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RECTILINEAR STEINER TREE PROBLEM 827
(a) Prove that X can be solved in polynomial time bya «
Turing machine,
(b) Prove that some known NP-complete problem X’ can be “polynomially
transformed” into X, in such a way that any polynomial-time algorithm
i 3 for solving X could be used to solve X" in polynomial time,
B The first requirement is rather technical, but trivi
% here. Thus we shall omit verification of (a) from our proofs, leaving the details to
. the interested reader. Our proofs will focus on the transformation required by (b).

3 2. Overall strategy. In order to prove the NP-completeness of the RST
= problem, we first prove a sequence of auxiliary NP-completeness results, Given a

graph G=(V, E), a node cover for G is any subset V* € V that contains at least
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i ili i aset A of points in the plane is a tree which
i s 4" omsahn”m“mﬂm_nmwmm“M__.ﬂwoM“_ﬂMnmmnom shortest mvomm_.v_.n moB_ _m:mﬁ.:. Such trees
correspond e .» _“mEM” wiring patterns on printed backplanes which minimize total wire length. We
ity m_nmmws of determining this minimum length, given A, _m.Zw.noBv_ma. Thus the
o of £ fing nﬂBcB rectilinear Steiner trees is probably ooavﬁm:wzm:w .:oum_n.&, m:a the ]
Eoc_nn.. o m:a_m_m o for this problem on heuristics and special case ummonzram is well ._cu:moa. A
e mo. ; MMNMMMMM%.MBS& concerning the NP-completeness of certain graph-theoretic problems

in

M__‘M..MWMMMQ and may be of independent interest.

1. Introduction. Let A be a finite set of points in the (oriented) plane, A
:.:.mma_w Steiner tree (RST) for A is a tree structure, noBvOm.ma m.o_n:\ of
NunaNo:S_ and vertical line segments, which interconnects all the pointsin A. Ag

shown to be NP-complete in {61

: Node cover in planar graphs. Given a planar graph G =(V, E) and an integer
h i in which the line segments used have the shortest - k, does there exist a node cover 1* for G satistying | V¥=k?

optimum RST for A is one tant to note that, in contrast to the usual notionof ~ JHE We then transform “node cover in planar graphs” into the following more
possible total _gmmr. fris _mﬂ.,vwn ermitted to have three or more line segments "3 restricted versign of jtself:
a “spanning tree’, an RST is Wcm_os to A. called a Steiner point. In fact, itis  JE Node cover in planar 8raphs with maximum degree 3. Given a planar graph
meeting at a point that does no aB:Bmme mon A contains one or more Steiner 2 G- (V, E) with no vertex degree exceeding 3 and an integer &, does there exist a
?o.ncmnﬂw HJMMMMMMMM“NMWMW tree problem” is, given A, to find an optimum 2 node cover V* for G satisfying | V¥ =k?
points. The

Wm,ﬂ.mu_ﬂo\m.mq, problem has received attention from a number of authors [ 1], (4],

i imarily by potential applications to
12],[15],[16], motivated primaril cat
mm.“_, H_&‘ ﬁﬁmm_Wnc“_%sau_m m:ocz boards. Efficient algorithms ?.un several special n.s.mnn
have ﬂwww ammwacna in [1]. However, no efficient N..,_mo:::d for noa:”o:“u |
rmM.m :wd RST’s in general has yet been found. In this paper we Eo,ﬂ:: wo_“w:w |
ov.mm._:oo for the impossibility of such an om,_nmom: general m_moq:w:\uw.w %Bv_ﬁw ‘
MM: the general RST problem belongs to the infamous class o -

; . ionally -

vnoc.__wrzwmiamq held belief that all NP-complete Eﬂd_mm:m are computationally -
i ies of this class:

i i d on two important properties o : . nele

_EBMMVv%mMMNMM :M known polynomial-time algorithm that solves any singi :

. foss in the class, the
vaodmwv: Wmm%% wwm wide variety and large number of problems in _ﬂ_” %_av__,w .:._2 —
existence of a polynomial-time algorithm moﬂ. any one of Em_ﬁ %:M:m_mc::_a. .

ry problem in the class could be solved with a no;\:on:w e and I8
e .mmq a more detailed discussion of the class of Zw-noav M e wo%ﬁ o tive of
bers, see [2], [13], [14]. Suffice it to say that until now the nnozo,a n graphs
M__nnmwmﬂ W:,OEQ:, known to be NP-complete was the mﬁm_:ﬂn voa o e ighly 4
:wu amuch more general and abstract nqozco_a. It r.mm WWMMQ%J” e ractable, =
; i f the RST problem mig i
restricted geometric nature o RS
Our result, however, shows that this is not the case. descrintion of the formal
The mnmaoa is referred to [2] for a ﬁromow.mw:%mmmm wio emsreq
i - leteness. Basi ,
uirements for a proof of NP compl ”
Mww&:m that a particular problem X is NP-complete are

j planar graph G = (V; E) with no vertex degree exceedi
E there exist anode cover V* for G satisfying | V*|
£ G induced by V* js connected?

! This last problem will be transformed into the RST problem, stated as
 follows: .
E  Rectilinear Steiner tree. Giv
¥plane and an integer /, does the
fequal to /?

ng 4 and an integer k, does
=k andsuch that the subgraph of

en a finite set A of integer coordinate pointsin the
re exist an RST for A with total length less than or

3. The proofs. We now describe the required transformations,

s LEMMA 1. “Node cover in planar graphs with maximum degree 3” is NP-
Complete,

.

» We construct a planar graph
with no vertex degree exceeding 3 and an _.:Homo:ﬁmcnrﬁrmﬁmﬂ rmmwnoao

Eover of size k' if and only if G has a node cover of size k.

E LetG=(y, E) where V={v, v, v,}. The construction begins with a
axed planar representation of G = Gy. For each integer i, from 1 up to n, we

EONStruct a planar Tepresentation for a graph G, from that for G-, as follows (see
ig. 1):

(i) Let{v, wi {v, w,}, - - A{vi, w,} be the edges leaving v, in the order that
1€y occur around v; in the planar Tepresentation of G,_,.

_(i)) Replace v with a cycle consisting of the new vertices u(j), v()),

R () e he e €8s (1)), (1), 127 % 1, o), )+ Dh1sj=n-1,
* Received by the editors June 18, 1976. ; N ?..A:v_ :..A:w.
+ Bell Laboratories, Murray Hill, New Jersey 07974,
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FiG. 1. Vertex substitute forLemma 1

(iii) Replace each edge {v;, w;} by the edge {v;(j), w;}, add a new vertex z,

and add the edge {1;(1), z;}.

Finally we set G'= G, and k'=n’+k. Observe that G’ has no vertex with

degree exceeding 3.
Now suppose V* is a node cover for G satisfying | V*|=k. Then there is a
node cover V¥ for G’ satisfying | V¥| = k’, namely

Vi={(j):v,e V¥, 1=j=n}U{u(1):0,€ VIU{u(j):0f V¥, 1=j=n).

It is easy to check that V¥ has the required properties.

Conversely, suppose V7 is a node cover for G’ satisfying | V| =k'. Since the
only vertices of G’ that cover edges corresponding to edges of G are the v;(j)
vertices, we immediately know that the set

V*={v,: for some j, 1=j=n, v,(j)e V}}

must form a node cover for G. We shall show that | V*| = k. First we note that we
may assume that u;(1) € V7 for every i, since the edge {u;(1), z;} must be covered
and z; only has degree 1. Define, for 1 =i=n, S, = VIN{u;(j), vi(j): 1=j=n}.In
order to cover all w:g.oamom in the cycle for v; we must have |S,/=n. Since
k'=n?+k, this implies that at most k values of / can satisfy |S;| > n. Furthermore,
since u;(1)€ S, the only set of exactly n vertices that covers all 2n edges in the
cycle for v; is {4;(j): 1 =j = n}. Thus if there exists a j for which v:(f) € S, we must
have |S;|> n. Since this occurs for at most k values of i, we have | V¥| =k, and V*is
the desired node cover for G.

Since G’ can clearly be constructed in time a polynomial in the size of G, and
has the desired node cover if and only if G does, our transformation works as
required, and the restricted problem is NP-complete. [

LeMMA 2. “Connected node cover in planar graphs with maximum degree 4"
is NP-complete.

Proof. Given a planar graph G with no vertex degree exceeding 3 and an
integer k, we construct a planar graph G’ with no vertex degree exceeding 4 and
an integer k' such that G has a node cover of size k if an only if G' has a
“connected” node cover of size k'.

Let G=(V, E) where V={vy, v, -, v,}. The construction again begins
with a fixed planar representation for G and then performs the following
operations (see Fig. 2):
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FiG. 2. Connected node cover construction

(i) Replace each edge {v;, v;}€ E by three edges {; x;( Db G, %0,
{x;(i), v;} where x,(j) and x;(i) are new vertices.

(i) Consider in turn each region R of the planar representation of the graph
resulting from step (i). Let W be the set of all those vertices on the boundary of R
which have degree less than 4 (including edges added for previously considered
regions). For each w € W, introduce two new vertices w’', w” in the interior of R
and add the edges {w, w'}, {w’, w"}. (Notice that each original vertex v; will actas
such a w at least once, since it initially has degree at most 3, and each x -type vertex
will act as such a w for every one of the (one or two) regions on whose boundary it
occurs.)

(iii) Foreachregion, join all the w' vertices in that region into asingle cyclein
such a way that the graph remains planar. (This is easy to do, for example, by
joining them up in essentially the same order as their neighbors on the original
boundary of the region.)

Let G'=(V', E') be the resulting graph. Let r be-the total number of w’
vertices introduced in step (ii). Then |V|=n+2-|E|+2 - r.Set k'=k +|E|+r.

The graph G’ and integer k' can clearly be constructed in polynomial time. To
complete the proof of NP-completeness, we show that G’ has its desired node
cover if and only if G does.
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First suppose that V* is a node cover for G with |V*|=k
Ve o |V¥|=k. Define the set

V= v*U{all w'-type vertices}
U{xi(j)e V': v;e V*,andeither v;€ V*ori <j}.

We claim that V7 is the desired connected node cover for G'. Clearly every ed

of the form {w, w'}, {w’, w"} or which joins two w'-type vertices is no<2naw mmsmn
all w'-type vertices belong to V}. Now consider any edge {v;, v;} € E. By 8:_2 -
tion of V* we have ! ruc-

{v, 9}V Vi={v, y}NV*= .

If {v, v,}N V*={y;}, then v; and x,(j) belong to V7, covering the thre ;
{v;, x: (M} (e (), %, (D) {x;(0), v} I {vy, v} N V¥ ={v, v;} and i Am j, then c.mcwa%%m
x;(j) all belong to V7, again covering those three edges. Thus V7 is a :omm moéq
for G'. Furthermore, since exactly one of each pair {x;(j), x;(i)} belongs to V* for
each {u, y;}€ E, we have |V¥|=k+r+|E|=k". It remains to show z::_ the
subgraph induced by V7 is connected. All the w'-type vertices that were placed in
the same region are connected by their common cycle, and each vertex in V* y*
is joined to at least one such cycle for a region on whose boundary it occurs. E:u__v_\
-the w'-cycles for adjacent regions are connected together through their common
edge {v;, v;} (as viewed in G) via either x;(j) or x;(i). Thus V7 is the desired
connected node cover for G'.

Conversely suppose that V¥ is a connected node cover for G’ satisfying
| V¥|=k'. Since each w"-type vertex is adjacent only to the corresponding w'-type
vertex, we know that all w'-type vertices belong to V¥ and may assume that no
w"-type vertices belong to V. We also may assume that exactly one of each pair
{x:(), x;(i)} belongs to V¥, by replacing x;(j) by v; in Vi whenever both belong.
(Atleast one must belong.) With these assumptions on V¥ we immediately have

VXN V|=k'—r-|E|=k.

We claim that V*= V3N V forms the desired node cover for G. Consider any
edge {v;, v} € E. Without loss of generality suppose x;(j) is the single member of
{x:(j), x;(i)} that belongs to V7. Then, in order to cover the edge {x;()), y}, we
must have v;€ V¥ and hence v;€ ViN V. Thus ViN V contains at least on¢
endpoint of every edge in E and is the desired node cover for G. O

THEOREM 1. “Rectilinear Steiner Tree” is NP-complete.

Proof. Given a planar graph G with no vertex degree exceeding 4 and an
integer k, we construct a set A of points in the oriented plane and an integer Isuch
that G has a connected node cover of size k if and only if there is an RST for A
with total length / or less.

Let G=(V, E) where V={v,, v, -+, v,} and E={e,, €5, ", €n}. Con-
sider a discrete grid of squares imposed on the oriented plane, consisting of altline
segments having the form [(6in’ 6jn%), (6(i~ n?, 6jn?)] or [(6in?, 6in’),
(6in®, 6(j— 1)n*)]where i and j are integers. The construction begins by obtaining
a planar representation of G which uses only horizontal and vertical line segments
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FI1G.3. Vertex deletion for Theorem 1

__ chosen from the above grid,! each vertex of G being mapped into a point of the

form (6in?, 6jn?) for some integers i and j. In order to do this, we need the

-property that G has no vertex with degree exceeding 4, since no point in the grid
has more than 4 incident line segments. Given this property, there are a number of

ways in which the desired representation can be constructed in low-order polyno-
mial time. For instance, we could use the methods of [11]to obtain a description of
an ordinary planar representation, and from this construct a list of the regions,
each given as a sequence of vertices representing its boundary cycle. We can then
build up a “rectilinear” representation from an initial region, by successively
adding adjacent regions, one at a time.

The set A of points will be constructed by removing portions of the line
segments that make up the planar representation of G. For each v;€V, let p;
denote the point corresponding to v; in this representation. Considering each p; in

.turn, delete p; and the portions of allincoming line segments within distance 2 of p;

(see Fig. 3). Let L denote the total length of the remaining line segments. Finally
replace each remaining line segment by the set of all points on that line segment
which have integer coordinates. These points form the set A. We set I=
L+2m+2(k—1).

Suppose G has a connected node cover V* with |V*| = k. The corresponding
RST for A contains all the line segments joining pairs of points from A that are
exactly one unit apart (i.., those line segments deleted in the last step of the
construction for A). Each connected component of the resulting structure corres-
ponds to an edge of G and we call the component corresponding toedge e, € Ethe
e,-component. In addition, for each v; € V*, we shall also select some of the line
segments incident with p; that were deleted in the second to last step of the
construction for A. To do this we first choose a spanning tree for the subgraphof G
induced by V*. This spanning tree exists by the connectivity property of V* and
contains | V*|— 1 edges. For every edge e, ={v;, v} € E that does not belong to the
spanning tree, select one endpoint v; that belongs to e N V* and select the length
2 line segment joining p; to the e,-component. For every edge e, = {v;, v;} that does
belong to the spanning tree, select both length 2 line segments joining the
e;-component to p; and to p;. Since V* is a connected node cover for G, the
resulting collection of selected line segments forms an RST for A. For eachedgein
the spanning tree we added two length 2 line segments and for each edge notin the
spanning tree we added a single length 2 line segment. Thus the total length of all
the selected line segments is at most L +2m +2(k —1) as required.

! Each edge of G will be a path composed of asequence of one or more elementary grid segments.
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Conversely, suppose there exists an RST for A with 88_. _m.smE lor less. We
shall show that there must exist such an RST having a similar form to that
constructed in the previous portion of the proof. By a result of Em:mq [9], since aj)
points in A have integer coordinates, we may aomamﬂ our wzo::g to RST’s
composed only of line segments whose endpoints swﬁ ::n.mam coordinates. Let T
be an optimum RST for A having this form and which maximizes, among m_._ such
RST’s, the number of unit length line segments with both endpoints belonging to
A. Recall that the only possible such line segments are those deleted E the last
step of the construction for A, which we shall call &.wm segments. We claim that T
must contain all of the edge segments. Suppose T fails to contain some one of the
edge segments. Then adding that edge segment to T must form a cycle. Iososw.b
by our construction there are no cycles composed o.:_w .om edge segments, so thig
cycle must contain some unit length segment which Is not an edge segment.
Deleting that nonedge segment results in an alternative optimum RST for A
which contains one more edge segment than T does, contradicting the assumption
that T contains a maximum possible number of edge mnman_:.m. Thus, T containg
all the edge segments deleted in the last step of the construction of .\».

Using our terminology introduced earlier, we may now z::_.n of ﬂ. as
composed of the “edge component” for each edge om.Q plus some maa:._oqs_ _:_.a
segments joining these edge components together. It is convenient to think of _.:_.,,.
collection of additional line segments in the most elementary .mo::, as ».8:2:03
of unit-length segments, having endpoints with ::om.mn coordinates, which we call
supplementary segments. Observe that, since T contains all the edge segments .N:E
since the total length of T'is at most /, the number of supplementary segments in T
is at most 2m +2(k —1).

We shall now show that the supplementary segments that belong to T come
from a very restricted set. Any supplementary segment in T must .3:: part of
some path, composed entirely of supplementary segments, that joins two mam.o
components. (Of course, some of the points on that path may be ma_:a.q no.:.?.
from which additional paths branch off.) For each point p;, aﬁmso mﬁ active region
for p; to be the set of all points reachable from p: by a “rectilinear” path of _.o.am:.
less than 3n” (see Fig. 4). Consider any supplementary segment H.?:. is not
contained in any active region. By our oo:m::o:.oa .om.\» and the definition om
active region, any path containing that segment which joins two edge ooa.nc:.g?
must contain at least 3n°>2m +2(k—1) supplementary segments. mi? i.a
already know that T cannot contain that many mcvn_an.a:”ma\ segments, it _.:_:.i
therefore be the case that all supplementary segments in T are 8:8..:8 .¢.<: ~.==
active regions. Supplementary segments within a nmEoEm.n mn.:<o Rm_on., .f_wa .,M
point p., can only serve the very limited purpose of joining Smmﬂ. cM . ww
components representing edges that met at vertex v; in G. ~.H is not :M:. m., .ﬂz .Ea
considering cases, that all such connections in the active region for p, can .? a -
with'minimum possible length simply by joining each edge component _J<s \ ..33.
such a connection to the point p; with a length 2 line mmmB@.E. Thus ns.u hy
assume that T consists of all the edge components E.cm various _w:mﬁmo::..\.:w
segments joining certain edge components to certain points p;. This is ess
the same form as the RST constructed in the first half of the proof.
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FIG. 4. Fouractive regions in original grid

Now we must use this RST to determine a connected node cover for G. We
claim that

V*={v,€ V: some edge component is joined to b}

forms the desired node cover. First, since every edge component is joined to some
p; (for which 5, ¢ V*) and since an edge component can only be joined to p; if the
corresponding edge in G has Ui as an endpoint, V* is indeed a node cover.
Furthermore, since the total length of T does not exeeed [, there can be atmost
k—1 edge components joined to two points pi. If we delete from T those edge
components that are joined to only one p, the resulting structure is connected and
contains at most k — | edge components. Therefore, if we perform the corres-

’

E isa connected node cover., Furthermore, since a connected graph with k — 1 edges

can have at most k vertices, we see that [V¥<k. Thus V* s a connected node
cover for G with [V*| =k, as desired. [J

This completes the serjes of reductions showing that the rectilinear Steiner
tree problem in NP-complete. One might also ask about the computational
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THE COMPLEXITY OF COMPUTING STEINER MINIMAL TREES* .

M. R. GAREY, R. L. GRAHAM AND D. S. JOHNSON?t

Abstract. It is shown that the problem of computing Steiner minimal trees for general planar
point sets is inherently at least as-difficult as any of the NP-complete problems (a well known class of
computationally intractable problems). This effectively destroys any hope for finding an efficient
algorithm for this problem.

1. Introduction. Let X denote a finite set of n points in the plane. A
spanning tree T(X) for X is any tree structure that includes every point of X and

_ consists solely of straight line segments (called edges) having both endpoints in X,

The length of T(X), denoted by I(T(X)), is defined to be the sum of the
(Euclidean) lengths of the edges of T(X). If T*(X) is a spanning tree that satisfies
(T*(X))=I(T(X)) for all spanning trees T(X) for X, then T*(X) is called a
(Euclidean) minimal spanning tree for X. If X < Y, any spanning tree T(Y) for Y
is called a Steiner tree for X. It is often possible to choose a superset Y of X in such

a way that [(T*(Y)) <I(T*(X)). If
1) (THY)=U(T*Y")

for all sets Y” containing X, then the tree T*(Y)= $*(X) is called a (Euclidean)
Steiner minimal tree (abbreviated by ESMT) for X. An example is shown in Fig. 1.
Minimal spanning trees and Steiner minimal trees arise frequently in prob-
lems concerning network design [6], optimal location of facilities [17], and
component placement on circuit boards [10], to name a few applications, and
considerable effort has gone into developing efficient algorithms for constructing
these trees. For constructing a minimal spanning tree on # points in the plane,
procedures are now known [16] that require at most @(n log n) operations (more,
precisely, O(b%n log n) where b is the maximum number of bits used to express a
coordinate of a point in X, a bound which takes account of the complexity of
arithmetic operations). In contrast, no proposed algorithm for constructing an
ESMT for X has been shown to require fewer than exponentially many (in terms
of n and b) operations in the worst case. In fact, this was not even known to be a
finite problem until 1961 [14]. Subsequent work by Cockayne and Schiller [4],
Boyce and Seery[3], and others has made it feasible to compute $*(X) for general

o

X T(X) T™X) s*(x)

FIG. 1. Examples of tree types

* Received by the editors May 10, 1976.
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