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ABSTRACT

We use multivariate splines to investigate linear diophantine equations and related
problems in graph theory. In particular, we solve a conjecture of Stanley about
symmetric magic squares. © Elsevier Science Inc., 1997

1. INTRODUCTION

In this paper we give a nice application of analysis to combinatorics.
Specifically, we use multivariate splines to solve the conjecture of Stanley
about symmetric magic squares (see [21], [23, p. 40], [24, p. 262]).

An m X m matrix with nonnegative integer entries is called a magic
r-square of order m if every row and column sums to r € N, where N is the
set of nonnegative integers. Let H,(r) denote the number of all magic
r-squares of order m. For instance, H,(r) = 1 and Hy(r) = r + 1. It seems
that MacMahon [17, §407] first computed H,(r):

Hs(r)=(r-;4)+(r-;3)+(r:2).
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opened a new way of attacking the more difficult problem of Stanley’s
conjecture about symmetric magic squares, which had remained unsolved for
a long time by using commutative algebra.

Here is an outline of the paper. In the next section we shall describe the
relationship between linear diophantine equations and discrete truncated
powers. Since our intended audience might be unfamiliar with multivariate
splines, we devote Sections 3, 4, and 5 to the basic theory of truncated
powers and discrete truncated powers. While most of the results in these
sections were known before, we often give new and straightforward proofs for
them. This makes the paper almost self-contained, and I do hope that
mathematicians working in the area of combinatorics will enjoy studying
multivariate splines. In Section 6 and 7 we apply the theory of multivariate
splines to magic labelings of graphs. The reader will find in these sections
that the discrete truncated power associated with a given graph has many nice
properties. These properties enable us to gain sufficient information about
the number of magic labelings of a graph, so that we can solve Stanley’s
conjecture on symmetric magic squares in Section 8.

We shall adopt the common terminology of multiset theory (e.g., see (24,
p- 10D. Intuitively, a multiset is a set with possible repeated elements; for
instance {1,1,2,5, 5, 5}. More precisely, a finite multiset M on a set S is a
function w: S — N such that £ __ ; u(x) is finite. One regards u(x) as the
number of repetitions of x. The integer L, . s u(x) is called the cardindlity
or number of elements of M and is denoted by #M. If M’ is another multiset
of S corresponding to &' : § — N, then we say that M’ is a submultiset of M
if w(x) < p(x) for all x € S. The complement of M' in M, denoted by
M \ M’ is the multiset on S corresponding to &' : S — N, where u'(x) =
p(x) — w(x) for all x € S. If M’ = {y}, where y is an element of M, we
often write M \ y instead of M \ {y}. The meaning of the union and
intersection of two multisets is also clear. ‘

As usual, we denote by Z, R, and C the set of integers, real numbers, and
complex numbers, respectively. For i, j € Z, we denote by §; the Kronecker
symbol; that is, 8, = L if i = j, and 0 otherwise. We use the notation (a..b)
to denote the interval {x € R:a < x < b}, where a is a real nubmer or —®
and b is a real number or . The meaning of [a..b), (a..b] or [a..b] is also
clear,

For a positive integer m, we denote by R™ and C™ the linear space of all
real and complex m-tuples, respectively. Elements of R™ are regarded as row
or column m-vectors depending on circumstances. The linear space R™ is
equipped with the norm || given by

lxl =Y Ile for x=(x,...,x,) €R™

Igj<sm
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where

pi(x) = Y a,x°, x € R™.
lal=j

The largest j for which p, # 0 is called the degree of p, and denoted by
deg p. When p = 0, deg p is interpreted as — 1. If k = deg p, then p; is
called the leading part of p. When m = 1, the leading part consists of only
one term; hence we may call it the leading term of p. Its coefficient is called
the leading coefficient of p. Given k € Z, we denote by TI, = IT,(R™) the
linear space of polynomials of degree < k. If k is a negative integer, then we
interpret I, as the trivial linear space {0}.

2. LINEAR DIOPHANTINE EQUATIONS

Magic squares and symmetric magic squares both are special cases of
magic labelings of graphs. Further, as indicated by Stanley [20], the theory of
magic labelings can be put into the more general context of linear diophan-
tine equations. A study of linear diophantine equations naturally leads to
truncated powers and discrete truncated powers.

We shall adopt the graph-theoretic terminology used in [26]. Thus a
graph is defined to be a pair (V(G), E(G)), where V(G) is a nonempty finite
set of elements called vertices, and E(G) is a multiset of unordered pairs of
(not necessarily distinct) elements of V(G) called edges. Note that this
definition of graph permits the existence of loops and multiple edges. We
shall call V = V(G) the vertex set and E = E(G) the edge multiset of G.
Two vertices v and w are said to be adjacent if there is an edge joining them,
i.e., there is an edge of the form vw. The vertices v and w are then said to be
incident to such an edge.

Let r € N. According to Stanley [20], a magic labeling of G of index r is
an assignment L: E — N of a nonnegative integer label to each edge of G
such that for each vertex v of G the sum of the labels of all edges incident to
v is r (counting each loop at v once only). We denote by H.(r) the number
of magic labelings of G of index 7. If G has no edge, then H.(r) = §,,. In
what follows, we assume that G has at least one edge.

If G is the complete bipartite graph K,, ,,, then there is a one-to-one
correspondence between a magic labeling of G of index of r and a magic
r-square of order m. Furthermore, if G is the graph obtained by adding one
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In some simple cases, t(a|M) can be calculated directly. For instance, if
M is the 1 X 1 matrix [1], then for @ € Z we have

1 if az0
t(“|M)={o, i a<0,

This is the discrete counterpart of the well-known Heaviside function

_f1 if xz=0,
H(x)_{O, if x<0.

If Misthe 1l X n matrix[1,1,...,1](n > 1), then for « € Z we have

a+n—1 .
t(alM) = ( n—1 ) if >0,
0 if a<O.

This should be compared with the truncated power x}7!/(n — 1)!, where

In general, following Dahmen and Micchelli (7], we shall call the function
t(:|M) defined on Z™ by @ — t(a|M) the discrete truncated power associ-
ated with M. In order to understand discrete truncated powers we shall first
investigate their continuous counterparts—truncated powers.

3. TRUNCATED POWERS

Multivariate truncated powers were first introduced by Dahmen [6]. Also
see [7]. In this section we review some basic properties of truncated powers.
Their piecewise polynomial structure is highlighted.

Let M be an m X n real matrix. Recall that M is also viewed as the
multiset of its column vectors. Throughout this section we assume that the
convex hull of M does not contain the origin. The truncated power T(:|M)
associated with M is defined to be the distribution given by

&~ (T(IM), ¢ = [{0 m)ﬂq‘)(Mu.) du, ¢ C*(R™), (3.1)
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THEOREM 3.1. Let M be an m X n real matrix with rank M = m < n,
Suppose the convex hull of M does not contain 0. Then T(:|M) is locally
integrable and is a homogeneous function of degree n — m. Moreover,
T(:|M) is continuous and positive on cone® (M).

Proof. The theorem certainly is true if M is an m X m invertible
matrix. The general case can be proved by induction on #M, using the
recurrence relation (3.2), n

Truncated powers have some nice differential properties. Let D; denote
the partial derivative with respect to the jth coordinate, j = 1,..., m. Given
y=C(y,....y,) €R™ let

D, = ) y,D;.
j=1

Then Dy is the directional derivative in the direction y. The following
differential formula was given in [6]: For y € M,

D,T(:IM) = T(:IM \ y). (3.3)
This can be easily derived from the recurrence relation (3.2). More generally,

DyT(-IM) =T("IM\Y), (3.4)
where Y is a submultiset of M and

D,= [ID,.
yeEY

When Y is the empty set, we interpret D, as the identity operator. The
differentiation formula (3.4) motivates us to define two sets. The first is the
set Z(M) consisting of those submultisets Y of M for which M \'Y does
not span R™. The second set ¢(M) is the union of span(M \ Y) where Y
runs over Z(M). A connected component of cone’ (M) \ ¢(M), according
to [11}, is called a fundamental M-cone.

Let D(M) denote the linear space of those infinitely differentiable
complex-valued functions f on R™ which satisfy the following system of
linear partial differential equations:

D,f=0, Yex(M). (3.5)
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4. DISCRETE TRUNCATED POWERS

Discrete truncated powers were first introduced by Dahmen and Mic-
chelli in [7]. In this section we review their basic properties and study their
piecewise structure. '

Let M be an m X n integer matrix such that con{ M) does not contain
the origin. The discrete truncated power t(-|M) was defined in Section 2 as
the function given by a — t(a|M), where a € Z™ and t(alM) is the
number of solutions to the system (2.2) of linear diophantine equations.
Evidently, ¢(-{M) depends only on the multiset of the column vectors of M.
We also note that t(a|M) = 0 for a & cone(M). Thus a discrete truncated
power is a sequence on Z™, i.e., a mapping from Z™ to C. We denote by §
the linear space of all sequences on Z™ over the field C. Given two
sequences a and b on Z™, their convolution a * b is the sequence defined by

axb(a) = T o(a-B)b(B), acZ™

pezn

Let & be the sequence on Z™ given by

8(a)={1 if a=0,

0 elsewhere.

Then forany f€ S, f+ 8 = f. When M is the empty set, we interpret ¢(-|M)
as the sequence 8. If M is the union of two multisets M, and M, of integer
vectors in R™, then

(CIM) = t(1M,) * £(1My).

This has a simple combinatorial proof as follows. Suppose n,=#M; j=12
From the very definition of t(:|M) we see that for a € Z™,

t(alM)y = 3}, #{BeN":MB=ypl#{ye N Myy=a— u}

nezm

)y t(ulM)t(a — ulM,).

peEZ™

Given y € Z"™, the backward difference operator Vy is defined by the

rule

Vf=f-f(-y). fES.
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Note that [M]) is the support of the box spline associated with M (see [4]). In
what follows, for a subset Q of R™, we set

v(QIM) =z N (0 - [M]).

When (1 = {y} we denote this set by »(y|M). Moreover, we denote by
B(M) the collection of all subsets of M which are bases for R™. The
following theorem was proved in [9].

THEOREM 4.1.  For any y & ¢(M) + Z™ one has

dmV(M) = Y |det Bl = #v(ylM). (4.5)
Be#(M)

It is easily seen that #v(y|M) equals the volume of the zonotone [M]].
The volume of [M]] was first computed by Shephard [19], who essentially
proved the second equality in (4.5). Also, see [22]. Based on Theorem 4.1,
Dahmen and Micchelli proved the following important result in [11].

THEOREM 4.2. Let M be a multiset of integer vectors in R™ such that M
spans R™ and the convex hull of M does not contain the origin. Then for any
fundamental M-cone Q, there exists a unique element f, € V(M) such that
fa agrees with t(:|M) on v(Q}|M).

This result has been extended by the author in [15] to the following
theorem, in which Q is only required to be a connected set. Moreover, the
proof given in [15] does not rely on Theorem 4.1.

THEOREM 4.3. Let () be a nonempty connected subset of R™, and M a
multiset of integer vectors in R™ such that M spans R™ and the convex hull
of M does not contain the origin. Let g be a sequence on v(Q|M) satisfying
the condition that for every Y € (M),

Vyg(a) =0  forall a€ v(QIM\Y). (4.6)

Then there exists a unique element f € V(M) such that f agrees with g on
v(QIM).



MAGIC SQUARES AND SPLINES 83

Let z be an arbitrary point in Q. Since {2 is open and connected, we can
find a finite sequence of points y,, ..., y, satisfying the following conditions:
(1) yo=y and y, =2z; (2) for every j€{(l,...,k}, the line segment
[yj_l..yj] is contained in Q; (3) for each j €{1,...,k}, Y, — Y-, = ax for
some a € (- 3..3) and x € M. Then by what has been proved we conclude
that g vanishes on »(y;IM), j = 1,..., k. This shows that g vanishes on
v(Q|M) and completes the proof for the case #X = m.

Now let #X > m. Suppose the theorem is true for any multiset M’ of
integer vectors with span(M’) = R™ and #M' < #M. Let B C M be a basis
for R™. Denote by V' the set & — [M \ BI. Then (¥ is also a connected
set and v(QV|B) = »(QIM).

Let w € B. If M \ w does not span R™, then by (4.6) we have

Veog(a) =0 forall a€ v(QIM\w)=v(QIB\w). (4.9

If M\ w spans R™, then (4.6) implies that for any Y € (M \ w), V, g
satisfies the equation

Vi(Vog)(a) =0  forall acv(QIM\w\Y).

Moreover, V, g vanishes on v(y|M \ w), since g vanishes on v»(y|M).
Thus, by the induction hypothesis, V, g vanishes on »(QIM \ w), i.e., (4.9)
is also valid in this case. Furthermore, g vanishes on »(y|B). Applying the
previous argument to g and the set B, we conclude that g vanishes on
v((¥'|B) = v(Q2|M). This completes the induction procedure.

We have thus proved that the restriction mapping R from V(M) to
S(v(y|M)) given by f > fl,(,1u) is one-to-one, where S(v(y|M)) denotes
the linear space of all sequences on »(y|M). But dim V(M) = #v(y|M) =
dim S(»(y|M)) by Theorem 4.1; hence the mapping R must be onto. Let g
be a sequence on v(Q|M) satisfying (4.6) for every Y € Z(M). Then there
exists a unique f € V(M) such that f agrees with g on v(y|M). The
sequence ¢ :=g — f vanishes on v(y|M) and satisfies (4.6) for every
Y € Z(M). By what has been proved before, & vanishes on »(QIM), ie., f
agrees with g on v(Q|M). This is just the desired result. [ ]

In the applications of Theorem 4.3, the following fact is often useful.

LEMMA 4.4, Let Q be a nonempty open cone contained in cone(M).
Then Q, the closure of (1, is contained in Q — [M]].
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where g =p — 67 Yp(- — y); in particular,

0y =1 = Vy(O()p) = 0()(Vyp). (5.2)
This motivates us to consider the set

M,={yeM:0Y=1). (5.3)

A(M) = {6 € (C\ {0})" :span(M,) = R™}. (5.4)

Evidently, e € A(M) and M, = M. We claim that 6Vp € V(M) for p €
D(M,), where D(M) was defined in Section 3 as the linear space of all
solutions to the system (3.5) of partial differential equations. To see this, let
YEZ(M) and Z=Y N M,. Then My \ Z does not span R™, because
MygNZCcMNY and M \Y does not span R™. Hence D,p =0 for

p € D(M,). But p is a polynomial, D,p = 0 implies V,p = 0. Thus, by
(5.2) we have

VY(O()P) =V \zvz(e()P) =V \2(0()VZP) = 0.

This proves the “if” part of the following theorem of Dahmen and Micchelli
[10].

THEOREM 5.1. A sequence f € V(M) if and only if it has the form

flay = X 60°py(e), ae€Zm

8 A(M)

where p, is some polynomial in D(M,) for each 6 € A(M).

By computing the dimension of V(M) and those of D(M,), 6 € A(M),
Dahmen and Micchelli [10] found that

dimV(M) = Y, dim D(M,).
o€ A(M)

This proves the “only if” part of Theorem 5.1. See [12, Proposition 2.2} and
[16, Theorem 4.1] for some more general results concerning the kernels of
linear partial difference operators with constant coefficients.
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from which we conclude that Jf;, = 1/Idet M|, which agrees with T(-{M) on

(), as was shown in Section 3. This completes the proof for the case
#M = m.

Let #M > m, and suppose the theorem is true for any M’ with #M' <
#M and span(M') = R™. Let F;; be the polynomial in D{(M) such that F,
agrees with T(:{M) on (). By Theorem 3.2, Fy, is a homogeneous polynomial
of degree n — m. Pick w € M. If M \ w does not span R™, then both
D,Fq and V, f, vanish. If M \ w spans R™, then D, F, agrees with
T(IM \ w) on © and V,f, agrees t(:/M \ w) on v(Q|M \ w). By the
induction hypothesis,

](waﬂ) - DwFQ = l-[n—m--2'

But from (5.1) we find that | and V, commute with each other; hence
J(V,.fa) = V,(Jfa). Moreover, since Jf, € I1 it is easily seen that

Dw(]fﬂ) - Vw(]fﬂ) € nn~m—2'
We have thus shown that for every w € M,
Dw(]fﬂ - Fﬂ) = [Dw(]fﬂ) - Vw(]fﬂ,)] + [Vw(]fﬂ) - DwFQ]
= Hn—m—Z‘
Since M contains a basis for R™, the above inclusion relation implies that

]fﬂ - Fﬂ € I-‘[ﬂ~m—l'

and therefore the leading part of Jf, agrees with T(-|M) on Q. |

6. MAGIC LABELINGS OF GRAPHS

Let G be a graph with m vertices and n edges. Given r € N, the
number of magic labelings of G of index r is denoted by H (7). Let M be

the incidence matrix of G. We showed in Section 2 that
H (r) =t(relM),

where t(:| M) is the discrete truncated power associated with M, and e is the
m-vector whose components are all 1. In this section, we shall investigate the
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integer. Since G is connected, by using induction one can find vertices

Uk4 -+ U such that v; is adjacent to some v, with i <j for all j =k +
1,...,m. We choose m edges of G as follows. Let 00541 be the jth edge
G=1 — 1), v;v, the kth edge, and choose the jth edge (j = k +

1..., m) to be some edge joining v; with v,, i <j. Let G’ be the subgraph
of G consisting of all vertices of C and the edges chosen above. Then the
incidence matrix of G’ has the form

N, K
[O" Q]’ (6.2)

where N, is the k X k matrix given in (6.1). We are in a position to prove the

following theorem concerning the rank of the incidence matrix of G (cf. [13,
Theorem 13.6]).

THEOREM 6.1. Let G be a graph with m vertices, and let M be its
incidence matrix. Then

rank M =m - b,

where b is the number of bipartite connected components of G.

Proof. First, let G be a connected graph which is not bipartite. Then G
has a subgraph G’ whose incidence matrix M’ has the form (6.2) with k an
odd integer. For any j > k, the jth column of M’ has exactly two nonzero
entries in rows i and j, i < j; hence Q is a unit upper-triangular matrix. Thus
det Q = 1. Since k is odd, we also have det N, # 0. This shows that
rank M’ = m, so that rank M = m.

Second, let G be an arbitrary graph, and let G,, ..., G, be its connected
components. Suppose the incidence matrices of G,G,,...,G, are M, M|,

.., M, respectively. Then

rank M = rank M, + -+ +rank M. (6.3)

If none of the components of G is bipartite, then rank M; equals the number
of vertices of G, for j=1,...,s. This together with (6.3) implies that
rank M = m.

Third, consider the case when G is a connected bipartite graph. Then the
vertex set V of G can be partitioned into two subsets V| and V, such that
every edge of G joints V| with V,. We arrange the vertices of G in such an
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THEOREM 6.2. Let G be a graph with m vertices, and let M be its
incidence matrix. If G has no bipartite connected components, then

0=(0,,....6,) €EA(M) = 6,=1or =1 forallj=1,...,m.

Proof. Recall that 8 € A(M) if and only if M, spans R™, where M, is
as given in (5.3). Observe that

K if y=e,
ey =
6,6, if y=e;

Hence ¢; € M, implies 6, = 1, while ¢;; € M, implies 6,8, = 1. Let G, be
the subgraph of G which consists of all vertices of G and all the edges of G
corresponding to the column vectors of M,. Then the incidence matrix of G,
is M. From the above discussion we see that if Gy contains a loop around v,,
then 6, = 1, and if G, contain an edge joining v, with v, then 6,6, = 1, i.e.,
8, = 6;'. Furthermore, if there is a path in G, of length k from v, to v,
then

0.

. if k is even;

= 6.4
% 67! if k is odd. (6.4)

Let K be a connected component of G,. Since My spans R™, K is not
bipartite by Theorem 6.1; hence K contains a circuit of length k with k an
odd integer. This circuit passes through a vertex, say v,. Then by (6.4) we
have 6, = 6!, since k is odd. It follows that 6, = 1 or —1. Let v, be an
arbitrary vertex in K. Since K is connected, there is a path in K from v, to
v;. By (6.4) we have 6, = 6, or 8, = 6, '. This shows that 8, = 1 or —1 for
a n y v e r t e X v j
in K. Evidently, this conclusion is valid for any vertex in G;. |

As an application of Theorem 6.2, we re-prove the following result of
Stanley [20] concerning magic labelings of graphs.

THEOREM 6.3. Let G be a graph and r € N. Then either H(r) = §,,,
or else there exist polynomials P; and Qg such that

Ho(r) = Po(r) + (—l)ch(r) foral reN.



MAGIC SQUARES AND SPLINES 93

Thus, in order to verify our claim it suffices to consider the case when G is
connected. Let G be a nondegenerate connected bipartite graph with m
vertices and n edges. Then the vertex set V of G can be partitioned into two
subsets V| and V, such that every edge of G joins V, and V,. Let m; be the
number of vertices in V,, j = 1,2. We arrange the vertices of G in such an
order that any vertex in V, precedes any vertex in V,. Let M be the
incidence matrix of G. Since G is nondegenerate there is a positive integer r
such that the equation MB = re has a solution 8 € N". But the sum of the
first m, rows and the sum of the last m, rows of M both equal the n-vector
(1,1,...,1); hence the sum of the first m, components and the sum of the
last m, components of MB = re are equal. This shows that m,r = m,r and
therefore m; = m,. In particular, the number of vertices of G is even. Note
that the incidence matrix M’ of G’ is obtained from M by removing one of
its rows, say the first row. Let ¢’ denote the (m — 1)-vector whose compo-
nents are all 1. If B € N satisfies MB = re, then M'B = re'. Conversely, if
M'B = re', then the last m — 1 components of MB are all . But the sum of
the first m; components and the sum of the last m, components of MB are
equal and m, = m,; hence the first component of M is also r; that is,
M = re. This shows that H(r) = H;(r) forall r € N, .

7. POSITIVE GRAPHS

According to Stanley [20], a magic labeling L of G is called a positive
labeling if every edge of G receives a positive label. A graph G is said to be
positive if there is a positive labeling for G. It is easily seen that G is positive
if and only if the vector ¢ lies in cone® (M). If G is not positive, then there
are some edges of G that are always labeled 0 in any magic labeling. After
removing these edges, the resulting graph G’ is positive and Hg(r) = HA(r)
for all » € N. Thus, as far as magic labelings are concerned, we may assume
without loss of generality that G is a positive graph.

Let P; and Q. be the polynomials in Theorem 6.3. We wish to find the
exact degree of P; and Q. For a positive graph G, the exact degree of P
has been determined by Stanley [20]. In this section we shall use our methods
to give Stanley’s result a new proof. Furthermore, we shall also establish
some results about Q. These results are essential to our solution of Stanley’s
conjecture on symmetric magic squares.

In this section a multiinteger a = (@, ..., a,,) € Z™ is said to be even if

Y™ a, is even; otherwise, a is said to be odd.
j=17
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does not change any component of G with an odd number of vertices. On
the other hand, all the new components of G’ have loops. Therefore, G has a
connected component with an odd number of vertices but no loops if and
only if G’ does. Thus, without loss of generality, we assume that G has no
bipartite connected components.

Suppose G has m vertices and n edges and the vertices of G are labeled
as v),...,0,. Let M be the incidence matrix of G, and let ) be a
fundamental M-cone such that {} contains . By Theorems 4.2 and 4.4, there
exists an element f, of V(M) such that f;, agrees with the discrete
truncated power ¢({M) on @ — [M]|> R, e. Moreover, f; has a decompo-
sition of the form (6.6). Let A, (M) denote the set of those elements of
A(M) which have an even number of negative components, and let A_(M)
= A(M) \ A_(M). It follows from (6.7) that

Pe(r) = Z pe(re) and Qc(r) = )M pe(re), (7.2)

8€A (M) deA_(M)

where py is a polynomial in D(M,) for each 6 € A(M).

Let p, denote the leading part of p,. By Theorem 5.2, p, agrees with
T(\M) on €. Since G is a positive graph, re € con_e_ef(M) for all r > 0;
hence by Theorem 3.1, T(-|M) is continuous at re € ), r > 0. This shows
that for r > 0

pe(re) = T(relM) = T(elM)r"™™,

where we have used the fact that T(:|M) is a homogeneous function of
degree n — m. Furthermore, T(e|M) > 0 by Theorem 3.1. Thus, the leading
term of p,(re) is T(e|M)r™~™.

Assume that G is connected for the time being. We claim that in this case

deg pp<n—m  forall 9€ A(M) \ (e, —¢}. (7.3)

Indeed, since p, € D(M,), by (3.6) we have deg p, < #M, — m; hence
deg py <n — m wunless M, = M. Suppose My =M for some 0 =
(6,,...,6,) € A(M). Since G is connected, for any i, j € {1,..., m} there is
a path from v; to v}, so it follows from (6.4) that §, and 6, have the same
sign. But Theorem 6.2 tells us that 0, is either 1 or —1forall j=1,...,m;
hence @ is either e, or else —e. This verifies (7.3).

In order to determine the leading term of P;(r) we divide our investiga-
tion into three cases.
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conclude from (7.2) and (7.3) that the leading term of p(r)is 2T(e|M)r"~™
and deg Q¢ < deg P..

Now let G be an arbitrary positive graph. Suppose G,, ..., G, are the
connected components of G. Then for every j=1....s, Gj is positive and
hence

ch(r) = FB(r) + (—l)er(r), reN, (7.6)

for some polynomials P, and Q, in r. It follows from (6.8) and (7.6) that
Po(r) + (=1)'Qe(r) = TI{B(r) + (=D'Q(N].  reN. (7.7)
j=

If one of the connected components of G, say G, has an odd number of
vertices but no loops, then by Lemma 7.1, H; vanishes on positive odd
integers, and therefore so does Hg by (6.8). Thus Py(r) — Qg(r) = 0 for all
odd r € N. It follows that P; = Q. Suppose otherwise that every G; either
has a loop or has an even number of vertices. Then deg Q; < deg P; for
j = 1,..., s; hence by (7.7) we have deg Q. < deg P. [

As a consequence of the above theorem, we prove Stanley's result
concerning the exact degree of P.

THEOREM 7.3. Let G be a positive graph with m vertices and n edges,
and let P; be the polynomial in Theorem 6.3. Then deg P, =n —m + b,
where b is the number of connected components of G which are bipartite.

Proof. For each bipartite component of G we remove one of its vertices
and replace any edge incident to this vertex by a loop around the other
vertex. The resulting graph G’ has m — b vertices and n edges but no
bipartite connected components. We showed that H(r) = Hg(r) for all
r € N in the proof of Theorem 6.3. Thus we may assume that b = 0. Let
G-, G, be the connected components of G. Suppose each G, has m;
vertices and n; edges. It was shown in the proof of Theorem 7.2 that
deg P=n,—m for j =1,...,s. Moreover, for each j, either deg Q; <
deg P, or Q; = P; hence it follows from (7.7) that

degPo= ) degP,= )}, (n;—m) =n—m, |
j=1 j=1
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LEMMA 8.2, Let G, be the subgraph of G whose incidence matrix is M.
Then G, is positive for every 0 € A(M). Moreover, for each § € A_(M),
pe(re) is a polynomial in r of exact degree #M, ~ m with a positive leading
coefficient.

We shall assume that Lemma 8.2 is valid and leave its proof to the end of
this section. From (8.1) and Lemma 8.2 we see that the exact degree of Q,, is
the maximum of #M; — m when 6 runs over A_(M). Thus the proof of
Theorem 8.1 reduces to counting #M,. To this end, let 6 be an element of
A(M) with k negative components and m — k positive components, 0 < k
<m. If 1 <k <m —1, then G, has exactly two connected components:
One is a complete k-graph with no loops, and the other is a complete
(m — k)-graph with one loop attached to its every vertex. A complete 1-graph
has no edges, while a complete 2-graph is bipartite; hence in both cases M,
does not span R™. In other words, § € A(M) implies that k is neither 1 nor
2. Furthermore, since #M, equals the number of edges of G,, we have

#Mf=@)+(m;k)+@n—m. (8.2)

Evidently, (8.2) is also true for the case k = 0 or k = m. It remains to find
the maximum of #M, when 6 runs over A_(M). For this purpose we
rewrite (8.2) as follows:

#m=(k—m;1f—(mglr+(m;1y (8.3)

By the previous remark, 8 € A_(M) implies that k is an odd integer > 3. If
m is odd, then we deduce from (8.3) that

m+ 1\ (m+1\2 (4 m
““<“’ 5 )‘(2 )*(2 )=by

and equality holds if and only if k = m. If m is even, then the largest odd

integer < m is m — 1. It follows from (8.3) that

m+ 1)’ m+ 1)’ m+ 1 m—1
#MQL”%— 2 )*(2 )+( =)
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where g, € D(My N M,) for each & € A(My). This shows that

t(relMy) = go(re) = B(r) + (—1) Qp(r). reN,

where

Py(r)= L qg(re) and Qu(r)= L q(re). (85)

£€A (M) EeA_(My)

Note that ¢ € A(M,) if and only if M, N M, spans R™. Evidently, ¢ €
A, (My) and 6 € A_(M,). We claim that

§= (&1, £.) € A(M,) \ {e,8) = M,NM,+M,. (86)

Suppose to the contrary that M, N My = My. Then M, contains all ¢,

(1 <i,j <k); hence £,,..., & must have the same sign. Moreover, M,
contains all e, (j =k + 1,...,m), so that § = 1 for j =k + 1,..., m. Thus

either £ = ¢, or else £ = 6. ThlS confirms our claim (8.6). Thus by (3 6) and
(8.6) we have

deg g, < #(M, N M,) —m < #M, —m  forall &€ A(M,) \ {e, 6}.
(8.7)

We showed in the proof of Theorem 7.2 that the leading term of g(re) is
T(elMy)r*Me~™ with T(e|M,) > 0. From (8.5) and (8.7) we see that P,(r)
and g,(re) have the same leading term. But Gy has a connected component
which has an odd number of vertices but no loops, hence Q,= P, by
Theorem 7.2. Invoking (8.5) and (8.7) again, we see that Qy(r) and g,(re)
have the same leading term. This shows that the leading term of g4(re) is
also T(e|My)r#*Me—m

Consider V,, \ My fn and gg,. They both are elements of V(M,) and agree
with t({Mp) = V), t(IM) on Q — [M,. Hence by Theorem 4.3,

Vi < m,fa = €q- Recall that ], is the projection from E to E, defined in
Section 5. From (5.1) it is easily seen that J, and V\, | , commuhe with each
other. In particular,

9()% = Jo(ga) =]e(VM N M,,fn) =Vu. M,(]ofn) = Vy < M,(o()Po)- (8.8)



MAGIC SQUARES AND SPLINES 103

8 W. Dahmen and C. A. Micchelli, Translates of multivariate splines, Linear

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23
24

25
26

Algebra Appl. 52 /53:217-234 (1983).

W. Dahmen and C. A. Micchelli, On the local linear independence of translates
of a box spline, Studia Math. 82:243-263 (1985).

W. Dahmen and C. A. Micchelli, On the solution of certain systems of partial
difference equations and linear dependence of translates of box splines, Trans.
Amer. Math. Soc. 292:305—-320 (1985).

W. Dahmen and C. A. Micchelli, The number of solutions to linear diophantine
equations and multivariate splines, Trans. Amer. Math. Soc. 308:509-532 (1988).
W. Dahmen and C. A. Micchelli, Local dimension of piecewise polynomial
spaces, syzygies, and solutions of systems of partial differential equations, Math.
Nachr. 148:117-136 (1990). :
F. Harary, Graph Theory, Addison-Wesley, Reading, Mass., 1969.

R. Q. Jia, Linear independence of translates of a box spline, J. Approx. Theory
40:158-160 (1984).

R. Q. Jia, Multivariate discrete splines and linear diophantine equations, Trans.
Amer. Math. Soc. 304:179-198 (1993).

R. Q. Jia, S. Riemenschneider, and Z. W. Shen, Dimension of kernels of linear
operators, Amer. |. Math. 114:157-184 (1992).

P. A. MacMahon, Combinatory Analysis, Cambridge U.P., Vol. 1, 1915, Vol. 2,
1916; reprinted in one volume, Chelsea, New York, 1960.

J. von Neumann, A certain zero-sum two person game equivalent to the optimal
assignment problem, in Contributions to the Theory of Games, Vol. 2 (H. W.
Kuhn and A. W. Tucker, Eds.), Ann. Math. Stud. 28, Princeton U.P., 1950, pp.
5~-12.

G. C. Shephard, Combinatorial properties of associated zonotopes, Canad. ].
Math. 18:302-321 (1974).

R. Stanley, Linear homogeneous diophantine equations and magic labelings of
graphs, Duke Math. J. 40:607-632 (1973).

R. Stanley, Magic labelings of graphs, symmetric magic squares, systems of
parameters, and Cohen-Macaulay rings, Duke Math. ]. 43:511-531 (1976).

R. Stanley, Decompositions of rational convex polytopes, Ann. Discrete Math.
6:333-342 (1980).

R. Stanley, Combinatorics and Commutative Algebra, Birkhiuser, Boston, 1983.
R. Stanley, Enumerative Combinatorics, Vol. 1, Wadsworth, Belmont, Calif.,
1986.

B. M. Stewart, Magic graphs, Canad. ]. Math. 18:1031-1059 (1966).

R. J. Wilson, Introduction to Graph Theory, 3rd ed., Longman, New York, 1985.

Received 5 April 1995; final manuscript accepted 3 May 1995



