogtls+1+15.
There are siz possible types of configuration spaces Jor planar 5~gons:

XEis a 2-sphere <= £ < |y + 15,
Xlz s a 2-lorus <= ;415 < % <ly+1g,
X} is a surface of genus 2 <= Iy lg < g <wmin{ly + 2 + Is, I3 + I5),
X,2 s a4 surfuce of genus 3 <= Uyl < 5 <ly+ s,
XP is a surface 0s genus 4 <> 44 g < 5
X,2 is undon of lwo 2-tori <= I+ ly+ 15 < ‘5

4 Proofs

Proof of Assumption 1

1. The conditions are of course necessarily.

Let [P] € X,"". Sinee Iy <y -Fly-- o -4y and { fly 4 oee F lp-r 2 1y,
we find k€ {2,3,...,0~ 1} with

Dot obbeey S Dblga b okl and with G 4l 2 Dy Hlipate - .

So there exists a triangle with sides a 1= Iy + ++- + lg=1y, b= I} and
¢:= lggr + -+ -+ 1. With the appropriate intersections of the sides of the
triangle, we get a realization in X?.

2. It is casy to sec, that for any vector in A™ the couditions of 1. hold. In

order to show that the conditions are also sufficient, we use induction on .
For n = 3, we have the identity

1 1 1
(hylayls) = 5(114-12—13)(1, 1, 0)+-2-(11-12+13)(1, 0, 1)+-§(—11 +2+13)(0,1,1)
with positive coordinates on the right-hand side, if S+l withi 3£ 5 #
k# i
Suppose the statement is true for n — 1. Let | = (li,a,. .., 1) be a vector
which fulfills the conditions above. W.lo.g we assume Iy <l <. < U,..

We define v, 1= (I; — pi, 1y, 1y, - - o1, by = 1) and chooso Jto 2 0 in such o
way that the conditions above hold for Vg, but motl for v, pu > .

Two cases are possible: Either {) — pg = 0, then Vo 18 in A" by induction,
or we have

ln—l = (ll - /,l.o) Fly4 by + (In - l‘o)'
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(Remember that [; < ... < 5,.) In this case we set

Vg = (ll-/tu)(l,U,...,O,1,0)+l-),(0,l,0,...,0,1,0)+
+l-2(0,...,0,1,1,0)+ (I — #0)(0,0,...,0,1,1).

With [ = v, ++ po(1,0,...,0,1) we see that in both cases ! is in the cone
A", a

Proof of Theorem 1

Let I = (h,ly,...,1,) be a point in the cone A™ (see Assumption 1),

To [(Py, Py,..., P,)] € X} we associate the polygon P = (P, Py,..., P,) in
R?. The straight lines FiPigq suggest the lixed distances between P; and
Piy1. We have to consider triangulations of the polygon P. Tor all these
triangulations, the vertices of the triangle belong to the set {P,,P2,..., P,}.
The following Lemma 1 proves the existence of a special regular triangula-
tion.

Lemma 1 For P = (P, P,,...,P,) € X? with dim aff {Py, Py,..., P} =
2, there ezisls a lriangulalion (t1,.. . tuez2) of P such that no triangle t;
is degenerate (i.c. for cuery triangle lhe affinc hull of its vertices is two-
dimcusional).

Proof: 3 k € {1,2,...,n0} with dim aff {Pry Prg1, Py} = 2. We as-
sume k = 1. If dim afl {P, P, Py,...,P,} = 1, then Py Ps,...,P, €
aff {Py, Ps}. Since P; # P; we have dim aff {P;, P3, P4} = 2 and since
P, # P, we have dim aff {P3,Py,...,P,, P} = dim aff{ Py, P, P} = 2.
So we can always find j € {1,2,...,n} with

dim aff { Pj_y, Pj, Pj41} = 2 and with dim aff {Py,..., Pjo1, Pjyr,..., P} =
2

By induction there is a regular triangulation. a

Proof of Theorem I: Lemma | shows Lthe existonce of a regular triangula-
tion of the polygon (14,..., F,). We can take the (n — 3) diagonals of the
triangulation as local coordinates for a neighborhood of (P, Py,...,P).
Theorem 1 follows. m]

-1



In order to prove the following theorems, we embed our configuration space
X} in a higher dimensional torus and define a simple Morse function on this
torus. X}? will appear as level surface of this Morse function.

With a reconstruction technique (surgery) we can, in principle, build up X}
starting with a sphere.

First we describe the embedding of X} in a torus and define the Morse
function. For basic notions of Morse theory see [10).

We parametrize (P, P,..., P,) € X} with polar coordinates

P = 0 . P= heosay +lycosay + -+« + iy cos g
T o) T hsiney +lgsinag + ++ 4 Ly sin @,

1=23,...,u
(Later on we set o equal to 0 (or ), we write a; for technical reasons.)

Now we forget the condition |/ — Pyl = ly. The angles ay,...,a,_; take
all the values in [0,27). So we can interprot these angles as parameters for

the (n — 2)-torus T"-2,
We define the function D, : 7"~? — R by

Dn(am .. -,an—-]) = ""|Pl - Pnlza

Obviously, we have X} = DY (~12), and thus X} is indeed a level surface
Of Dn- )

The following Lemma 2 is crucial.

Lemma 2 We set T2 = {(ay,...,0,-1) € T""2? Dy(ag,...,ap-1) <
0}
Then D, is, restricted to Tn—2 , @ Morse function.

Remark: T2 is a connected subset of 7"=2.

Proof: D, is C*. We have to show that the critical points of D, are
non-degenerate (i.e. the Hessian is not singular).

D, = —(hicosay +lacosag+ -+ 1,7 cos ay—1)?
~(hsinay + lasinog + -+ 4 Ly sin -y )2

8



From the conditions %%? =0, (1=2,3,...,n—1) we obtain n—2 equations
(hcosay +lycosay + ...+ I,y cos Q)i sin o
= (lisinay +laainey 4 ... 4 Ly sin -1 )i cos o
We add {f sin @) cos o to the sum of these (n — 2) equations and find

(licosay + lpcosag + ...+ 1,,_y cos ay—1)ly sin ay
= (Lisinay + lysinag + ...+ 4, sin 1)l cos ay

There exists an isometry of R? such that a; becomes 0 or 7. So we get
lisinog + lysinay + ...+ I,y sin ay-1 =0

Since P, # P we have (licoson 4+ lacosay + ... + by cos Qy-1) # ‘0 and
finally sine; =0, i=1,2,...,n— 1.

So the critical points of D,, have an easy geometrical interpretation. All the
angles a;, ¢ = 1,2,...,n - 1 must be 0 or w, i.e. the critical points are

characterized by dim afl(£y, 1,..., )= 1.
Now we show that the determinant of the matrix

4 - atp
H:= ( t')(v.’i;ﬂj

)i,j=2,...,n-l
is not zero at critical points.
The second derivatives of D,, are

0?D,, ) ) ‘ J .
Baido; - —2lil; sin a; sin @; — 2431, cos a,.bz;(sm a;)

. d
=26l cos  cus v o 204, sin a7 (cos ;)
Oaj
with licosa, = —(ljcosay +lycosag + +- +la-1cosapy);
lusine,, = —(lisina; +lgsinag + -+ + ln-15inay_y)

For critical points we have (by setting ¢; := cos ; = *1)

9D, . J . e e
Do = —2lieie5 — Zl.l,‘s,.aq(sm o), 1,7€{2,3,...,n—1)
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Now we have to compute the determinant of fI. H is given by

_A% - AZA" “ee “"A'}A" v "‘A'}A"-l
II = —'A'IA" e —A? - AiA“ o e _/1iflu-—l

_A2Au-'l R "AiAn—l e "A;)',_1 - An—l An
where A; 1= /2le;.
Using elementary matrix operations (sec [9]) we obtain

det H = 2" 2y« by yey83- - £ymq(lrey + logg + -+ - + by1€n-1)""3,

Since D,, < 0 we have (hey + lyeg + -+ + ln_1€u-1) # 0. All terms in the
product are different from zero and so det ff # 0. 0

Now, we want to calculate the indices of the Morse function D,, for critical
points. For a definition see [10]).

In our situation, the indices of D, have a very simple geometrical interpre-
tation (sec Lemma 3 below).

With regard to the following advance, we focus on critical points with
(118] + 1282 + e + ln—]a,;—]) > 0-

Lemma 3 Lete = (e1,¢3,.. «»yEn—1) be a critical point of the Morse function
Dn’ ‘

Then the indez of D,, fore equals the number of -1 in the set {e1,. 00 €u ).

Proof: Let I = (I1,l3,...,1,) be given. From a theorem of Jacobi we know
that the index of D,, at the critical point € is equal to the number of varia-
tions of sign in the sequence 1,U',U?,...,U" 2, where U7 denotes the sign
of the j-th principal minor of the matrix }f (see [6], p. 303-304).

With the same elementary operations as above, we obtain for the j—th prin-

cipal minor det H7 of H

det HY = 2llz-. lj41e065 - - Eirr(her 4 F lgega Y
(hey + li2€j02 + Liys€jpa + o+ Lyi€0-)

10



and therefore

Ul = sign det H7
= €263 €jq sign(hier + laegan + lGaasgipa + o lioi€asy),
G=1,...,n=13)
U2 = geg- 6pey

Some of these minors of // may be 0, but we can casily see that never
lwo conseculive minors vanish. In this case we can apply the so-called
Gundenfinger-rule which allows us to drop zeros in the sequence 1, [/, U?
Un-'l'

We consider two cases:

3oy

1. There exists i € N with l;e; 4 liv1€i41 # 0
2. Le; - l.'.|.1€,‘.|.| =0, 1€N.

Case 1. Induction on n. For u = 4, a simple examination of the few possible
cases shows the correctness of the statement.

We assume that for n — | Lemma 3 is true.

Since hey + laeg + -+ + lu_j6pnq > 0, there must be 7 € N with l;e; +
liz1€i41 > 0. Without loss of generality we assume i = 7 — 2, Setting s :=
li—260—2 - Lucyeny > 0, we see that for the sequences 1, UV, U2, Un—?
resp. 1,V1, V2., V"3 of the principal minors for (hylzy ooy lumaylyner)
resp. for (h,lz,...,ln_3,8) we have Ui = Vi, i=1,2,....n-5

For (1],12, ey l,,,._z, l,;...]) we find

Ut = g3 sign(her + li-26u-2 + lu-1€4-1)
U3 = sign(hie + hi-1€4-1)
Ur? = E1€n-1

and for (I1,1,,...,0,_3,5) we have

yr-i En-asign(liey + 8) = U™~
yr-3 = E1Ep-2

i

(To simplify matters, we have multiplied both sequences with ey -+ -£,,_,.
The number of variations of sign doesn’t change.)
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We sel € = (€1,€2,...,En-3,En—2,Eny) and € = (€1,€2y...,En=3, ).

The numbers Ne resp. Nz of =1 for the two e-vectors are conneeted by the
formula

1 1
Ne = Né' -+ T(l - 51;—2) + :"(l - En—])
2 2 :
and again an examination of a few possible cases shows the correctness of

the Lemma for n.

Case 2. llere, the index can be calculated directly. We have
€2k = =1, €gpp1 =1

and can assume that Iy =l =...=1{, = 1. Such configurations exist only
for even n because of (g + lyeg 4 -+ + lu_1€n-1) > 0. So N, =%~

On the other hand U7 = €263+ €541 sign(eq + €542 + Eita+ b enar)

and U2 = g1ey--26, = €2€y-€y—y. A straightforward calculation
gives us

Ui = (-—1)% I if 7 odd
(—-l)%“ if 4 even

and the sequence 1, U, ..., U™ 2 hecomes 1, ~1, —1, 1, l,—-1,-1,.. .,(—l)u’;—?.
So the index equals

n
-1 =N,. o
5 N

Example 1: At the point ¢ = (e1,€3, .- yE0m1) = (1, 1,44, 1) we have

UVi=1,j=12..0n-2.

There are no variations of sign, all eigenvalues of H are positive, the index
is 0.

Proof of Theorem 2

Let ¢ = (e2,€3,...,€n-1) be a critical point of D,. The Lemma of Morse
(see [10]) guarantees the existence of local coordinates Y2,Y3y oy Un~1 IN A
neighborhood U of € with

Du(€) =Du(e) ~v3 ~ 43—~ vy + Bpa + -+ 12,

[2



for £ € U. llere Ais the jndex of the eritical point.

We intersect U with the level surface through the eritical value Dy () and
Theorem 2 follows. 0

Proof of Theorem 3

The fact that X} is & manifold follows casily from Theorem 1. ‘Ihe ori-
entability of X,2 is a consequence of the fact that the torus 72, in which
our (n — 3)-dimensional configuration space is embedded, is orientable. O

Proof of Theorem 4

It is enough to prove the statement for a transposition v = (5,5 +1). We
assume i = 1 and define the map ¢ : X? — X2 in the following way:

To (P, Py, ..., F,) € X} correspond via p the configuration (P Py, P e
X? with

13 cos a
. . . ; . )‘I - 2 2
Pi=F, i=13,4,...,n and with J ( I, sin g )

Points with cone-neighborhoods are mapped on points with cone-neighbor-
hoods of the same index (see Lemma 3).

Let P in X be a point with dim aff{ P}, P,,.. ., P.} = 2 and set P! := @(P).
We show the existence of a triangulation of the abstract n-gon such that the

corresponding triangulations of P and P’ are regular in the sense of Lemma
1.

If we can choose the diagonal PPy = P!P) for the triangulation, we are
done. If not, then we have either

dim a,ff{Pl, P3, P4, veay Pn} =1
or
dim afl{ P, Py, P3} = dim aff{P, P}, Py} = 1.
In the first case the only possible triangulation of P has the diagonals

2Py, Pyl ..., Pa Py, the only possible triangulation of /' has the diag-
onals Pirg, Pyby, ..., PPl



For the second case we use induction: If I = I, the Theorem is proven,
So Py and Py do never coincide. For n = 4 the diagonal 1% 1% resp. Py Py
furnish regular triangulations.

For n > 5 we choose a point I = P{ ¢ all{ P, P, P3}. We Lave

dim all{Fy, Py, P, Pty o, P) = 2 and dim all{ Py, Py, Py, .., P} = 2.
The same for P/, By induction we find a triangulation with the required
property.

1t is clear that ¢ is a homeomorphism. ]

Proof of Theorem 5

From the proof of Assumption 1 we know that there exists a triangle with
sidesa:=l + - lpq, b:=I;and ¢:= 1+ oo+ L. ¢

For the partial configuration (P, I, . ., Pe) and  (Pegr,y Pegzyen ., P, Py)
we have

k—1 k-1
2-50) < |A-P] < SOU
emax 10,24 2:,: V< IA-R| < ,2:; j

resp,

k1Y n
_omax  {0,2li— Y L} < |Pep-PR| < X
tG(k-l‘],...,’ll) I=I"'|" J'—-"'*"

If we fix P, and Pgyq in the plane, then the point P, lies in a domain of the
plane which is bounded by two pairs of concentric circles with centres 1
resp. Pry1. In X7 there are two configurations Q = (@1,...,Qn) and Q' =
(@1, Q) with [Q1~Qul = 1@} = Q4| = hitlat++ljmy, [Qp—Quaa] =
IQi- Ik+]| = lk and with lQl "QL’+1I = lQII —QZ-HI = lk+] +lk+2 +-. '+l".
(Q and Q' can coincide.)

With an isometry we get P, = ,, = Qf and Pryy = Qpyq = Ql41- Then @y
and @ also lies in the intersection of the two pairs of circles. If we stretch
the partial configurations (P, Pay. ooy ) and (Prrs Prgay ooy Py Py), we
can find a path from o @ or to Q' in X{. This proves the first part of
the Theorem.

Set I = (l,l,,...,1,). There exists k € {2,8,...,n— 1} such that P, lies in
the intersection of two pairs of concentric circles with centres Py, resp. Pryq.
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X} consists of two components, say X; and X3, so the intersection of the
two pairs of circles has also two components. Lor every configuration in
Xy the point P; is an inner point of one of the two halfplanes bounded by
aff{ P, Pry1}. So Xi is a manifold (see Theorem 1). To a configuration in
X1 we associate the mirror image with respect to aff{ P, P41}, This is of
course a dillcomorphism. 0

Proof of Theorem 6

We use the Morse function of Lemma 2.

We forget the condition |P; — P,| = l,, and consider the function D, =
—|P1 = Pu|* on T"~%. The configuration space DIV (=(hi+4la4- 4 1,1)%)
consists of a single point. The index of D,, at this point is 0 (see Example
1).

We decrease the distance between Py and P, up to | - P = 1,.

If no critical points appear, then the type of the configuration space is
constant (sec [5], p. 85).

If we pass through a critical point, the type of the coufiguration space
changes depending on the index of the critical point and we have to ap-
Ply a reconstruction technique (surgery) (see [5]).

The dimension of X? is n — 3. For making the configuration space discon-
nected, we have Lo do surgery with maximal possible index (1n—3). The first
critical value with this index is {,,_; Flug—=lp—3—+--—l3— ;. So we must
have l,,_, Flog—lyz—-- —=la—ly > 1, or byl > R P s of +l
for a disconnected configuration space. On the other hand, if I,y + I,y >
htla+- 4 lymg+1,, then we consider the triangle APy—g Puey P,. We have
11 + 12 +-ot lw—!l + ln-l < ll + l'l R lu-—-’l + In < ln—-l + ln-'). S ln-‘l + lu
and therefore l,—; — l,_3 < I, — ly—z — +-- =11, There is no possibility to
connect the triangle AP, _, P,_; P, with its mirror image, =]

Remark: R. Connelly found a proof by induction for the criterion of
Theorem 6 ([3]).

Proof of Theorem 7

W.lo.g we assume [} < I, < Iy < Iy £ I5 (see Theorem 4). We look for

critical points (g9, e3,€4) of Dy on the torus 73 with Lievtlhead lssy+lyeq >

15



Is. There are only six such points

(61)52153)54) = ('|'17+l)+1)+l) with IP'I - [)Sl = +11 + 1'2 + l3+ l‘l
(61,62,63,64) = (-—l,—i-l,-i-l,-l-l) with [P — Psl= =y + 1y + I3 + ly

(e1,€2,63,64) = (+L, =L+, +1) with |P) = Py| = 1) — Iy + Iy + 1y =:
(€1 e0,63,64) = (1,41, ~1,4-1)  with [P = Pg) = 41, Fly =y Uy =
(e1,63,83,64) = (+1,+1,4+1,=1) with [Py = Po| =+l 4l + by — Iy =
(e e2,€3,64) = (=L, =1, +1,41) with [P = Ps| = —ly = Iy +lg + Iy =

For the critical point in the level surface D~1(-a?) the index is 0, for b,c,d,e
the index is 1 and for f the index is 2 (see Lemma 3).

The conditions Iy < ... < I5 implies a partial order of the set {a,b,¢,d,e, f}

of critical values. In our case, this order is givenbye<d<e<b<aand
f<e

Now we decrease the value of Dy to —I2. If we pass solely through critical
points of index 1, at every passage a handle is added and the genus of the
surface increases by 1 (sce [5)). Obviously, we can have at most four sucl
handles.

If we pass through the critical point of index 2, we must have Iy < f =
=l —=la+l3414. Thisis exactly the condition for a disconnected configuration
space.

A straightforward calculation gives us the condition d < f < e So we have
Lo pass the two critical values b and ¢, cach with a critical poiut ol index I,

before passing f. Since the two components have to be diffeomorphic, they
have to be two tori.

A further critical point of index 1 is impossible.

Finally we give an example of a length--vector for any type of configuration
space: The vectors (4,5,6,7,15), (4,5,6, 7,13), (4,5,6,7,11), (4,5,6,7, 9),
and (4,5, 6,7, 7.5)furnish surfaces of genus 0, 1,2,3,4,the vector (1,1,3,3,3)
has a disconnected configuration space. w]
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5 Further results

1. The Euler—characteristic of X}

Let U= (l1, 12, ..., L) be as above. With the presented method it is possible
to compute the Euler-characteristic of X},

7_even; X,'z is an odd-dimensional compact manifold and so X is always (
(see for example [2]).

nodd: X? is level surface of the function D, : 7"=2 — R.. Cousider the

set M- o = {z e T"? . D, < 12}, Obviously X2 is the boundary of
P — n {
M,

The Euler-characteristic of M=% is given by
X(M™H) = 3= 1)ke
k

. e . - . Y]
where ¢ is the number of critical points of index & in M=% (see [5)).

Itis a well-known fact that x(X?) = 2x(M =) (sce for example [2)]).

2. Havel’s example

Using the Morse function D,, we can give another prool of Havel’s ‘I'heorem
concerning the configuration space of the equilateral pentagon linkage (see
Introduction).

I=(1,1,1,1,1). The function Ds = —|P; — Ps|? has in
Dt ([=(t + Iz + 15 + 14)?, —(Is)?)) = D;Y([-4%,-1%))

the following critical points: One critical point of index 0 is in the one-point
level surface D;'(—16) and four critical points of index 1 are in D3Y(-4).

If we increase the value of Dy up to —12 (i.e. if we decrease | Py - Ps]), then
the single point D7 '(~16) becomes first a sphere and after the crossing of
the four critical points of index 1 the compact surface of genus 4, To every
critical point of index | corresponds one handle. If several critical points of
D,, lie within the same level surface, then the reconstructions can be done
independently (see [1]).

Final Remarks: 1. Uunfortunately, in the general case, the surgery tech-
nique doesn’t give a precise description of X £ because we don’t know where
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the reconstruction has to be done. Even for dim X? = 2, different recon-
structions of the same index can produce different manifolds. Nevertheless,
the presented Morse function is very useful. In some cases, it's possible
to decompose the configuration space in a product of lower-dimensional
sphieres and/or tori.

2. For polygous in R®, the configuration space of the chain (hylaye o ly)
is no longer a manifold, so we cannot define a Morse Function in a similar
way. But there is some hope that our technique will work for other types of
configurations in R3.
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