[y

SIAM J. Comput

© 1994 Society for Industrial and Applied Mathematics 43
Vol. 23, No. 1. pp. 170184, February 1994

012

THREE-DIMENSIONAL STATISTICAL DATA SECURITY PROBLEMS*
ROBERT W. IRVING! aNp MARK R. JERRUM!

Abstract. Suppose there is a three-dimensional table of cross-tabulated nonnegative integer statistics,
suppose that all of the row, cclumn, and “file” sums are revealed together with the values in some of the individ
cells in the table. The question arises as to whether, as a consequence, the values contained in some of the oth
(suppressed) cells can be deduced from the information revealed.

The corresponding problem in two dimensions has
put., 17 (1988), pp. 552-571],
“compromised” cells, and for ¢
the information revealed. In thi
NP-complete.

been comprehensively studied by Gusfield [STAM J. Com
who derived elegant polynomial-time algorithms for the identification of any suc
alculating the tightest bounds on the values contained in all cells that follow frog
s note it is shown, by contrast, that the three-dimensional version of the problem i

It is also shown that if the suggested row, column, and file sums for an unknown three-dimensional table
given, with or without the values in some of the cells, the

the given sums is NP-complete. In the course of proving these results, the NP-compiete
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which are of some interest in their own right, is established.
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dimensions, raised as an open problem by Gusfield [3], and show that, as is the case in a varieti' o
of other contexts, problems that are solvable in polynomial time in the two-dimensional case
become NP-complete when extended to three dimensions.

Consider a three-dimensional table D, of sizen x n x n, of nonnegative integer values
DG, k), (1 <i,jk < n). The table entries D(i, J. k) for fixed i,k and 1 < j<n
constitute a row of the table, for fixed Jokand 1 <i < n acolumn of the table, and for fixed
i, jand 1 =< k < n afile of the table.

Envisage that a particular table D represents a collection of cross-tabulated statistical
data, and that the row, column, and file sums of D are to be disclosed together with the values
contained in some of the cells. However, other cells may contain sensitive values that are
therefore to be suppressed; the question arises as to whether knowledge of the row, column,
and file sums together with the disclosed cells will (a) essentially fix the values of one or more
of the suppressed cells and (b) allow such values to be deduced in reasonable (say, polynomial)
time (say, by an adversary). A suppressed cell that has the same value in all legal tables, i.e.,
all tables satisfying the row, column, and file sums and containing the disclosed values, is said
to be compromised. A suppressed cell that is not compromised is said to be protected.

In the case of the corresponding two-dimensional problem, Gusfield [3] gives a O(n?)
algorithm to identify all the fixed cells and to calculate their values. In [3] and [4], Gusfield
also describes polynomial-time algorithms to calculate the tightest bounds on the protected
cells. As part of this work, a O(n?) algorithm is presented for the identification of a legal
solution in the two-dimensional case. In this context, it turns out that the obvious necessary
conditions for a legal solution—namely, that the sums of the row and column sums should be
equal and that each row and column sum should be at least equal to the sum of the disclosed
entries in that row or column—are also sufficient for the existence of a legal solution.
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By contrast, in the three-dimensional case, we shall show that the obvious necessary
3 two-dimensional conditions on the row, column, and file sums are not sufficient to guarantee %
s* tmlstence of a legal solution, and indeed that ‘the problem of determining whether a legal .
" solution exists is NP-complete. This result holds even-in the interesting special case in which_ | - s
stics. and all the cells are suppressed; in other words; if we are given the row, column, and file sums,
ndividual 3 and are asked whether a legal solution exists. We shall then proceed to show that the NP-
the other completeness of the existence problem also implies the NP-completeness of the problem of
i identifying compromised cells, at least in the general case where some cells may be revealed.
tJ.Com- 4 The NP-completeness proofs involve consideration of special cases that are equivalent to
I:"vz ::;Cr: 3 two-dimensional problems of Latin square construction, which are of some interest in their
coblem is own right. For instance, we show that a special case of the problem of the existence of a legal
4 solution is equivalent to the problem of constructing an n x n Latin square given independent
table are restricted choices for the various entries, and that this Latin square construction problem is

uble with 8 itself NP-complete.
nstrained =3 ) .
2. Formal statement of the problem. Throughout, we assume that, unless otherwise

stated, the row, column, and file indices 7, j, and k range over the values 1, ..., n wherever
appropriate. Suppose that for a given n x n x n table D of nonnegative integers, and for eachi,
/. k, the row, column, and file sums are denoted by R(i, k), C(j, k), and F(i, j), respectively.
In other words,
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.tistical : If we represent the set of suppressed cells by S, i.e., § = {(i, j, k) : D@, J, k) not
- values A disclosed}, then we can calculate the reduced row, column, and file sums, namely,
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a legal 2.1. Three-dimensional statistical data—Ilegal solutions (3DSDLS).
cessary 3 Instance: A positive integer n, nonnegative integer values R*(i, k), C*(J, k), and F*(i, ),
ould be and a subset S of N3, where N = {1,2,...,n}.
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(8) Y DG, j k) = C(ik),
i=1

) Y DG, jk = FG ),
k=1

where each sum is taken over values (i, j, k) € §?
It is immediate that, in order for a solution to exist, the sums of the R*, C*, and F™* val

must all be identical and satisfy constraints imposed by consideration of the two-dimensiona
“slices” of the table, namely, :

(10) D RGRH = Y FG)) (U=isn),
k=1 j=t

(an DIFG. ) = Y .CG R (=)<,
i=1 k=1

(12) Sl = SRGH (<ksm.
Jj=1 i=1

To see that these necessary conditions are by no means sufficient for the existence of
legal solution, we consider an example in which n = 2 and all cells are suppressed.
Example. It may be checked easily by exhaustive search that the 3DSDLS instance shown
in Fig. 1, in which the row, column, and file sums appear as labels on the appropriate arrows
admits no legal solution, although the necessary two-dimensional conditions are satisfied.

0 2

1 2
FIG. 1. An instance of 3DSDLS of size 4 with no legal solution.

In order to show that the 3DSDLS problem is NP-compiete, we shall restrict our attention
to a special case, which can be interpreted as the problem of constructing a Latin square
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glven restricted choices for the various entries. This special case involves setting R*(i, k) =
C*(j. k) = F*(i, j) = 1 for all values of i, j, and k. If we define

S, =1k, jk) eS}

then our task is to find a suppressed cell in each file, i.e., an element in S(Z, j), which can be
given the value 1, subject to the constraint that no two cells can be chosen from the same row
and 1o two can be chosen from the same column. It should be clear that this can be interpreted
as the problem of constructing a Latin square of size n x n where the choice of element in
position (i, j) is restricted to the set Sa, p).

2.2. Latin square construction (LSC).

Instance: A positive integer n, and for each i, j, a subset S(i, /) of {1,...,n}.

Question: Does there exist a Latin square X of size n x n such that, foralli, j, X(i, j) €
S, jH?

Example. The first array below constitutes a “yes”-instance of LSC of size 4, with
underlined entries indicating one solution. On the other hand, exhaustive search will reveal
that the second array constitutes a “‘no”-instance.

3.4 (L2 (L34 (L2 {1L,2} {1,3} 2.4} (3.4}
2.4 {13} (L2} (3.4 (3,4} 2,4} (1.2} {13}
L3y 24 12y (1,34 {1,2} (3,4} (1.3} (2.4}
1,2,3} 23 34 (123 3,4} (1,2} (3.4} {12}

Clearly a proéf of NP-completeness for LSC implies that the more general 3DSDLS
problem is NP-complete also. '

3. NP-completeness of LSC. In preparation for the proof of NP-completeness of LSC,
we need to investigate the conditions under which a Latin rectangle may be extended to a
larger Latin rectangle or to a full Latin square. The following result is well known—see [5]
or {7].

LEMMA 3.1. An arbitrary Latin rectangle of sizem x n (m < n) over a ground-set of
size n may be extended by the addition of n —m additional rows to form a Latin square of size
nxn.

In addition, we need a sufficient condition for a p x ¢ Latin rectangle to be extendable to
an n x g Latin rectangle. The following result may not be the best possible, but it will suffice
for our purposes.

LEMMA 3.2. Suppose that L is a Latin rectangle of size p X q with elements chosen from
a ground-set of size n, and suppose that n > p +2q — 2. Then L can be extended to a Latin
rectangle of sizen x q.

Proof. Suppose that the first j columns of L have already been extended to length n,
where 0 < j < g — 1; we show that the (j + 1)th column can also be extended to length n.

Consider a bipartite graph G with vertex set ¥ = UUW. In Uthereares =n—p
vertices, one for each of rows p + 1, ...,n in the rectangle, and in W there are n vertices,
one for each element of the ground-set, which we may take to be {1, ..., n}. Vertices u € U
and w € W are joined if and only if element w already appears neither in column j + 1 nor
in row u (and therefore w is a candidate for position (u, j) in the rectangle). It is clear that
the (j + 1)th column can be extended to length n if and only if the graph G has a matching
of size s.

By Hall’s theorem, G will have a matching of size s provided that, foreachk (1 <k <),
the vertices in every k-subset of U are collectively adjacent to at least k vertices in W. We
consider two cases:




. [
> forall/ (1 <
at least  — P~ k vertices in w. Nonetheless, since nn — P 22g -1, 9-1> and j > k

it follows that "=P—k>k and the required condition is again Satisfied.
Hence, by Hall’s theorem, G has a Mmatching of sjze $, and therefore the (/+ Dth colum

can be extended to length 7 as claimedq, o ; (b)
We are now i 5 Position to prove the NP-completenes; of our Latin Square construction
problem LSC.
THEOREM 3 3. Latin Square construction is NP-complete. foralll (1 </
Proof. Membershlp in NP js Immediate, for we heed simply guess an element x; J) € We assign
S(i, j)foreach i, J,anditis straightforward ¢ verify, in polynomiaj time, whether the resuitin g Now, for ¢

Square X is a Lagjp Square. must have X(»
P ce 4 (b) above, we -
the known NP-complete problem 3-Satisfiability (3-SAT)—see 2], i assignment, ev
Givenan instance of 3~SATinvo]vingm variables v, , V2, ..., Uandn clauses C .Gy, ... , of 3-SAT is sat
Ca, we construct an instance of LSC of size 2mn, which admits a Lagjpn Square if and only % On the ot -
if the original 3-SAT instance jg satisfiabje, Corresponding to each y; there are precisely 2n‘ particular satis

Sk=Dntry <z
S((k - 1)” +1 2) - {u/dv uk./ }’

* forall/ (1 <!
Stk - Dn +/1,3) = {uesy g, U},

Wwhere here, anqg subsequently, I+1is taken modulo in the range [1, n],
Forl <y = n we define

S(mn 41, 1) = {wir, wy,, wy},

where | | g forall/ (1 < !
=1t 3 Further, fc
“if the hth literal in c, i5 ,,, . .
Wy = ¥

Uy  if the hth litera] in G is 7. ) ,
where wy; 1s a
Finally, for all subscript pairs i, j not Covered by the above, we set SU, ) =
that the entjre construction can pe carried out in time bounded by a Polynomial j
of the origina] 3-SAT €Xxpression,
€ now have o establish that the derived instance of LSC admis the Construction of
a2mn x dmp Latin Square if and only if the original instance of 3-SAT has a satisfying
assignment.
Suppose first that the LSC instance admits a Lagjp Square X. For 4 given valye of k,
consider positions (4 — Dn+7 ¢ (I=<l< nl<t< 3) in the Square. It js Straightforward

Itis straig:
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Xk —Dn+1,1) =un,

(a) X(k—Dn+1,2) = up,

X((k = Dn +1,3) = ug 1

forall/ (1 <l <n),or

X({(k—Dn+1,1) =uu,

X((k - 1)” +11 2) = Uk i+1s

X({k—Dn+1,3)=1uy

forall/ (1 <l <n).
We assign variable vy to be true or false accordingly as Case (a) or Case (b) applies.

Now, foreach I, 1 <1 < n, we consider X(mn + 1, 1). Because X is a Latin square, we
must have X(mn +1, 1) equal to wy;, where wy; represents a true literal; otherwise, by (a) and
(b) above, we would have X(mn +1,1) = X((k — )n +1, 1) for some k. So, in the derived
assignment, every clause contains at least one true literal, showing that the original instance
of 3-SAT is satisfiable.

On the other hand, suppose that the instance of 3-SAT is satisfiable, and consider a
particular satisfying assignment. If vg is true in this assignment, we choose

X((k = Dn+1,1) =un,

X((k—~Dn+1,2) =uyy,

X(tk —Dn+1,3) = ugin1

forall I (1 < < n), while if v is false, we choose

X(k—Dn+1,1)=ug,

X((k—Dn +1,2) = up 41,

X((k—Dn+1,3)=1uy

foralll (1 <l <n).
Further, for 1 <! < n, we choose

X(mn +1,1) = wy,

where wy, is a true literal in clause Cj, and

X(mn +1,2) =uy 14,

uy 4y if vy is false,

X(mn+1,3)=

Uy 42 if vy 1s true.

It is straightforward to verify that this gives a Latin rectangle of size&m +1 ;n x 3{ Provided
(m — 1)n > 4, which can be assumed without loss of generality, the condition of Lemma 3.2
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is satisfied; this Latin rectangle can then be extended, first, to form a Latin rectangle of size
2mn x 3, and then, by Lemma 3.1, to form a Latin square of size 2mn x 2mn, bearing in mind .
that S(i, ;) = S for all outstanding positions (/, 7). 0

In view of the earlier observation that LSC is a special case of 3DSDLS, we have the
following corollary.

COROLLARY 3.4. 3DSDLS is NP-complete, even in the special case where all the row,
column and file sums are 1.

4. The special case of all cells suppressed. We now consider the interesting special case §#
of 3DSDLS in which all cells are suppressed. This special case is a natural problem in its own
right, which we refer to as the 3D contingency table problem (3DCT).

4.1 Three-dimensional contingency tables (3DCT).

Instance: A positive integer n, and for each i, J» k, nonnegative integer values R(, Ic),1
CU k), F(, j).

Question: Does there exist an n x n x n contingency table X of nonnegative integers
such that

2 =1 XG, j. k) = RG, k),
i=1 XU, j, k) = C(j, k),

2 k-1 XU, j k) = F(i, j)

foralli, j, k7
We now establish the NP-completeness of 3DCT even in the special case where all the R

C,and F values are O or 1. This we achieve by viewing this special case as a two-dimensional
partial Latin square construction problem, and by showing that there is a polynomial-time
transformation from the basic Latin square construction problem, already known to be NP-
complete, to this new problem.

The partial Latin square construction problem is specified in the following section.

4.2 Partial Latin square construction (PLSC).

Instance: A positive integer n, subsets R(/) and C(j)of N ={1,..., n}foreach i, j,and
a subset A/ of N2 such that @IRD=1k: G k) e N1, and (b) [ICDI=1lk:(k, j) e N

Question: Does there exist a partial Latin square X with

(1) X(i, j) defined for all (i, J)EN,

(1) X, ) e RGN C () for all such (i, 7)?

Note that it follows at once that, in a “yes” instance of PLSC, (a) k € R(i) = X3, )=k
for some J, and (b) £ ¢ C()) = X, j) =k for some i. e

Example. In Fig. 2, the sets R (i) and C( ) appear to the left of the rows and above the
columns, respectively; the set R(i) N C(j) appears in position (i, J); cells corresponding to
pairs (i, j) & N contain the symbol —; and the underlined elements indicate that this is a
“yes”-instance of the problem.

Our first objective is to show that the special case of 3DCT in which the row, column, and
file sums are all O or 1 can be interpreted as an instance of PLSC. Given such an instance of
3DCT of size n with row, column, and file sums R(;, k),C(j, k), and F(, ), define

N o ={Gp:Fa, p=1,
R(G) ={k: RG, k) =1},

CH=k:CQU K =1}
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(1,3} {1,2,4 (3,4} {1,2,3,4}

-

(1,2,3) — L2 |- 1,2,3

jw

FIG. 2. An instance of PLSC of size 4.

The set A represents the set of files with sum equal to 1. The sole position in such a file,
say, file (i, j), occupied by a 1 must correspond to both a row with sum equal to 1—i.e., an
element of R(i)—and a column with sum equal to 1—i.e., an element of C (). It follows that
a solution to the given instance of the special case of 3DCT corresponds exactly to a solution
of the derived instance of PLSC.

We are now in a position to establish the NP-completeness of PLSC.

THEOREM 4.1. The partial Latin square construction problem (PLSC)'is NP-complete.

Proof. Membership in NP is immediate, since we can guess an element in the ground-set
for each cell in the set A and verify in polynomial time that the various row and column
constraints are satisfied. To prove NP-completeness, we describe a polynomial-time trans-

formation from the basic Latin square construction problem (LSC), already known to be
NP-complete by Theorem 3.3.

Given a positive integer n and sets SG, ) S N={1,....n} forming an instance of
1.SC. we construct an instance of PLSC over the same ground-set N but of increased size n’ =
n+3,; 1S, ). Thesetof free cells A is defined as a disjoint union of n? component sets Nij.
which are constructed as follows. Let A, u be mappings from Nltof{n+1,n+2,....n}
satisfying

() pl, jy—rl, p+1= 1S3, ), foralli, j € N;

(ii) the intervals {[A(i, ), n(i, N : i, j € N} forma partition of the set n+1,
n +2....,n"}. (The notation [a, b] denotes the set of all integers not less than a and not
greater than b.)
Foreachi, jintherange | <i,j = n, define

where [ = A(i. j) and m = p(i, j); the set of free cells is then N = U,.j N;;. Figure 3is a
pictorial representation of a typical component set Nij.

We now specify the row and column sets. For k in the range 1 < k < n, set Rk) =
C(k) = N. For k outside this range, i.., forn+1 <k <n',leti, j € Nbethe unique integers
satisfying A(i, j) < k < p(, j), and set R(k) = C(k) = S, j)- It can be checked that R,
C. and N together form a consistent instance of PLSC. This completes the construction.
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I=x,pp (___ B "~"~~°

m = u(i, j)

nl

FIG. 3. The set N; j» and a possible numbering when S(i, N =1{1,2,3,4}.

To verify the construction, we must show that the derived instance of PLSC admits a

solution if and only if the original instance of LSC does. Suppose first that the LSC instance
admits a Latin square X, so that X\ @,

Square Y consistent with the derived
forall (i, j) e NV.

It is enough to describe the restriction of ¥ to a typical component set \/; 7, since A is a
disjoint union of such sets. Let / — AL, j),m = u(, j),and s = IS(, /). We consider the
domain V;; intwo parts: the square with missing comercell [/, m]x[l, m]—{({, )}, and the two
isolated cells (7, /) and (£, j). Ontheisolated cells, we simply take Y (i, =Y, j) = X(, 7).
In order to deal with the square, imagine that the missing corner cell is temporarily reinstated.
Define Y on this completed square so that the resulting s x s table of values forms a Latin
square over the ground-set S(i, j), with ¥ (,1) = X(, j). Then simply remove the cell (/, )

from the domain of definition of Y. Figure 3 is intended to illustrate how the restriction of Y

to the set AVj; might appear in the case S, j)=1{1,2,3,4).

It may readily be checked that Y(i, j) € R(i) N C()) for all cells (i, j) € N. The only
other condition we must verify is that Y is indeed a partial Latin square, i.e., that no row or
column of Y contains a duplicate value. By symmetry, we need only check this condition for
the rows. For i in the rangen +1 < i < n’, the fact that row i of ¥ cannot contain duplicate
values is clear by construction. So suppose 1 < i < n, which is the only other possibility.
Row i of the derived instance of PLSC contains precisely n cells that are elements of A" , and
these correspond to the n cells forming row i in the original instance of LSC. ¥ assigns to
each of the n cells in the PLSC instance the same value that X assigns to the corresponding
cell in the LSC instance, and these n values must all be distinct. Thus we have shown that the
PLSC instance admits a solution if the LSC instance does.

For the converse, suppose that the derived PLSC instance admits a partial Latin square Y
that is consistent with the various row and column constraints. We shall construct a Latin
square X consistent with the original instance of LSC. Consider the restriction of ¥ to the set
M/, for some | < i, J < n. As before, let] = A, yand m = pu(, J). The restriction of Y
d-set S(i, j) with the top left
) and Y (/, j) must both equal the missing element of
Y=Y, j) e 83, j). Now set X(, j)equalto Y (i, ).

instance of PLSC, i.e., satisfying Y (i, j) € RG)NC )
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Since the individual cell constraints are clearly satisfied, it only remains to show that
\ is indeed a Latin square, i.e., that no row or column of X contains duplicate values. By
symmetry, we need only check this condition for rows. But the n values occurring in the ith
row of X are equal, by construction, to the n corresponding values occurring in the ith row
of Y. Hence the ith row of X cannot contain duplicate values. We have thus demonstrated that
the LSC instance admits a solution if the PLSC instance does. This completes the validation
of the reduction. a

COROLLARY 4.2. 3DCT is NP-complete, even in the special case where all the row,

column and file sums are O or 1.

5. NP-completeness of identifying compromised cells. We now consider the question
of identifying the compromised cells in the general three-dimensional problem. In other
words, if we are given a particular legal solution to an instance of 3DSDLS, and we focus
attention on a particular (suppressed) cell, we wish to establish whether there exists a second
solution in which that cell holds a different value. We shall show that determining whether a
particular cell is compromised is also an NP-complete problem.

First, we give a formal description of the problem.

5.1. Three-dimensional statistical data—compromised cells (BDSDCC).

Instance: A positive integer n, a subset S of N3, where N = {1, ..., n}, nonnegative
integer values D(i, j, k) for each (i, j, k) € S, and a particular triple (io, jo. ko) € S.

Question: Does there exist a set of nonnegative integer values DG, j, k) (G, j, k) €9
such that

W) I, DU, j. k) =27, DU, j. b,

(ii) Z;;’l‘-D’(i, j k)= Z;f___l D, j, k),

(i) Yr_, DG, jok) = 24—y DG, J. ),

and
(iv) D'(io, jo. ko) # Do, jo, ko).
where all sums are taken over (i, j, k) € S?

As was the case with our earlier problem, we prove 3DSDCC NP-complete by considering
a special case that we can interpret in terms of Latin squares. Again, this is the special case
in which all the row, column, and file sums are equal to 1. As earlier, we can interpret any
solution to such an instance as a Latin square X of size n X n in which X(@i, j) € SG, j),
where S(, j) = {k: (i, j, k) € S}.

In fact, the NP-completeness of the Latin square nonuniqueness problem that we are
about to describe has a slightly stronger consequence than we need, namely, that the problem
of determining whether there is any legal solution, other than the one given, is NP-complete.
The NP-completeness of 3DSDCC follows at once from this, for if we had a polynomial-time
algorithm for the latter problem, we could apply it at most a polynomial number of times to
determine whether there is any other legal solution.

5.2. Latin square nonuniqueness (LSNU).

Instance: A positive integer n, subsets S(i, j) of N = {1,...,n}foreachi,j,and aLatin
square X of size n x n with X(i, j) € S(, J) forall i, j.

Question: Does there exist a Latin square X’ of size n x n such that X'(i, j) € SU, j)
foralli, j,and X' # X?

As observed above, the NP-completeness of 3DSDCC will follow from the NP-completeness
of LSNU. Before proving this result, we need some further notation and a lemma.

For arbitrary values of i, j (1 <4, j < 2n), we write p(i, ) for the valueof i + j — 1
taken modn in [1, n], so that, clearly, p(i, j +n) = p(i, j)-




180 ROBERT W. IRVING AND MARK JERRUM

LEMMA 5.1. For fixed i, let

(PG ), PG p+n) (1< j<n),
S() =

P, D, pG. j+ D +n} (n+1<j<2n).

Then the sets S(j) (1 < J < 2n) have exact

s(J) and t () defined by
P, j) =j=n),
s(j) =
P, j+ D +n n+1=<j<2n)
and
PG, )+n (1<j<n),
t(j) =

P, j) (n+1=<j<2n).
Proof. First of all we observe the following intersections:

SIINSG+nm) = {pG, ) =j=n),
SG+DNSG+m ={pl, j+ VD +n} =Jj<n),

where j + 1 is taken modn in [1, n]. So, if we choose A,

1) as the representative for S(1),
we are forced to choose p(,

2) + n as the representative for S(n + 1), which in turn forces
us to choose p(i, 2) as the representative for §(2), and so on, leading to the system s defined
above. On the other hand, if we choose p(i, 1) + n as the representative for S(1), we are
forced to choose p(i, 2n) as the representative for S(2n), which in turn forces us to choose
pli,n) + n as the representative for S(n), and so on, leading to the system ¢ defined above.

These are the only two possibilities. O

The following further lemma is analogous to the previous one.
LEMMA 5.2. For fixed j, let

{pG, 1), G, j) + n} (I<i<n,
NOE

{pG, p, pli+1, )+ n) (n+1<i<2n).

Then the sets S(i) (1 <i < 2n) have exact

ly two sets of distinct representatives, namely, s(i)
and t(i) defined by

p, j) (I <i=<n),
s(i) =

PG+ 1L )+n (n+1<i<2n)

and

P, )+n (1<ix<n),
1) =

p, j) (n+1=<i=<2n).

THEOREM 5.3. Larin square nonuniqueness is NP-complete.
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Proof. Membership in NP is immediate. We need merely guess values X'(i, j) € SU, j)
for each (i, /). and easily verify in polynomial time that X' is a Latin square, and that X # X.

To prove NP-completeness, we describe a polynomial-time transformation from LSC,
known to be NP-complete by Theorem 3.3, to LSNU.

Given an instance of LSC of size n with ground-set {1, ..., n} and subsets S@i, j) (1 <
i. j < n), we construct from it an instance of LSNU of size 2n, with ground-set {1, ..., 2n}

and subsets S’'(i, /) (1 < i, j < 2n) as follows.
We set

SG, HYLpG. j)+n) forl <i,j<n,

{pG, /), pG, j)+n} forn+1<i<2n1=2j<n,
S, )=
andl <i<nn+1<j<2n,

{pG, j), pi —1,j)+n} forn+ 1<i,j<2n
The Latin square for this instance of LSNU is defined by

pl, jy+n fori<i,j<n,

pl, ) forn+1l<i<2m1<j=<n,
X3, )=
andl <i<nn+1<j<2n,

| pi—1,))+n forn+1<i,j<2n.

Verification that X is a Latin square and that X (i, j) € S, j) for all i, j is straightforward.
We now show that there is a Latin square X’ with X'(i, j) € S(i, j) forall , j, and X’
nonidentical to X if and only if the original instance of LSC is solvable, and indeed if this is
the case then X'(i, j) # X(, j) forall i, j.
First of all, if the LSC instance is solvable, with n x n Latin square Y, Y (i, j) € S3, j)
(1 <i, j < n), we may choose

Y, ) forl <i, j<n,
pl, jy+n forn+1<i<2n,1<j<n,
X3, j)=

andl <i<nn+1<j<2n,

| PG ) forn+1<i, j<2n.

to give a 2n x 2n Latin square X7, with X', j) # X(, j) foralli, j.

On the other hand, let us consider the circumstances under which a different 2n x 2n
Latin square may exist. If for some (io, Jo), X (o, jo) # X(io, jo)s then it is immediate that
X', jH) # X, j') for some (@, jHywithl <i’ <n,n+1= j' < 2n. By Lemma 5.1,
it follows that X'(i, j) # X(, j) for alli,jin+1<i <2n1£=% j <2n). A further
application of Lemma 5.2 reveals that this is true also for 1 <i <n,n+1 < j < 2n. Hence,
in order that X’ may be a Latin square, every value X', j) (1 <i,j < n) must belong
to S(i, j), and therefore these values constitute a Latin square for the original instance of
LSC. 0

Finally, we consider the special case in which all cells are suppressed. This version of
the problem can be expressed as described in the following section.
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5.3. Contingency table nonuniqueness (CTNU).
[nstance: A positive integer n and an n X n x n table X of nonnegative integers. .
Question: Does there exist an n x n x n table X" (# X) such that X" and X have identical
row, column, and file sums? '
Superficially, this version of the problem might appear easier than the general 3DS-
DCC problem. For example, the existence of nonzero entries in positions (i, j, k'), (i, j', k), 4
(i, j. k), and (i’, j, k') for some i, i’, j, j', k, k' would constitute an obvious sufficient con- ;
dition for a “yes” answer—these entries could be reduced by 1 and the entries in positions
(i, J. k), G, J, k), (', j, k), and (i’, j, k) increased by 1 to give a second legal solution.
However, contingency table nonuniqueness is still NP-complete, as we now show. We 3
first of all observe, in the same spirit as previously, that the special case of CTNU in which
all row, column and file sums are O or 1 can be phrased as a partial Latin square problem, as*
follows.
5.4. Partial Latin square nonuniqueness (PLSNU).
Instance: A positive integer n, subsets R(i) and C( Nof N=1{1,...,n} foreach i,
a subset A of N2 such that (a) |[R()| = |k : (i, k) € N, and (b) [C(j)| = [k : (k, ) € N|, 5%
and values X (i, j) for all (i, j) € N satisfying
@) XG. j) € RG)NCG);
() i #£i' = X3, j) # X', j); g
(i) j# j = XG, j) # XG, j).
Question: Do there exist values X (i, j) for all (i, J) € N satisfying (i), (ii), and (iii)
above, such that X'(ig, jo) # X(io, jo) for some iy, jo?
THEOREM 5.4. CTNU is NP-complete. 3

. i The v
Proof. Membership in NP is obvious, since we can guess X" and easily verify the required ¢ Latin squ:
conditions in polynomial time. 2

PLSC. and
employed
Su. jpy=
at the bott

The key to the proof of NP-completeness is the observation that the polynomial-time ;)(21’1?)52
transformation from LSC to PLSC given in the proof of Theorem 4.1 can, with relatively § the entrie
minor adjustments, be made parsimonious, i.e., so that there is a one-to-one correspondence which frc
between solutions to the original LSC instance and solutions to the derived PLSC instance. these in
Hence, this parsimonious version gives us a polynomial-time transformation from LSNU to Prats Vis:
PLSNU, and in view of Theorem 5.3, establishes the NP-completeness of the latter problem. ve =4, 2
It remains to describe the details of this parsimonious transformation. It fol

Define n’, 4, and u as in the proof of Theorem 4.1; recall that n’ denotes the size of the has been
derived instance of PLSC. As before, the set A of free cells is constructed as a disjoint union with this
of component sets AV;;. For each i, j in the range 1 < i, j < n define the teduc

Nij =k D), k k), 0l : 1+ 1 <k <myU{G, 1), {, )}, 4 6.1

inal two

where/ = A(i, j)andm = u(i, j). (Note that at this point the construction diverges somewhat 3 wslices”
from that employed in the proof of Theorem 4.1.) As before we define N = | J, i Nij. columns

We now specify the row and column sets. For k in the range 1 < k < n, set R(k) = : for three
C(k) = N. For k outside this range, i.e., forn + 1 < k < n’,leti, j € N be the unique , Suchap
integers satisfying A(i, /) < k < u(i, j). Let! = A(, J)sm = pu(, j),s = |83, j)|, and let 4 and the
{v1, ..., us} be an enumeration of the elements of the set S(@i, j). Then define . the two-

SG. j) if k=1 ; e

1, ) ) =1 % - io

R=Cly={ E | by sum

{vk—i, vg—1+1}, otherwise. 4 N‘P—COH'

Itcan be checked that R, C, and AV together form a consistent instance of PLSC. This completes Co

the construction. Figure 4 is intended to illustrate a fragment of the derived instance of . slice su
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PLSC, and features the rows and columns that lie within the range [/, m]. (The conventions
employed here are the same as those of Fig. 2.) For this example, we have again taken
S(i. j) = {1,2,3,4). The intention is that this 4 x 4 square should replace the 4 x 4 square
at the bottom-right corner of Fig. 3.

{1,2,3,4} (1,2} {2, 3} | {3, 4}

{1,2,3,4} —_ 1,2 2,3 3,4
(L2} | L2 | L2 — —
{2, 3} 2,3 — 2,3 —
(3.4} | 3.4 — — | 3.4

FIG. 4. A fragment of the derived instance of PLSC.

The verification of the reduction relies on the following observation. Let Y be any partial
Latin square that is consistent with the derived instance of PLSC. Consider the restriction of ¥
to the set V;;. Recall that {vy, ..., vs} is an enumeration of the set S(i, j), and suppose that
Y (i, D) = v,. Observe that column/ of Y is completely forced: from cell (41, 1) tocell (m, )
the entries must read vy, Uz, . . ., V—1, Vrs1, Ur42 - - - » Us; these entries constrain the diagonal,
which from cell (I + 1,/ 4 1) to cell (m, m) must read vz, 3, ..., Vs, U, Vrsls - - -5 Us—15
these in turn constrain row /, which from cell (I, ! + 1) to (/, m) must read vy, vz, ..., V-1,
Viil» Vig2, - - - » Ug. Figure 4 illustrates the pattern that emerges when v = 1, v, =2, v3 = 3,
Vg = 4, and t = 3. :

It follows from this chain of reasoning that Y (/, j) = v, = Y (i, I). Moreover, once Y@, j)
has been chosen, there is precisely one way to extend Y to the remaining cells in AV;;. Armed
with this observation, the validation of the reduction proceeds as in the proof of Theorem 4.1;
the reduction is clearly parsimonious. O

6. The case of “‘slice” sums. In an alternative extension to three dimensions of the orig-
inal two-dimensional problem, suppose that we are given the sums of all two-dimensional
“slices” of a three-dimenisional table rather than the sums of the one-dimensional rows,
columns, and files. In practice, for example, we might be given the row and column sums
for three two-dimensional tables relating each pair of three distinct attributes of a population.
Such a population could be represented ina three-dimensional table relating all three attributes,
and the row and column sums for the two-dimensional tables would translate into the sums of
the two-dimensional slices in the three-dimensional table.

The question arises as to the status, in this context, of problems corresponding to those
investigated in earlier sections when row, column, and file sums are given. We conclude
by summarizing the main results that hold for this version of the problem. They are again
NP-completeness results, with the notable exception of the contingency table problem.

Consider an n x n x n table D of nonnegative integer values D(i, j, k), and define the
slice sums
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X(’) = Zj,k D(l, j’ k)v
Y()) =234 DG, j. k),
Z(ky =X, DG, j. ).

The following theorem and corollary are analogous to the results established by Gusfield

in 3, §5] and can be proved by similar methods, with a simple induction argument replacing
the use of network flow.

THEOREM 6.1. Suppose that, for each i, Js
X(@), Y()), Z(k) such that O
D for which X (i), Y(}), and Z(k) are
lower bounds on the value of D(i, 7
Z{k) —-2T), respectively.

k, we are given nonnegative integer values
2 Y() = Xk Z(k) = T. Then there exists a table
the slice sums. Furthermore, the tightest upper and
k) are min(X (i), Y (), Z(k)) and max(0, X(i)+ Y(n+

COROLLARY 6.2. In the context of the previous theorem, only the cells in the slice with
the largest sum can have a nonzero lower bound, and this can happen only if that slice has ‘
sum > 2T /3.

The results of the above theorem contrast with the NP-completeness of the corresponding
problem when row, column, and file sums are given (3DCT) and perhaps give us some hope
that, when the values of some cells are revealed as well as the slice sums, there may be:
polynomial-time algorithms to determine a legal solution and to identify compromised cells.
However, this turns out not to be so.

As far as finding a legal solution is concerned, it is not hard to see that the special case in

which all slice sums over suppressed cells are equal to 1 is just the three-dimensional matching
problem, which is well known to be NP-complete [2].

Finally, the problem of identifying compromised cells in this context can be proved NP-

complete by a reduction and argument similar to, but easier than, that used in the proof of
Theorem 5.3.
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