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THREE-DIMENSIONAL TRIANGULATIONS FROM
LOCAL TRANSFORMATIONS*

BARRY JOEY

Abstract. A new algorithm is presented that uses a local transformation procedurc to construct a
triangulation‘of asetofl n three-dimensional points that is pseudo-tocally optimal with respect to the sphere
criterion. Itis conjectured that this algorithm always constructs a Delaunay triangulation, and this conjecture
is supported with, experimental results. The empirical time complexity of this algorithm is O(n*'?) for sets
of random points, which compares well with existing algorithms for constructing a three-dimensional
Delaunay triangulation. Also presented is a modification of this algorithm for the case that local optimality
is based on the max-min solid angle criterion.
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1. Introduction. The three-dimensional triangulation problem is as follows. Given
n three-dimensional points, connect them into nonoverlapping tetrahedrons that fill
the convex hull of the points. There are many ways to triangulate the n points. Special
triangulations include the Delaunay triangulation and the triangulation satisfying the
max-min solid angle criterion. Algorithms for constructing a Delaunay triangulation
in k-dimensional space for k=2 are given by Bowyer [2], Watson [14], and Avis and
Bhattacharya [1]. For the three-dimensional case, the estimated time complexity is
0O(n*?) for Bowyer’s algorithm and higher for the other two algorithms. Applications
of three-dimensional triangulations include finite-element mesh generation (Nguyen
q11], Cavendish, Field, and Frey [3]), where it is usually desired to avoid small angles
in triangulations, and interpolation and contouring (Petersen, Piper, and Worsey [12]).

In this paper, we investigate a local transformation procedure for three-
dimensional triangulations that is analogous to the procedure of Lawson [8] for
two-dimensional triangulations, and use this local transformation procedure in a new
algorithm for constructing three-dimensional pseudo-locally optimal triangulations,
where local optimality is based on either the sphere criterion (satisfied by Delaunay
triangulations) or the max-min solid angle criterion. We conjecture that our algorithm
always constructs a Delaunay triangulation in the case of the sphere criterion.

In § 2, preliminary definitions and results are given. In § 3, the main theoretical
results are presented for the sphere criterion. In § 4, an algorithm and data structure
are given for constructing a pseudo-locally optimal triangulation with respect to the
sphere criterion, assuming that no four vertices are co-planar. In § 5, this assumption
is removed and the algorithm is extended. In § 6, optimal triangulations with respect
to the max-min solid angle criterion and their computation are discussed. In §7,
experimental results are presented for a Fortran implementation of the algorithms. In
§ 8, concluding remarks and open problems are given.

2. Preliminaries. Let S be a set of n=4 three-dimensional points (or vertices)
that are not all co-planar. A triangulation of S is valid if and only if (a) the four
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1.D TRIANGULATIONS FROM LOCAL TRANSFORMATIONS 719

vertices of any tetrahedron are not co-planar; (b) any tetrahedron abcd contains no
points of S—{a, b, ¢, d}; (c) the intersection of the interior of any two tetrahedrons is
empty; and (d) a triangular face is either on the boundary of the convex hull of S
(and occurs in exactly one tetrahedron), or it is common to exactly two tetrahedrons.
For any valid triangulation of S, let V, and V; be the number of boundary and interior
vertices, respectively; let E, and E; be the number of boundary and interior edges,
respectively; let F, and F; be the number of boundary and interior faces (triangles),
respectively; and let T be the number of tetrahedrons. For any triangulation of S, Vj,
V,, E,, and F, are the same. V, is the number of vertices on the boundary of the
convex hull of S and V;=n—V,. E, and F; are constant because all two-dimensional
triangulations of the same vertices have the same number of edges and triangles.

However, different triangulations of S may have different values for E;, F;, and
T. The above quantities satis{y the following relations (Fuhring [5D):

(1) (a) T=(F,+2F)/4,
(b) thzvb_4:
() Fi=V,+t2(E;—V)—4,
(d) E,=3F,/2.

Substituting (b) and (c) into (a) results in
(2) T=V,+E—-V,—3.

Clearly, E; may be at most n(n—1)/2= O(n?). From (1 (c)) and (2), it can be seen
that F; and T may be at most O(n?) as well. Note that if E; is increased by one, then
F, is increased by two and T is increased by one. It is not too difficult to construct a
family of triangulations for which E;, F,, and T are all proportional to n? (see § 7).

For two-dimensional triangulations, the local transformation procedure is as
follows. If two adjacent triangles of the triangulation form a strictly convex quadri-
lateral, then swap the common edge for the other diagonal edge of the quadrilateral
to form two new triangles. Lawson [8] proves that given any two triangulations T,
and T, of a set of two-dimensional points, there exists a finite sequence of local
transformations (edge swaps) by which T, can be transformed to T,. Lawson [9] uses
this local transformation procedure in an algorithm for constructing a two-dimensional
Delaunay triangulation of n points in an estimated average time of o(n*?).

For three-dimensional triangulations, the analogous local transformation pro-
cedure is based on the observation that a strictly convex hexahedron formed from five
vertices can be triangulated in two ways, the first containing two tetrahedrons and the
second containing three tetrahedrons. This is illustrated in Fig. 1, where the five vertices
are a, b, ¢, d, and e; (i) contains the two tetrahedrons abed and abce, and (ii) contains
the three tetrahedrons abde, acde, and bcde. Note that (i) contains interior face abc
and no interior edges while (ii) contains three interior faces ade, bde, cde, and interior
edge de. The local transformation procedure is that if two (three) adjacent tetrahedrons
of the triangulation form a strictly convex hexahedron as in Fig. 1, then replace the
tetrahedrons by the other possible triangulation of the hexahedron containing three
: S}WO) tetrahedrons. This local transformation procedure can be considered to be a face

swap,” where one interior face is “swapped” for three interior faces or vice versa.
In the next two sections, we describe how this local transformation procedure can be
used to construct a (nearly) Delaunay triangulation.
. Two special three-dimensional triangulations of n vertices are the Delaunay
riangulation and the triangulation satisfying the max-min solid angle criterion. A
Delaunay triangulation satisfies the sphere criterion: f‘the‘~fcifcumsphyeré;o‘f the four
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FiG. 1. Two possible triangulations of strictly convex hexahedron. (i) Two tetrahedrons abed and abce.

(il) Three tetrahedrons abde, acde, and bede.

vertices of any tetrahedron of the triangulation contains no vertices in its interiorz A
Delaunay tridngﬁlatidn is unigue if no five vertices are co-spherical. The Delaunay
" triangulation is also the dual of the Voronoi tessellation (Bowyer [2], Watson [147).
The Voronoi tessellation of n vertices is a collection of n convex regions such that
each region contains the points closer to one vertex than all the other vertices.

A tetrahedron contains twelve planar angles (three in each of the four triangular
faces), six dihedral angles (one at each of the six edges), and four solid or trihedral
angles at the vertices. The planar and dihedral angles are straightforward to compute.
The definition and computation of a solid angle, e.g., at vertex d of tetrahedron abcd,
are as follows. The solid angle at d is the surface area on the unit sphere formed by
projecting each point on face abc to the surface of the unit sphere with d at its centre.
In general, a solid angle can be defined as a double integral. In the special case of a
tetrahedron, the solid angle (or spherical excess) at d can be computedasa+B+y—m7
(Gasson [6]), where a, B, and vy are the dihedral angles at edges ad, bd, and cd,
respectively (e, B, and 7y are also the spherical angles at the projection of a, b, and ¢,
respectively, on the unit ‘sphere).

A triangulation satisfies the max-min solid angle criterion if over all possible
triangulations of the vertices, the minimum of the solid angles at all vertices of all
tetrahedrons is maximized. For two-dimensional triangulations, the circle and max-min
angle criteria are identical, i.e., a Delaunay triangulation satisfies the max-min angle
criterion and vice versa (Lawson [9]). Field [4] recently conjectured that the sphere
criterion and max-min solid angle criterion are identical for three-dimensional triangu-
lations. However, the following simple example shows that this conjecture is false. Let
vertices a, b, ¢, d, and e have the (x,y, z) coordinates (0,0, 0), (2,0,0), (2,2, 0),
(1.5,0.5,2), and (1.5,0.5, ~0.5), respectively. There are two ways to triangulate these

g 1. Itis straightforward to verify by calculation thal
drons, satisfies the max-min solid angle criterior
(i), containing three tetrahedrons, is Delauna)
In § 6, we discuss the max-mif

five vertices as illustrated in Fi
triangulation (i), containing two tetrahe
but is not Delaunay, and triangulation
but does not satisfy the max-min solid angle criterion.
solid angle criterion further.

theoretical results fo

3. Theoretical results. In this section, we present some
ults ar

three-dimensional triangulations and the sphere criterion. Some of these res
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three-dimensional versions of those in Lawson [9]. We start with definitions and results
concerning the local optimality of interior faces in three-dimensional triangulations.
In particular, we show that if every interior face of a triangulation is locally optimal,
then it is a Delaunay triangulation. Then we discuss how the local transformation
procedure given in the previous section can be used to improve an arbitrary three-
dimensional triangulation to a nearly Delaunay triangulation, called a pseudo-locally
optimal triangulation. We give results on when this improvement process does not
terminate in a Delaunay triangulation, due to the nontransformability of some nonlo-
cally optimal faces (unlike the two-dimensional case). Finally, we give an example of
‘a-pseudo- Iocally optimal triangulation that is not a Delaunay tnangulatlon

For simplicity, we assume for now that no four vertices are co-planar among the
n vertices to be triangulated. (This assumption will be removed in § 5.) This means
that the triangulation of five vertices can be three different configurations. The first
two configurations are illustrated in Fig. 1 (the boundary of the convex hull contains
five vertices). The third configuration occurs when the boundary of the convex hull
contains four vertices; in this case, the triangulation of the five vertices consists of four
tetrahedrons. For example, if vertex e is not on the boundary of the convex hull of
vertices a, b, ¢, d, and e, the four tetrahedrons are abce, abde, acde, and bcde; there
are four interior edges and six interior faces.

DEeFINITION 1. Let abed and abce be two tetrahedrons sharing common face abc

with d and e on opposite sides of abe. Then interior face abc is said to be: locally

optzmal (with respect to the sphere criterion) if the circumsphere of tetrahedron abcd

does not contain e in its interior. (Note that the circumsphere of abcd contains e in
its interior if and only if the circumsphere of abce contains d in its interior. This
follows from the fact that the intersection of the circumspheres of abcd and abce is
the circumcircle of triangle abc.)

LemMma 1. (a) Let a, b, ¢, d, e be five vertices of a convex hexahedron as in Fig. 1.
Then either the interior face abc is locally optimal or the three interior faces ade, bde, cde
are all locally optimal. Only one of these two cases holds if the five vertices are not
co-spherical.

(b) Let abde, acde, bede be three tetrahedrons in the configuration of Fig. 1(ii).
Then the three interior faces ade, bde, cde are either all locally optimal or all not locally
optimal.

(c) Let abce, abde, acde, bede be four tetrahedrons in the third configuration. Then
the six interior faces, abe, ace, ade, bce, bde, cde are all locally optimal.

Proof. In part (a), either Fig. 1(i) or Fig. 1(ii) must be a Delaunay triangulation
since these are the only two possible triangulations. A Delaunay triangulation satisfies
the sphere criterion so all its interior faces are locally optimal. In the case that the five
vertices are not co-spherical, only one of the triangulations can be Delaunay; the
non-Delaunay triangulation does not satisfy the sphere criterion, and hence the circum?”
sphere of at least one of its tetrahedrons contains a vertex in its interior, implying that
at least one of its interior faces is not locally optimal since there are only five vertices.
Therefore part (a) holds.

Suppose the non-Delaunay triangulation is Fig. 1(ii). Without loss of generality,
let the circumsphere of tetrahedron abde contain c in its interior. Then ade and bde

re not locally optimal. Hence the circumsphere of tetrahedron acde contains b in its ’

Interior, and cde is not locally optimal. Therefore part (b) holds.
Part (c) follows from the fact that there is only one possible triangulation in the

hxrd configuration, so it must be a Delaunay triangulation and satisfy the sphere
Titerion, O
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THeoREM 1. A three-dimensional triangulation T is a Delaunay triangulation (i.e.,
satisfies the sphere criterion) if and only if every interior face of T is locally optimal.

Proof. The “only if™ part is clearly true by definition.

Suppose every interior face of T is locally optimal. We will show by contradiction
that the sphere criterion is satisfied. Suppose abcd is a tetrahedron in T such that the
circumsphere of abcd contains vertex p in its interior. Without loss of generality,
suppose p is on the opposite side of face abe from d. Then abc must be an interior
face. Let abce be the other tetrahedron with face abc. Then abce does not contain p
Wﬂ@l, i.e., e is not in the interior of the circumsphere S of abcd. 'E
Let S’ be the circumsphere of abce. Ifeison Sﬁhen S’ clearly contains p in its interior. ;
Suppose e is exterior to S. Let R ={(interior of S)n H, where H is the half-space
containing p that is determined by the plane containing a, b, and c. Since the intersection
of § and S’ is the circumcircle of triangle abc, S' must contain R in its interior, and
thus S' must contain p in its interior.? - ee

The above argument can be repeated with tetrahedron abce replacing abcd, etc.
The result is a sequence of connected nonoverlapping tetrahedrons such that the
circumsphere of each tetrahedron contains p in its interior. Let this sequence of
tetrahedrons be agbocody, a,b,c,d,,- - -, where ab,cid; and ;1 bis1Civ1disy share com-
mon face a;bic;, 1.€., A bisr G di1 = ab,cie;, where e; is either a1, bis1, OF Cixy - FrOM
the argument in the previous paragraph, & and p are on the same side of a;bic; for all
i Since there is a finite number of tetrahedrons, the sequence must contain a cycle,
ie., aibcd; = apbycid; for some j< k. But this results in a contradiction, since it is not
possible to have a cycle of connected tetrahedrons such that e and p are on the same
side of abe fori=j,- -, k=1. 0 — “oho. wet TR YLLL

DeriTion 2. Let abed and ~hce be two tetrahédrons sha 1‘hg"‘i“n'tl‘éfi6'r>fac'e abe
< . ina triangulation T. Then face abc is said to be transformable if either (i) the two
. tetrahedrons are in the configuration of Fig. 1(i), i.e., line segment de intersects the
interior of triangle abc, ot (ii) the boundary of the convex hull of a, b, ¢, d, e contains
all five vertices, de does not intersect triangle abe (i.e., abed U abce is not convex),
and the third tetrahedron needed to fill the convex hull of the five vertices is present
.~ in T. If the third tetrahedron in case (ii) is not present in T, then abc is not transformable,
. i.e., the local transformation procedure cannot be applied.

....> The third tetrahedron in case (ii) is either abde, acde, or bede. 1t is abde if ab
intersects the interior of triangle cde; it is acde if ac intersects the interior of triangle
bde; it is bede if be intersects the interior of triangle ade (see Fig. 2). If abcd, abce are
in the third configuration, i.e., either a, b, or ¢ is not on the boundary of the convex

i
P
£5

(4

Fi1G. 2. Three possible labelings of vertices in Definition 2(ii).
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hull of the five vertices, then ab does not intersect triangle cde, ac does not intersect
triangle bde, and bc does not intersect triangle ade (see Fig. 3). Therefore the configur-
ation of abcd, abce can be determined by line segment and triangle intersection tests.
DEFINITION 3. A triangulation T is said to be pseudo-locally optimal (with respect
to.the sphéré criterion) if every nonlocally optimal interior face in T is not transform- Ig is
able. Note that a Delaunay triangulation is pseudo-locally optimal. cacinr Jru
LemMA 2. Ler a, b, ¢, d, e be the vertices of a strictly convex hexahedron that can
be triangulated by tetrahedrons T, = {abcd, abce} or T, ={abde, acde, bede} as in Fig. 1. U“CXUSJ“W'A
Let r, (ry) be the minimum of the radii of the circumspheres of the tetrahedrons in T, Kn +otms ©
(Ty). ThenrySry_ifand only if Ty is a Delaunay triangulation of the five vertices, where ity {4-3 L
k=1or?2. : B
Proof. Consider spheres expanding at the same rate from centres a, b, ¢, d, and
e. Let v be the first point (Voronoi vertex) where four or more expanding spheres
intersect. If v is the intersection of all five spheres, then the five vertices are co-spherical,
r, = I, and both T, and T, are Delaunay triangulations. Suppose only four expanding
spheres intersect at v. Then the tetrahedron formed from the centre of these four
spheres has the circumsphere with the smallest radius among the fivespossible tetrahe-
drons, and it belongs to the (unique) Delaunay triangulation. ,/g o
S Ea3. Let T be a iriangulation with m tetrahedrons, and let R = (Fya T2y o) ©
be the nondecreasing sequence of circumradii of tetrahedrons in T. Suppose two or three
 adjacent tetrahedrons in T form a strictly convex hexahedron (as in Fig. 1) such that the .
. one or three interior faces are not locally optimal, and the local transformation procedure
is applied to these tetrahedrons. Let R'=(r!, rh -+, I'ms1) be the nondecreasing sequence
. of circumradii-of tetrahedrons in the resulting triangulation T'. Then R is lexicographically
less than R (the shorter sequence can have an arbitrary number added at the end).

Proof. This lemma follows from Lemma 2. B
v 4 Lef T'be & iriangulation containing tetrahedrons abed and abce such that |
_interior face abc is not locally optimal and is not transformable. Without loss of generality,
‘assume that the “missing™ third tetrahedron is abde, i.e., ab intersects the interior of |
f/(t,riqule, cde. Then there exists another interior face abf, f # c, that is not locally optimal. |
S broof Let Oabed denote the open ball, which is the interior of the circumsphere
of tetrahedron abcd. Let the tetrahedrons containing edge ab be abcd, abdf,, abf 12,
-+ -, abfie, abec, k=1 in circular order about ab. (See the left configuration of Fig. 2
and imagine that there are more vertices between d and e.) The fact that abc is not
locally optimal implies that Oabcd contains e. If face abd is not locally optimal, then
the lemma holds. Hence, suppose abd is locally optimal, i.e., Quabcd does not contain
fi. Then the part of Oabed on the opposite side of abd from c is in QOabdf,, thus Y
Oabdf, contains e. This argument can be repeated with face abf,, abfs, -+ - in place

of abd. If faces abd, abf,, - - - , abf,_, are all locally optimal, then Oabed, Oabdf,, - - -,

i
) |
Ked |

P (v
Le,lmm(,\,,i;

FiG. 3. Three possible labelings of vertices in third configuration.
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Oabf, -1 [ all contain e. But that Oabf,_,f. contains e implies that face abf, is not
locally optimal. 0

DEeFINITION 4. Let abclde denote a pair of adjacent tetrahedrons abcd, abce
sharing interior face abc such that abc is nonlocally optimal and nontransformable
and ab intersects the interior of face cde. We call abc|de a NLONT-configuration. Let
C =[aghoco|doey, abici|dyey, - -+, aybpcmld,e,] denote a sequence of NLONT-
configurations. Then C is said to be a connected NLONT-sequence if abc; and
@;1bi ¢y are distinct and share edge a;b; (which means that a;b; and a;..,b;;, share
atleast one vertex) fori=0,1, .-+, m—1;and C issaid to be a connected NLONT-cycle
if, in addition, agbocoldoes= ambmCym|dnen- Note that the smallest cycle length is m =2,
which can occur only if aghy=a,b,.

An example of a connected NLONT-cycle is given below in Fig. 4: C =[452/67,
47528, 24715, 452|67], where a vertex is indicated by an integer from 1 to 8. Note
that edge 45 intersects the interior of face 267, edge 47 intersects the interior of face
528, and edge 24 intersects the interior of face 715...

A v n-Delaunay friangul

cally optimal interior
face by Theorem 1. Since T is pseudo-locally optimal, all nonlocally optimal faces are ol
not transformable. So T contains a NLONT-configuration agbocy|dye,. By Lemma 4,

there exists another interior face agyb,f, that is not locally optimal, so T must contain_~t

N@_ LQE\JYL*E

t‘?‘-fD‘D\‘IW { another NLONT-configuration a,b,c,|d,e,, where a,b,c,= aobofo/lThis argument can yvos
(lQW\‘\ 1 be repeated for a,b,c,|d, e, in place of aybycy|dyey, then for a,b,ca|dse,, etc. The result fo
v is a connected NLONT-sequence [aoboco|doeo, asb,c,|d, e, - - -]. Since there is a finite ]
Mo collp number of faces in 7T, there must exist j and k such that 0=j <k and a;bc; = aybycy, !
es Qg. (i€, T contains a connected NLONT-cycle. a i &ic‘

P THEOREM 2. Every non-Delaunay triangulation can be transformed to a pseudo- T
“ngd 91;\;\@4\ locally optimal triangulation by a finite sequence of local transformation procedures applied pse
to nonlocally optimal transformable interior faces. Log
Proof. Let T, be a non-Delaunay triangulation, and let Ty, T}, T5,--- be a
sequence of triangulations where T;., is obtained from T; by applying the local O‘?
transformation procedure to a nonlocally optimal transformable interior face of T; if
such a face exists; otherwise, the sequence terminates at T;. Let R; be the nondecreasing
sequence of circumradii of tetrahedrons in T;. From Lemma 3, R;., is lexicographically
less than R; for all i. Since the R, are lexicographically decreasing as i increases, it is
not possible for the sequence of triangulations to contain a cyclg, so the sequence must
I . terminate in a pseudo-locally optimal triangulation T,,. {
: “(‘Di‘cudo ' CoRrOLLARY 1. Let Ty be a non-Delaunay triangulation, and let Ty, Ty, - - -, T,, be
g f\(‘g Vo_s" a sequence of triangulations where for i <m, T, is not pseudo-locally optimal and T, is
obtained from T; by applying the local transformation procedure to a nonlocally optimal
transformable interior face of T;, and T,, is pseudo-locally optimal. If T,, does not contain
a connected NLONT-cycle, then T,, is a Delaunay triangulation.
Proof. This corollary follows from Lemma 5 and Theorem 2.
If every non-Delaunay triangulation is not pseudo-locally optimal, then it would
be straightforward to derive an algorithm to construct a Delaunay triangulation using
the local transformation procedure/Unfortunately, we have found an _example7a
B

triangulation of eight vertices that is pseudo-locally optimal but not Delaunay./By
Lemma 5, this triangulation must contain at least one connected NLONT-cycle/The
eight vertices are given in Table 1, the tetrahedrons in the pseudo-locally optimal
non-Delaunay and Delaunay triangulations are given in Table 2, and the NLONT-
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TaBLE 1
Vertex coordinates.
Index x y z

1 0.054 0.099 0.993
2 0.066 0.756 0.910
3 0.076 0.578 0.408
4 0.081 0.036 0.954
5 0.082 0.600 0.726
6 0.085 0.327 0.731
7 0.123 0.666 0.842
8 0.161 0.303 0.975

TABLE 2

Pseudo-locally optimal non-Delaunay triangulation (left) and
Delaunay triangulation (right). A tetrahedron is described by its four
vertex indices.

Dy W L W R R R e e e e e
[= = N, R SV, N W, T SUR G UUS US I G T S S ]
YNNI A WL W
00 00 ~J 00 00 00 ~1 00 TOh O\ 00 O\ Lh

AL h R DR WA WWLIDNNDNDN
P R e N B e R o T o
00 00 0O GO ~) 00 =1 O\ ~1 00 &N AN OO0 O\ ~3 O Wn

[ N N T P R R R R R

configurations of the former triangulation are given in Table 3. The four tetrahedrons
in the connected NLONT-cycle formed from the first three entries of Table 3 are
illustrated in Fig. 4.

However, we conjecture that a non-Delaunay triangulation can be transformed
to a Delaunay triangulation by a finite sequence of local transformation procedures.
From the above example some of the local transformatlon procedures may have t0>

approach of Lawson [8] for provmg the two- dlmensmnal version of this conjecture
does not extend to the three-dimensional case. ... R
ConiecTURE 1. Given two different tnangulatlons Tl and T2 of the same n
threé-dimensional vertices, T, can be obtamed from T1 by a finite sequence of 1ocal 7
transformation procedures. R R 5 2 i

. Algorithm and structure. Based on the results of the previous section, we
present an algorithm and data structure for constructmg a pseudo-locally optimal
triangulation of n three-dimensional vertices vy, vy, ", U, (we are still assuming that
no four vertices are co-planar). In our algorithm, the n vertices are first sorted in
lexicographical order of their coordinates. In the general step, a pseudo-locally optimal
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TABLE 3
NLO NT-configurations. The first three
form a connected NLONT-cycle. There are
also three connected NLONT-cycles of

length 2.
a b c d e
4 5 2 6 7
4 7 5 2 8
2 4 7 1 5
4 5 6 2 8
4 7 8 1 5
2 4 1 6 7

triangulation T;_, of the first i —1 vertices has been constructed, and the ith vertex is
added to form a preliminary triangulation of the first i vertices. Note that the ith vertex
is outside the convex hull of the first i—1 vertices. Then the local transformation
procedure is applied to nonlocally optimal transformable faces until a pseudo-locally
optimal triangulation T; of the i vertices is obtained. We now present the pseudocode
for our algorithm, called TRSPH1.

In the “for” loop labelied (A) in the pseudocode, a preliminary triangulation is
constructed by adding tetrahedrons with vertex u; to T;_, to fill the convex hull of the
first i vertices. The new tetrahedrons are of the form v,0,0.;, Where v,0p0, is a boundary
face of T,_, but is not on the boundary of the convex hull of the first i vertices. This
condition holds if and only if v; and w are on opposite sides of v.UpD., Where w is any
point in the interior of the convex hull of the first i—1 vertices, e.g., w is the centroid
of the first tetrahedron.

Stack S is used to store the interior faces that are not known to be locally optimal
or nontransformable. If v,0,V0; 15 @ NEW tetrahedron, then v,v,0. may be nonlocally
optimal so it is put on S. If v,0,0.0; and V.U,V4Y; AT adjacent new tetrahedrons, then
v,Us0; may be a nonlocally optimal interior face, but it is not put on S because the
union of v,0,0.0; and V.VV4; is NOt convex, SO either v,v,0; is not transformable or
tetrahedron v,UpVU4 iS present in the triangulation, in which case v,UsU;, Valbldlis
VUl Uy are replaced by the two tetrahedrons v 0.U40;, VpUal; if either interior face
VaUpV: OF DaUply iS determined to be nonlocally optimal.

It is possible that the face vav,0. referred to in the statement labelled (B) is no
longer in the triangulation since three interior faces are replaced by one interior face
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FiG. 4. Connected NLONT-cycle formed from the first three entries of Table 3. Four tetrahedrons are:
2457, 2456, 4578, 1247.
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ArLcoritiM TRSPH1
Sort v,,v,, - -, U, into lexicographical order
Form first tetrahedron v,v,v304
Compute centroid w = (v;+ v+ 03+ v,)/4
Initialize S to empty stack
fori:=5to n do
Let T;_,=current triangulation of first
i—1 vertices (T;_, is pseudo-locally optimal)
(A) for each boundary face v,v,v, of T;_, do
if v; is on the opposite side of v,v,v, from w then
Add tetrahedron v,v,0.v; to triangulation
Push interior face v,v,0. on stack S
endif
endfor
while stack S is not empty do
Pop interior face v,v,0. from stack S

(B) if v,vpv, is still in triangulation then
Find the two tetrahedrons v,0,0.04, UalUsVcl, sharing face v,v,v,
(C) if the circumsphere of v,0,0.04 contains v, in its interior then

transform = true
if v,U,0.04 U 00500, is a convex hexahedron then
Replace v,0,0.04, VU0V, by the three tetrahedrons
VaUpUgU,, UgUelgle, UpUclale

else
if the third tetrahedron needed to fill the convex
hull of v,, - - -, v, is present in the triangulation then
Relabel vertices so that three tetrahedrons are 0,000,
UaUc0gle, UpUcUgle
Replace v,0,040., UaUclule, UpUcUale DY UqUpUcla, Valplcle
else
transform = false
endif
endif
if transform then
(D) for each of faces v,UsD4, Valple, Valclas
Va0Ve, Uplclg, Uplcl. dO
Push face on stack S if it is an interior face and it is
not yet in S
endfor
endif
endif

endif
endwhile
endfor

in the case of two tetrahedrons replacing three tetrahedrons in the local transformation
procedure. In the statement labelled (C), a test is made to see whether or not v,0,0,
15 locally optimal. If not, then the local transformation procedure is applied if v,vs0,
§ transformable (the configuration of the two tetrahedrons v,0,0.U4, UspUcle CAIN be
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TABLE 3
NLONT-configurations. The first three
form a connected NLONT-cycle. There are
also three connected NLONT-cycles of

length 2.
-
a b c d e
4 5 2 6 7
4 7 5 2 8
2 4 7 1 5
4 5 6 2 8
4 7 8 1 5
2 4 1 6 7

triangulation T;_, of the first i — 1 vertices has been constructed, and the ith vertex is
added to form a preliminary triangulation of the first i vertices. Note that the ith vertex
is outside the convex hull of the first i—1 vertices. Then the local transformation
procedure is applied to nonlocally optimal transformable faces until a pseudo-locally
optimal triangulation T; of the i vertices is obtained. We now present the pseudocode
for our algorithm, called TRSPH1.

In the “for” loop labelled (A) in the pseudocode, a preliminary triangulation is
constructed by adding tetrahedrons with vertex v; to T;_, to fill the convex hull of the
first i vertices. The new tetrahedrons are of the form v,0,0.;, Where v U0 18 @ boundary
face of T,_, but is not on the boundary of the convex hull of the first i vertices. This
condition holds if and only if v; and w are on opposite sides of vV, where w is any
point in the interior of the convex hull of the first i—1 vertices, e.g., w is the centroid
of the first tetrahedron.

Stack S is used to store the interior faces that are not known to be locally optimal
or nontransformable. If 0,050 0; is a new tetrahedron, then v,0,0, may be nonlocally
optimal so it is put on S. If vv0.; and vaULVLY; Bre adjacent new tetrahedrons, then
v,0,0; may be a nonlocally optimal interior face, but it is not put on S because the
union of vuv.v; and vULV4Y; is not convex, so either v,vpL; is not transformable or
tetrahedron v,U,0.04 is present in the triangulation, in which case U,UpV:0;, VaUblalis
VaUpUcUg are replaced by the two tetrahedrons v,0.040;, UpOcal; if either interior face
V.UV, OT U Uply 18 determined to be nonlocally optimal.

It is possible that the face vaUs0c referred to in the statement labelled (B) is no
longer in the triangulation since three interior faces are replaced by one interior face
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FiG. 4. Connected NLONT-cycle formed from the first three entries of Table 3. Four tetrahedrons are:
2457, 2456, 4578, 1247.



3-D TRIANGULATIONS FROM LOCAL TRANSFORMATIONS 727

ArcoriTHM TRSPH1
Sort vy, U5, * - -, U, into lexicographical order
Form first tetrahedron v, 0,050,
Compute centroid w = (v, + v+ v+ v,)/4
Initialize S to empty stack
for i=5to n do
Let T,_, =current triangulation of first
i—1 vertices (T, is pseudo-locally optimal)
(A) for each boundary face v,0v, of T;_, do
if v; is on the opposite side of v,v,v. from w then
Add tetrahedron v,v,v.y; to triangulation
Push interior face v,vpv, on stack S
endif
endfor
while stack S is not empty do
Pop interior face v,v,v. from stack S

(B) if v,vpv. is still in triangulation then
Find the two tetrahedrons v,0,U.04, UsUp0:0, sharing face v,u,0.
(C) if the circumsphere of v,v,0.v4 contains v, in its interior then

transform = true
if vov.04 U v,050.0, is @ convex hexahedron then
Replace 00,004, VaUsU:, by the three tetrahedrons

DaUpUgVe; VaUclgle, UpUcDgle

else
if the third tetrahedron needed to fill the convex
hull of v,, - - -, v, is present in the triangulation then
Relabel vertices so that three tetrahedrons are v,Up0q0,,
VaUcUgle, UpVeUgle
Replace 0,05040,, Valclle, Vplclale by 0,004, VaUplcle
else
transform = false
endif
endif
if transform then
(D) for each of faces v,U,U4, UaUple, Ualcld,
VaUcle, Uplcly, Uplcle dO
Push face on stack S if it is an interior face and it is
not yet in S
endfor
endif
endif
endif
endwhile

endfor

in the case of two tetrahedrons replacing three tetrahedrons in the local transformation
‘ procedure. In the statement labelled (C), a test is made to see whether or not v,v,0:

Es locally optimal. If not, then the local transformation procedure is applied if vV,
18 transformable (the configuration of the two tetrahedrons v,U,0.04, Valslcle C2N be
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determined as described in Definition 2 and the paragraph after it). If the local
transformation procedure is applied t0 DUV, then a boundary face of the convex
hexahedron formed by the two or three tetrahedrons may no longer be locally optimal,
so it is placed on stack S if it is an interior face of the triangulation and it is not yet
in S (see statement (D).

From the above discussion and the pseudocode, it is clear that on completion of
the ith step with S empty, the trianguiation of the first i vertices, T, is pseudo-locally
optimal. If T, is 2 Delaunay triangulation of the first i—1 vertices, then it seems
likely that T; does not contain a connected NLONT-cycle and is also Delaunay, hence
we have the following conjecture.

CONJECTURE 2. Algorithm TRSPH1 constructs a Delaunay triangulation for all
sets of three-dimensional vertices.

We now describe the data structure for our three-dimensional triangulation
algorithm. The vertex coordinates are stored in an array VC where VC[il.x, VC[il.y,
and VC[i].z are the coordinates of the ith vertex, v;. The faces and tetrahedrons are
changing throughout the algorithm, and there are searching operations on the faces
(e.g., find the two tetrahedrons sharing interior face v,Up0.). Hence the faces are stored
in a hash table HT with direct chaining, where HTJ[i]is the head pointer of the linked
list of faces with hashing function value i. A new face is added at the front of a linked
list, since it is more likely to be referenced again. Let a <b<c¢ be the three indices in
VC of the three vertices Vg, Us, Uc of a face. A satisfactory hashing functionis h(a, b, ¢) =
(an*+bn+c)mod M, where the hash table size, M, isa prime number. (For descriptions
of hashing and linked lists, see any data structure book, e.g., Standish [131)

We store the elements of the hash table linked lists in an array FC of face records
with origin index 1, so that some fields of the face record can be used for two purposes
depending on whether the face is an interior or boundary face. The fields of FC[i]
are a, b, ¢, d, elﬂink, stlink|blink, htlink, where 0 < a < b < c are the three vertex indices
of a face; vy and possibly v, are the fourth vertices of the one or two tetrahedrons
with (boundary or interior, respectively) face v,Up.; Stlink indicates whether or not
interior face v UyY, is in stack S and in the former case, it is also a pointer to the next
face in S; flink and blink are forward and backward pointers for a doubly linked list
of boundary faces (since the boundary faces must be traversed and updated in step
(A) of the pseudocode); and htlink is the pointer to the next element in the hash table
linked list.

All four link fields represent positive indices in the FC array or zero for end of
list, but due to the double use of some fields, the actual values stored in the flink, blink
and stlink fields are slightly modified. If ptr=0 is the real pointer value, then —ptr i
stored in the flink or blink field and ptr+2 is stored in the silink field. For interio
faces (with a positive integer in the e|flink field), stlink =1 is used to indicate that the
face is not in stack § and stlink>11is used to indicate that the face is in S as well a
the pointer to the next element of S. If a face is in stack S but no longer in th
triangulation, then b is set to zero to indicate this and the face record is deleted wher
it reaches the top of S. We also use the a field to maintain an avail linked list O
deleted face records (with nonpositive values to indicate pointers as for flink), so tha

a new face record can be obtained from the avail list if it is nonempty or the end O
array otherwise. ‘

With this data structure, searching, insertion, and deletion of faces are straightfor
ward, and each operation should take constant time with a sufficiently large hash tabl

size. At the end of the algorithm, the list of tetrahedrons in the triangulation can b
obtained by sequentially traversing the array FC. Since each tetrahedron appears fou
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times in the data structure, duplicates can be avoided as follows. For each new
tetrahedron, search for the other three representations and use the stlink|blink field to
indicate whether the tetrahedron determined by the d or e field has been listed already.

An example of the VC array is given in Table 1. An example of the FC and HT
arrays is given in Fig. 5 for the four tetrahedrons in Fig. 4, where any face appearing
in only one tetrahedron is taken to be a boundary face. The number of vertices is

n=8, the hash table size is M =5, and the hashing function is h(a, b,c)=
{an’+bn+c)mod M. TOP, HEAD, and TAIL are scalar variables that are pointers
to the top of stack S and the head and tail of the doubly linked list of boundary faces.

An obvious variation of algorithm TRSPH1 is to first construct an initial triangula-
tion T; as in step (A), then to put all interior faces of T; in stack S, and finally to
apply local transformation procedures to nonlocally optimal transformable faces of S
as in the main “while” loop of TRSPHI. If the interior faces are added to stack S by
sequentially traversing the array FC in the forward (backward) direction, then we call
this algorithm TRSPH2 (TRSPH3, respectively). Note that algorithm TRSPH1 can be
interpreted as constructing 7T, first (although T; never actually exists during the
algorithm) and then processing the interior faces in a different order from algorithms
TRSPH2 and TRSPH3. The order of processing the interior faces in TRSPH1 is closer
to that in TRSPH3 than TRSPH2, since in TRSPH3 faces created closer to the beginning
of the construction of T, are closer to the top of stack S initially. Since T; is in general
not close to a Delaunay triangulation, it seems likely that TRSPH2 and TRSPH3 have
a greater chance than TRSPHI of ending up with a connected NLONT-cycle and a
pseudo-locally optimal triangulation that is not Delaunay. In § 7, we report on experi-
ments that compare these algorithms.

5. Degeneracy. In this section, we describe the extensions to the results of § 3 and
algorithm TRSPH1 of § 4 when we remove the assumption that no four vertices are
co-planar. Definition 1 and Theorem 1 of § 3 (about locally optimal faces) still hold
when subsets of four co-planar vertices are allowed.

The degenerate configurations for two tetrahedrons abed and abce sharing common
face abc with d and e on opposite sides of abc are illustrated in Fig. 6, where the
vertices of abc are labelled so that a, b, d, and e are co-planar and c¢ lies on a different
plane. In Fig. 6(i), quadrilateral adbe is strictly convex and the other triangulation of
the five vertices contains tetrahedrons acde and bede. In Fig. 6(ii), quadrilateral adbe
degenerates to a triangle. In Fig. 6(iii), quadrilateral adbe is nonconvex and tetrahedron
acde must be added to fill the convex hull of the five vertices. In the latter two cases,
there are no other possible triangulations of the five vertices.

Hence, an additional case to the local transformation procedure described in § 2
is as follows. If tetrahedrons abcd and abce are in the configuration of Fig. 6(i), then
replace them by tetrahedrons acde and bede, i.e., swap interior face abc for face cde.

In the three configurations of Fig. 6, the circumcircles of faces abd and abe (which
are on the circumspheres of tetrahedrons abcd and abce, respectively) are in the same
plane. This implies that interior face abc is locally optimal if and only if the circumcircle
of abd does not contain e in its interior (i.e., edge ab is locally optimal in the
two-dimensional triangulation of a, b, d, e). Therefore, in Figs. 6(ii) and 6(iii), abc is
~ locally optimal, and in Fig. 6(i), either abc or cde is locally optimal.

. DEerINITION 5 (extension of Definition 2). Let abed and abce be two tetrahedrons
In triangulation T that are in the configuration of Fig. 6(i). Then face abc is said to
be tfansformable if either (i) abd and abe are boundary faces of T, or (ii) abd and abe
are interior faces of T and there is a vertex f (on the opposite side of abd from c)
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determined as described in Definition 2 and the paragraph after it). If the local
transformation procedure is applied to vUsLc, then a boundary face of the convex
hexahedron formed by the two or three tetrahedrons may no longer be locally optimal,
so it is placed on stack S if it is an interior face of the triangulation and it is not yet
in S (see statement (D).

From the above discussion and the pseudocode, it is clear that on completion of
the ith step with S empty, the triangulation of the first i vertices, T, is pseudo-locally
optimal. If T is a Delaunay triangulation of the first i—1 vertices, then it seems
likely that T; does not contain a connected NLONT-cycle and is also Delaunay, hence
we have the following conjecture.

CONJECTURE 2. Algorithm TRSPH1 constructs a Delaunay triangulation for all
sets of three-dimensional vertices.

We now describe the data structure for our three-dimensional triangulation
algorithm. The vertex coordinates are stored in an array VC where VC[ilx, VC[il.y,
and VC[i].z are the coordinates of the ith vertex, vi. The faces and tetrahedrons are
changing throughout the algorithm, and there are searching operations on the faces
(e.g., find the two tetrahedrons sharing interior face v,vp0,). Hence the faces are stored
in a hash table HT with direct chaining, where HT[i] is the head pointer of the linked
list of faces with hashing function value i. A new face is added at the front of a linked
list, since it is more likely to be referenced again. Let a<b<c¢ be the three indices in
VC of the three vertices U, Us, Uc of a face. A satisfactory hashing function is hia, b, c)=
(an’+bn+ ¢) mod M, where the hash table size, M, 1sa prime number. (For descriptions
of hashing and linked lists, see any data structure book, e.g., Standish [13].)

We store the elements of the hash table linked lists in an array FC of face records
with origin index 1, so that some fields of the face record can be used for two purposes
depending on whether the face is an interior or boundary face. The fields of FCLi]
are a, b, ¢, d, e| flink, stlinklblink, htlink, where 0 <a < b < ¢ are the three vertex indices
of a face; vy and possibly v, are the fourth vertices of the one or two tetrahedrons
with (boundary or interior, respectively) face va00c} stlink indicates whether or not
interior face V.UV, 18 iN stack S and in the former case, it is also a pointer to the next
face in S; flink and blink are forward and backward pointers for a doubly linked list
of boundary faces (since the boundary faces must be traversed and updated in step
(A) of the pseudocode); and hilink is the pointer to the next element in the hash table
linked list.

All four link fields represent positive indices in the FC array or zero for end of
list, but due to the double use of some fields, the actual values stored in the flink, blink
and stlink fields are slightly modified. If ptr=0 is the real pointer value, then —ptr i
stored in the flink or blink field and ptr+2 is stored in the stlink field. For interio
faces (with a positive integer in the e|flink field), stlink =1 is used to indicate that the
face is not in stack S and stlink>1 is used to indicate that the face is in § as well 2
the pointer to the next element of S. If a face is in stack S but no longer in th
triangulation, then b is set to zero to indicate this and the face record is deleted whe!
it reaches the top of S. We also use the a field to maintain an avail linked list 0
deleted face records (with nonpositive values to indicate pointers as for flink), s0 the
a new face record can be obtained from the avail list if it is nonempty or the end ¢
array otherwise.

With this data structure, searching, insertion, and deletion of faces are straightfo!
ward, and each operation should take constant time with a sufficiently large hash tabl
size. At the end of the algorithm, the list of tetrahedrons in the triangulation can t
obtained by sequentially traversing the array FC. Since each tetrahedron appears fot
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FIG. 6. Three possible cases of two tetrahedrons with a, b, d, e co-planar.

such that abdf and abef are tetrahedrons of T. Face abc is not transformable, if in
case (ii), the other two tetrahedrons of T containing faces abd and abe are abdf and
abeg where f# g.

Note that the configuration of Fig. 6(i) can be detected and distinguished from
the other configurations of § 3 by the fact that de intersects the boundary of triangle
abc. The main extension to algorithm TRSPHI is to detect the configuration of Fig.
6(i) when face abc from stack S is not locally optimal and to apply the local transforma-
tion procedure to abc if it is transformable. In the case that abd and abe are interior
faces, the local transformation procedure must be applied to both abc and abf where
f is defined in Definition 5(ii), i.e., tetrahedrons abed and abce are replaced by acde
and bcde, and tetrahedrons abdf and abef are replaced by adef and bdef. In this case,
both cde and def are locally optimal faces in the new triangulation, and the faces that
may have to be put on stack S are ade, bde, acd, ace, bcd, bee, adf, aef, bdf, and bef.
In the case that abd and abe are boundary faces, the faces that may have to be put
on stack S are acd, ace, bcd, and bee.

The only other modification to the algorithm is a possible slight reordering of the
sorted vertices to get a valid first tetrahedron (i.e., vy, U2, U3, and v, are not co-planar).
Let v, - -, v, be the sorted vertices. Let v, k=3, be the vertex of smallest index
such that v,, v,, and v, are not collinear. Let v,,, m > k be the vertex of smallest index
such that v,, v,, Uy, and v, are not co-planar. Then shift the vertices to get the new
ordering: v, Ua, Uk, Ums U35 " 75 Uk—1s Dkt1s =7 75 Umts Ume1s *°» Ua. Note that with
this new ordering, the vertices still satisfy the property that the ith vertex is outside
the convex hull of the first i —1 vertices. The modifications to algorithms TRSPH2 and
TRSPH3 are clearly similar.

All the remaining results in § 3 also extend to the case when subsets of four
co-planar vertices are allowed. Lemmas 2 and 3 extend to the two possible triangulations
in the configuration of Fig. 6(i). The extensions of Lemma 4 and Definition 4 are as
follows.

LEMmMA 6. Let T be a triangulation containing tetrahedrons abed and abce in the
configuration of Fig. 6(i) such that interior face abc is not locally optimal and is not

transformable, i.e., abdf and abeg are tetrahedrons of T where f# g. Then there exists
another interior face abh, h # c, that is not locally optimal.

Proof. The proof is similar to proof of Lemma 4. il

DeriniTION 6. In addition to the NLONT-configuration given in Definition 4,
abc|de is also a NLONT-configuration if abed and abce are adjacent tetrahedrons
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sharing interior face abc as in Fig. 6(i) such that abc is nonlocally optimal and
nontransformable.

Lemma 5 still holds with the extended definition of NLONT-configuration.
Theorem 2, Corollary 1, and Conjecture 1 still hold, provided Tiy, is obtained from
T, by two simultaneous applications of the local transformation procedure in Definition
5(ii) as discussed above.

6. Max-min solid angle criterion. In this section, we describe how our algorithms
for constructing 2 pseudo-locally optimal triangulation with respect to the sphere
criterion can be modified to construct a locally optimal triangulation with respect to
the max-min solid angle criterion. The main modifications are due to the definition of
“locally optimal” with respect to the max-min solid angle criterion.

DEeriNITION 7. Let abed and abce be two tetrahedrons sharing interior face abc
in a triangulation T, where abc 1s a transformable face (see Definitions 2 and 5). Let
T, contain the tetrahedrons of T that fill the convex hull of a, b, ¢, d, e Let Ty contain
the tetrahedrons in the alternative triangulation ofa, b, ¢, d, e If abc satisfies Definition
5(ii), then let T additionally contain tetrahedrons abdf and abef,and let T, additionally
contain tetrahedrons adef and bdef. Then face abc is said to be locally optimal with
respect to the max-min solid angle criterion if s(T)) = s(T,) where s(T;) =min {solid
angles at vertices of tetrahedrons of T}

DEeFINITION 8. A triangulation T is said to be SA-locally optimal if every trans-
formable interior face in T is locally optimal with respect to the max-min solid angle
criterion. (To avoid confusion with Definition 3, we use SA-locally optimal instead of
pseudo-locally optimal.)

DEFINITION 9. A triangulation T of a set S of three-dimensional vertices is said
to be SA-globally optimal if over all possible triangulations of S, the minimum of the
solid angles at all vertices of all tetrahedrons is maximized in triangulation T.

Note that, unlike the case of the sphere criterion, a SA-locally optimal triangulation
may not be SA-globally optimal. We have no theoretical results such as those of
Theorem 1 that characterize a SA-globally optimal triangulation. It is possible that the
problem of constructing 2 SA-globally optimal triangulation is NP-hard. The following
results, which are similar to Lemma 3 and Theorem 2, indicate how an SA-locally
optimal triangulation can be constructed.

LEmMa 7. Let Tbea triangulation with m tetrahedrons, let &; be the minimum
of the four solid angles of a tetrahedron, and let A=(a,, a2, "> a,, ) bethe nondecreas-
ing sequence of a; values of tetrahedrons in T. Suppose the local transformation
procedure is applied to a nonlocally optimal interior face (or two faces if they satisfy
Definition 5(ii)) in T. Let A'=(a}j, as" ", a') be the nondecreasing sequence of a
yalues of tetrahedrons in the resulting triangulation. Then A'is lexicographically greatel
than A.

Proof. This lemma follows from Definition 7. g

TueoreM 3. Every triangulation that is not SA-locally optimal can be transformet
to a SA-locally optimal triangulation by a finite sequence of local transformation procedure
applied to nonlocally optimal interior faces.

Proof. This theorem follows from Lemma 7 using the same approach as in th
proof of Theorem 2. 0

To construct an SA-locally optimal triangulation, the algorithms given in §§ 4 an
5 must be modified, when processing a face vaUnle from stack S, to first check wheth
VaUpDe 1S transformable before determining whether it is nonlocally optimal. The on!
other modification is inside the “for” loop labelled (A) in which face vaUsUi, VaVclis
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v, 0; must be added to stack S if it is an interior face. The reason for this is that a
face abc in the configuration of Fig. 6(i) may be locally optimal if abd and abe are
boundary faces, but abc may become nonlocally optimal if abd and abe become
interior faces. We call the modified algorithms TRMMSA1, TRMMSAZ, TRMMSA3,
with the obvious correspondence to the earlier algorithms.

7. Experimental results. We implemented algorithms TRSPHI, TRSPH2,
TRSPH3, TRMMSA1L, TRMMSA2, and TRMMSA3 in Fortran, and ran many test

problems to compare these algorithms and to determine the empirical time complexity.

It is not possible to obtain an average or worst-case time complexity analytically since

the complexity depends on the number of faces tested for local optimality and the

number of applications of the local transformation procedure for which we have no

general bounds. The implementations used double precision floating point arithmetic

and were compiled using the f77 compiler without the optimization option (due to

compiler bugs). The tests were done on a Sun 3/50 workstation with a MC68881

floating point processor running the Sun Unix 4.2 operating system.

We used 60 test problems in our experiment, consisting of 11 problems each for
the five different a values 100, 200, 300, 400, 500, and a 12th problem for the n values
50, 100, 150, 200, 250. For fixed n, the description of the 12 problems is as follows.
The first seven problems have vertex coordinates that are pseudorandom numbers from
the uniform distribution in [0, a,]1x [0, a,1x[0, a.]. Problem P1,, P2,, P3,, P4, have
a,=a,=a,=1; problem P5, has a, =05, a, = a. = 1; problem P6, has a, =1, a, =0.5,
a.=1; and problem P7, has a,=a, =1, a. =0.5. The next three problems are used to
test the degenerate configurations in which four vertices are co-planar. They consist
of approximately Vn parallel planes, each with an average of V/n vertices. The planes
are orthogonal to one of the three axes and are determined by pseudorandom uniform
numbers in [0, 1]. The vertices on each plane have vertex coordinates that are
pseudorandom uniform numbers in [0, 1]x [0, 11. In problems P8,, P9,, and P10,, the
parallel planes have the form x=¢, y=¢, and z=¢, respectively.

The last two problems are not random; one does not have a unique Delaunay
triangulation and the other has a Delaunay triangulation containing O(n?) tetrahedrons.
In problem P11,, the vertex coordinates are on a uniform grid and have the form
(i,j, k), where i, j, and k are integers in the ranges 0 to n,—1, 0 to n, = 1, and 0 to
n, -1, respectively, and n = n.nyn,. Forn =100, n,=4,n,=n, =35; forn=200,n,=n,=
5, n,=8; for n =300, n, =5, n, =6, n.=10; for n =400, n, =5, n, = 8, n, =10; and for
n=500, n,=35, n,=n,=10. The number of tetrahedrons in a Delaunay triangulation
of this problem can range from 5(n,—1)(n,—1)(n,—1) to 6(n,— 1)(n,—1)(n,—1),
since a unit cube can be triangulated by five or six tetrahedrons.

Problem P12, has k= |n/2] vertices that are equally spaced points on the unit
circle centred about the origin in the x-y plane, and m = n—k points that are equally
spaced in interval [0, 1] of the z-axis, i.e., v; ={cos (ia), sin (ix),0) for i=1,---, k

and v, =(0,0,(i—1)s) for i=1, -, m where a=27/k and s=1/(m—1). All
teFrahedrons in the Delaunay triangulation of this problem must consist of two vertices
with index =k and two with index >k, therefore the number of tetrahedrons, faces,
and boundary faces in the Delaunay triangulation are n(n—2)/4, n(n—1)/2, and n,
respectively, for even n.

_ For our experiment, we used the hashing function given in § 4 and a hash table
size M =1.5n, where M is a prime number and n is the number of vertices, so the
Slf)rage complexity of the algorithms is proportional to the number of faces in the
triangulation. For all algorithms and problems P1, to P11, the average number of

Yiol, 1IN Yiing,
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face records compared when a face is searched in the hash table is a small constant:
=20 for TRSPH1 and TRMMSAL, =4.7 for TRSPH?2 and TRMMSA?2, and =6.1 for
TRSPH3 and TRMMSAS3. For problem P12, the average mumber of face records
compared during searches is up to 8.2 for TRSPH1, TRSPH2, TRSPH3, TRMMSAL,
and 19.7 for TRMMSA2, TRMMSA3 when n =250; the higher numbers are due to a
quadratic number of faces (the hash table size should be proportional to the number
of faces in order to get a constant number of comparisons, on average).

The following quantities are used to measure the performance of the algorithms
(i refers to the algorithm number in TRSPHi or TRMMSAI):

NTETi— number of tetrahedrons in triangulation;

NFACi— number of faces in triangulation;

NBECi— number of boundary faces in triangulation;

TIMi— CPU time in seconds for constructing triangulation;

TInit—  CPU time in seconds for sorting vertices and producing initial triangula-
tion T, (or producing preliminary tetrahedrons in step (A) of TRSPH1),
so TIMi—TInit is the CPU time spent in checking faces for local
optimality and transformability, applying the local transformation pro-
cedure, and updating stack S;

LOPi— number of faces that are locally optimal when tested for local opti-
mality;
LTPi—  number of applications of the local transformation procedure (the

degenerate case in which four tetrahedrons are replaced by four other
tetrahedrons is counted as one application);

NTFi— number of faces that are nonlocally optimal and nontransformable
when tested for local optimality in TRSPHi or that are nontransform-
able when tested for transformability in TRMMSAI;

MSAi— minimum solid angle in radians at vertices of tetrahedrons of triangu-
lation.

Note that LOPi+LTPi+NTFi is the number of faces on stack S that are tested for
local optimality (transformability) in algorithm TRSPHi (TRMMSAI).

We first describe the experimental results from running the 60 test problems for
algorithms TRSPH1, TRSPH2, and TRSPH3. TRSPH1 constructed a Delaunay triangu-
lation for all the problems (this is verified by checking that all interior faces are locally
optimal). TRSPH3 failed to construct a Delaunay triangulation for only problem Plsqo;
for this pseudo-locally optimal triangulation, there are 34 nonlocally optimal nontrans-
formable interior faces. TRSPH2 constructed pseudo-locally optimal non-Delaunay
triangulations for 18 of the 60 problems: P5300, P7200, P10200, Pl100, P5300, P6300, P8300s
Plago, P24005 PAaco, PSa00, Pac0s Plso0, P3s00, P4soos P3s00s P6s00, P9s00- The number
of nonlocally optimal faces in these triangulations are 21, 13, 20, 27, 27, 46, 12, 74,
35,48, 68, 13,23,7, 57,27, 52, and 33, respectively. It appears that algorithm TRSPH2
is more likely to construct a non-Delaunay triangulation as n increases.

We split the measurements into three categories, the average of P1, to P10,, P11,,
and P12,, since the performance of the algorithms on the last two problems is
significantly different from the random problems. The measurements for the 10 random
problems are approximately the same, with problems P5, and P8, always having the
highest CPU times and number of faces tested for local optimality (this is probably
because the lexicographical ordering of the vertices causes these two problems to have
more long tetrahedrons with small solid angles in the initial triangulation T;). Tables
4, 5, and 6 contain measurements for the average of P1, to P10,. Tables 7, 8, and 9
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TaBLE 4
Average of problems P1, to P10, algorithm TRSPHi: number of tetrahedrons and faces in Delaunay
triangulation and CPU times.

n NTETI NFACH NBFC1 Tlnit TIM1 TIM2 TIM3
100 504.0 1039.2 62.4 2.62 22.711 22.19 22.15
200 1129.2 2298.7 80.6 6.59 64.20 62.56 63.07
300 1761.8 35727 98.2 11.91 113.97 108.88 111.08
400 2386.9 4834.4 121.2 19.38 167.74 160.96 166.12
500 30429 6143.3 115.0 24.11 226.73 219.80 22391

TABLE 5

Average of problems P1, to P10, algorithm TRSPHi: number of faces tested for local optimality.

n LOP1 LTPI1 NTF1 LOP2 LTP2 NTF2 LOP3 LTP3 NTF3
100 3,568 1,072 474 3,363 1,012 652 3,440 1,066 494
200 10,278 3,119 1,435 9,415 2,917 1,944 9,854 3,091 1,511
300 18,160 5,557 2,654 16,385 5,105 3,416 17,346 5,484 2,727

400 26,508 8,167 3,957 23,800 7,491 5,102 25,513 8,104 4,081
500 36,098 11,139 5,444 32,867 10,383 6,974 34,749 11,028 5,603

TABLE 6
Average of problems P1, to P10, algorithm TRSPHi: complexity of number of faces, times, and number
of tests for local optimality.

NFAC1 NBFC1 TlInit TIM1 LOP1 LTP1 NTF1
. n /3 74/-3- 3 JRYE) JRYE JR7E
100 10.4 13.4 00565 0489 7.69 2.31 1.02
200 11.5 13.8 .00564 .0549 8.79 2.67 1.23
300 11.9 14.7 .00593 .0567 9.04 2.77 1.32
400 12.1 16.4 00657 0569 8.99 2.77 1.34
500 12.3 14.5 .00608 0571 9.10 2.81 1.37
TABLE 7

Problem P11,,, algorithm TRSPHi: number of tetrahedrons and faces in Delaunay triangulation and CPU
times.

n NTET1 NFACI NBFC1 TInit TIM1 TIM2 TIM3
100 288 656 160 4.08 12.87 14.18 13.57
200 672 1,488 288 14.90 44.53 50.87 48.23
300 1,080 2,362 404 31.70 97.22 111.03 105.08
400 1,512 3,278 508 53.58 171.73 192.62 182.32
500 1,944 4,194 612 81.52 270.32 296.53 277.92

TABLE 8

Problem P11, algorithm TRSPHi: number of faces tested for local optimality.

n LOP1 LTP1 NTF1 LOP2 LTP2 NTE2 LOP3 LTP3 NTF3
100 1,834 474 188 2,149 472 255 1,956 468 211
200 6,051 1,680 643 7,305 1,676 1,064 6,852 1,689 806

300 13,311 3,684 1,500 15,845 3,672 2,633 14,880 3,680 - 1,863
400 23,870 6,312 3,032 27,417 6,260 4,986 25,653 6,194 3,539
500 38,005 9,796 5,210 42,044 9,620 8,049 39,013 9,370 5,859
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TABLE 9
Problem P11, algorithm TRSPHi: complexity of number of faces, times, and number of tests for local

optimality.

NFACI1 NBFCl1 Tlnit TIMI LOP1 LTPI NTF!

nt# n'® n? n? n? n?

4.02 00103 .00129 (183 0474 .0188
4.16 .00108 00111 151 .0420 0161
4.21 00110 00108 .148 0409 .0167
421 00111 00107 149 0395 .0190
4.24 00113 200108 152 0392 .0208

contain measurements for P11,. Tables 10, 11, and 12 contain measurements for P12,.
The CPU times in these tables are subject to a variation of up to about 5 percent
when the program is run at different times.

For the random problems, it can be seen from Table 6 that the number of faces
in the Delaunay triangulation is O(n), and the time complexity of algorithm TRSPH1
is approximately O(n*’?). From equation (1)(a), the number of tetrahedrons in the

TaBLE 10
Problem P12,,, algorithm TRSPHi: number of tetrahedrons and faces in Delaunay triangulation and CPU

times.

n NTETI NFAC1 NBFC1 Tlnit TIM1 TiM2 TiM3
50 600 1,225 50 1.25 7.71 8.02 8.38
100 2,450 4,950 100 5.18 31.37 34.62 35.32
150 5,550 11,175 150 11.55 73.30 79.13 73.38
200 9,900 19,900 200 19.12 116.47 129.95 131.68
250 15,500 31,125 250 30.57 184.45 207.70 208.45
TasLE 11
Problem P12, algorithm TRSPHi: number of faces tested for local optimality.

n LOP1 LTP1 NTF1 LOP2 LTP2 NTF2 LOP3 LTP3 NTF3
50 1,385 274 0 1,608 274 0 1,719 274 0
100 5971 1,199 0 6,959 1,199 0 7,244 1,199 0
150 13,537 2,700 0 16,067 2,700 0 16,421 2,700 0
200 24,151 4,800 0 28,810 4,800 0 29,297 4,800 0
250 38,185 7,624 0 45,521 7,624 0 liG,l 19 7,624 0
I

TABLE 12
Problem P12,,, algorithm TRSPHi: complexity of number of faces, times, and
number of tests for local optimality.

NFAC1 TlInit m —I:(-)_P_l_ LTP

n n? n* n? n? n?
50 490 000500 00311 554 110
100 495 000518 .00314 597 120
150 497 000513 00326 602 120
200 498 000478 .00291 604 120
250 498 000489 00295 611 122
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Delaunay triangulation has the same complexity as the number of faces. For problem
P11,, it can be seen from Table 9 that the number of faces in the Delaunay triangulation
is O(n), as expected, and the time complexity of TRSPH1 is approximately O(n?).
We believe that the higher time complexity for this problem is due to the fact that the
initial triangulation T, has many long tetrahedrons with small solid angles and the
Delaunay triangulation does not have any of these tetrahedrons. Note that for P11,
the theoretical asymptotic complexities for NBFC1 and TInit are O(n**) and O(n*"),
respectively. For problem P12, it can be seen {rom Table 12 that the number of faces
in the Delaunay triangulation is O(n®), as expected, and the time complexity of
TRSPHI1 is approximately O(n?).

For the three types of problems, the time complexities of algorithms TRSPH2 and
TRSPH3 are the same as that for TRSPH1, as can be seen from calculations similar
to those in Tables 6, 9, and 12. Therefore our experiment has shown that there is no
advantage to using TRSPH2 or TRSPH3 over TRSPHI, since all three algorithms
require approximately the same amount of CPU time and TRSPH2 and TRSPH3 have
each failed to construct a Delaunay triangulation for at least one test problem.

Due to the amount of CPU time required, we chose to use a maximum value of
n =500 in our experiment. This is large enough to determine the complexity trends
given in Tables 6, 9, and 12. We have run TRSPH1 for a few problems with up to
n=5,000 vertices, and have not found a counterexample to Conjecture 2. The com-
plexities for these larger problems are similar to those given in the above tables. The
CPU time required for Pls g is approximately 73 minutes.

We now describe the experimental results from running the 60 test problems for
algorithms TRMMSA1, TRMMSA2, and TRMMSA3. Table 13 contains the minimum
solid angles in the triangulations of 30 of the 60 problems (to reduce the table size,
we show the results for 20 of the more interesting random problems in which the
entries have greater variance). MSAI is the minimum solid angle in the triangulation
produced by TRMMSAIi (MSA3 is not shown since MSA3 = MSALI for all the prob-
lems). MSADel is the minimum solid angle in the Delaunay triangulation produced
by TRSPH1, MSA3a is the minimum solid angle in the triangulation produced by a
modified version of TRMMSA3 in which the starting triangulation is the Delaunay
triangulation produced by TRSPH1 instead of the initial triangulation T;, so MSA3a=
MSADel is always satisfied.

The comparison of the MSA values for the 50 random problems is summarized
as follows. MSA1>MSA2 for 27 problems, MSA1<MSA2 for 7 problems, and
MSA1=MSA2 for 16 problems. MSADel> MSA12 for 25 problems, MSADel <
MSA12 for 10 problems, and MSADel = MSA12 for 15 problems, where MSA12=
max (MSA1, MSA2). MSA3a>MSADel for 9 of the 50 problems, and MSA12>
MSA3a for 8 of the 50 problems. Therefore none of the algorithms always produces
a SA-globally optimal triangulation (we do not know whether a triangulation with the
highest MSA value is SA-globally optimal, but we do know that the triangulations
with smaller MSA values are not SA-globally optimal), and from Table 13, it can be
" seen that the MSA value for a SA-locally optimal triangulation can be much smaller
than that for a SA-globally optimal triangulation. Since MSA3a= MSA12 for 52 of
the 60 problems, it seems that the best approach to constructing an SA-locally optimal
triangulation with a “good” MSA value is to improve the Delaunay triangulation by
applying the local transformation procedure to nonlocally optimal faces (with respect
to the max-min solid angle criterion).

In Tables 14, 15, and 16 we present the counts and times for algorithm TRMMSAL1
(the results for TRMMSA2 and TRMMSA3 are similar). From comparison with Tables
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TABLE 13
Minimum solid angles in triangulations.

Problem MSAI1 MSA2 MSADel MSA3a
Plyg0 .0001568 0002963 0012346 .0032361
P4 40 .0006088 10001021 0004123 0004123
P36o .0001851 0002813 .0000893 .0000893
P800 .0000115 0000115 .0001843 10003123
P2500 .0002078 .0001334 0001774 .0001774
Pd;00 .0001728 .0001023 .0004117 0004117
P5200 .0001794 .0000120 .0000043 0000043
P8,00 .0000136 .0000195 .0000414 0000414
Pd ;g0 .0000922 .0000071 .0000922 0003906
P63gp .0000913 .0000913 .0000515 .0001215
P7300 .0000456 .0000036 0000619 .0000824
P81g0 .0000048 0000071 .0000338 .0000338
P3400 .0000742 .0000029 .0001818 .0001818
P5400 .0000193 .0000008 .0000205 .0000205
P7400 .0000110 .0000096 .0000102 .0000153
P10,00 .0000008 .0000008 .0000507 .0001061
Plsgo .0000413 0000152 .0000762 .0001843
Péso0 .0000655 .0000213 .0000299 .0000299
P60 .0000097 0000419 .0001641 0001641
P9540 .0000223 .0000538 .0000858 0000858
P11, .0050024 .0050024 .1837619 2617994
Pliye 0013148 0013148 .1837619 2617994
Pll300 .0005906 0005906 1837619 .2617994
Pll400 .0004443 .0004443 .1837619 2617994
Pllse0 .0003192 10003192 - .1837619 2617994
P12s 0031036 .0031036 0193708 .0193708
P12, .0003834 0003834 0098490 .0098940
P12,50 .0001134 .0001134 .0066005 0066005
P12,40 .0000478 .0000478 0049631 0049631
P12;50 0000245 0000245 .0039765 .0039765

TABLE 14

Average of problems P1, to P10,,, algorithm TRMMSAL: number of tetrahedrons, faces, tests for
transformability, and CPU times.

n NTET1 NFAC1 TIM1 LOP1 LTP1 NTF1
100 460.2 951.6 12.94 530 207 866
200 1005.0 2050.3 27.84 1,159 406 1,800
300 1571.8 31927 45.74 1,836 670 2,920
400 21454 4351.4 65.63 2,481 907 4,005
500 2701.9 5461.3 82.08 3,158 L1 5,011

4 to 12, it can be seen that for TRMMSAI, a smaller percentage of the tests for
transformability (local optimality) result in an application of the local transformation
procedure and much larger percentage resultin a nontransformable face. (This relatively
large number of nontransformable faces explains why MSAI can sometimes be much
smaller than MSADel.) Also, for TRMMSAL, there are much fewer tests for trans-
formability in the random problems and problem P11, than there are for TRSPHi,
and about the same number of tests for P12,. Hence, the CPU time required for
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TABLE 15
Problem P11, algorithm TRMMSAL: number of tetrahedrons, faces, tests for transformability,
and CPU times.

n NTETI1 NFACI1 TIM1 LOP1 LTP1 NTF1
100 267 614 20.70 707 244 554
200 672 1,488 37.33 1,125 319 804
300 1,080 2,362 69.43 1,929 555 1,308
400 1,512 3,278 101.87 2,599 611 1,565
500 1,938 4,182 154.95 3,854 845 2,215

TABLE 16

Problem P12,, algorithm TRMMSAL: number of tetrahedrons, faces, tests for transformability,
and CPU times.

n NTET1 NFAC1 TiM1 LOPI LTP1 NTF1
50 532 1,089 20.47 761 199 648
100 2,122 4,294 86.60 3,079 857 2,755
150 4,760 9,595 188.80 6,738 1,891 6,379
200 8,457 17,014 335.58 11,810 3,324 11,522
250 13,201 26,527 528.35 18,644 5,285 18,036

TRMMSAL1 is smaller than that for TRSPH for the random probiems and P11,, and
is greater for P12, since a test involving computation of solid angles takes more time
than a test for determining whether a point is in a sphere. From calculations similar
to Tables 6, 9, and 12, the number of faces in the triangulation produced by TRMMSA1
is O(n) for the random problems, and the time complexity of TRMMSAI appears to
be approximately O(n'"') for the random problems, O(n'?) for P11,, and O(n®) for
P12,.

Finally, to compare the CPU times for the three different types of problems and
the two different types of local optimality criteria, the graphs of n versus TIM1 are
given in Fig. 7.

8. Concluding remarks. We have presented an algorithm called TRSPH1 for
constructing a triangulation of a set of n three-dimensional points that is pseudo-locally
optimal with respect to the sphere criterion. Experimental results show that TRSPH1
always constructs a Delaunay triangulation (so far), although variations of TRSPH1
can sometimes fail to construct a Delaunay triangulation. The Delaunay triangulation
of n three-dimensional random points (from the uniform distribution) is shown experi-
mentally to contain O(n) tetrahedrons and faces, and the empirical time complexity
of TRSPH1 is O(n*?) for sets of random points, which compares well with existing
algorithms for constructing a three-dimensional Delaunay triangulation (Bowyer [2],
Watson [14], Avis and Bhattacharya [1]). The Delaunay triangulation of n three-
dimensional points contains O(n?) tetrahedrons and faces in the worst case, and we
have presented two families of problems for which TRSPH1 requires an empirical
time complexity of O(n?). We have not yet found any problems for which TRSPH1
requires more than O(n?) time, so O(n?) appears to be the worst-case time complexity.
This is better than the worst-case time complexity of O(n*) for Avis and Bhattacharya’s
algorithm (Bowyer and Watson do not discuss the worst case in their papers).

. An open problem is to prove that TRSPH1 always constructs a Delaunay triangula-
tion (Conjecture 2), or to find an example for which TRSPH1 fails to construct a
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TIM1 TIM1
350 '1 350 '1
300 7 300 7
250 7 f 250
200 7 200 7
150 7 150 7
100 7 100 7

50 7 50 7

T T T T 1 T T T T 1
100 200 300 400 500 100 200 300 400 500

n n

FiG. 7. Graphs of n versus TIM1 (in seconds). Left graph is for TRSPH1; right graph is for TRMMSAL
O: average of P1, to P10,; J: P11,,; +: P12,.

Delaunay triangulation. If the latter case occurs, then open problems are to determine
sufficient conditions for TRSPH1 to be successful and to determine whether the local
transformation procedure can be used in a modified algorithm that always produces
a Delaunay triangulation (this may involve applying the local transformation procedure
to locally optimal faces, and may be related to Conjecture 1).

We believe that the approach of using the local transformation procedure to
improve a triangulation, as in the TRSPHi algorithms, is especially useful if an initial
triangulation that is nearly Delaunay can be constructed quickly, say in linear time.
This may be possible in an application such as finite-element mesh generation in which
the vertices as well as the tetrahedrons are generated. Information about the location
of the generated vertices can be used to construct a ‘‘good” initial triangulation, and
then it may be possible to improve this triangulation to a Delaunay triangulation in
linear time. This is done in two dimensions in Joe [7] and is a subject of further
research in three dimensions.

We have also introduced the max-min solid angle criterion in this paper. This
criterion does not seem to have been used before, although Nguyen [11] tries to avoid
small solid angles in his three-dimensional triangulation algorithm. Experimental
results show that, unlike the case of the sphere criterion, a SA-locally optimal triangula-
tion may be far from being SA-globally optimal due to many nontransformable faces.
An approach to constructing a SA-locally optimal triangulation with a “satisfactory”
minimum solid angle is to improve the Delaunay triangulation by applying the local
transformation procedure to nonlocally optimal faces. A further research problem it
to derive more theoretical results for SA-globally optimal triangulations such as
determining whether the local transformation procedure can be used in their construc
tion or whether the problem of constructing 2 SA-globally optimal triangulation it
NP-hard.
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Finally, we discuss the possibility of extending the local transformation approach
to triangulations of higher dimensions. Lawson [10] has recently proved that an
arbitrary dimensional version of Theorem 1 is true, shown that a set of k+2 points in
k-dimensional space may be triangulated in at most two different ways, and character-
ized the different configurations of k+2 points from the point of view of their possible
triangulations (the number of configurations increases as k increases). Hence the local

transformation procedure can be defined in any dimension, but the number of different
cases increases as the dimension k increases. However, we suspect that the use of the
local transformation procedure to construct k-dimensional Delaunay triangulations
for k=4 will be more difficult than the three-dimensional case (and maybe even not
possible), since the configuration containing a facet may have four or more simplices

so more facets are likely to be nonlocally optimal and nontransformable.

Acknowledgment. The author would like to thank the referees for their helpful
comments.

Note added in proof. The author has now proved that Conjecture 2 is true.
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