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‘Abstract. It is widely believed that showing a problem to be NP-complete is tantamount to proving
computational intractability, In this paper we show that a number of NP-complete problems
 remain NP-complete even when their domaias are substantially restricted. First we show the
. completeness of Simple Max Cut (Max Cut with edge weights restricted to value 1), and, as a co-
E rollary, the completeness of the Optimal Linear Arrangement problem. We then show that even
the domains of the Node Cover and Directed Hamiltonian Path problems are restricted to
v_muwn graphs, the two problems remain NP-complete, and that these and other graph problems
fremain NP-complete even when their domains are restricted to graphs with low node degrees.
¥ For Graph 3-Colorability, Node Cover, and Undirected Hamiltonian Circuit, we determine
essentially the lowest possible upper bounds on node degree for which the problems remain
,Zw.ooau_na.

.dnnbmn combinatorial problems, such as the traveling salesman problem and theorem
u—.os._m in the propositional calculus, have long been notorious for their computational
mn:»oﬁmg_:w. in that, despite the effort of many clever people, no algorithms have
ﬁoon found for them which can be guaranteed to require time bounded by a poly-
fnomial in the length of the input. The belief in the inherent difficulty of these problems
been strengthened by results of Cook and Karp [3, 13]. These show that
ple forms of the above problems, together with a wide variety of other combi-
orial problems, form a class, the NP-completel problems, no member of which

* The work of this author was done, in part, at Project MAC, and supported by the National
ice Foundation under research grant GJ-34671; present address: IBM Thomas J. Wat-
. Hﬂounnr Center, Yorktown Heights, N.Y.

‘.,n “Polynomial complete” problems, in the terminology of Karp [13].
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We summarize here the basic definitions, referring the reader to [13] for a more
| complete discussion. Let B = {0, 1} and let B* denote the set of all finite strings
] f elements from B. Any subset L of B* is called a language. Let 7 be the class of
1ctions F: B* — B* which are computable in polynomial time by one-tape de-
E rministic Turing machines. If L and M are languages, we say that L is polynomiael
reducible 10 M, written LaM, when there is a function fen such that f(x)e M
t-r and only if xe L. M is NP-complete if M e NP (the class of languages recog-
/- izable in polynomial time by one-tape nondeterministic Turing machines) and every
{anguage in NP is polynomial reducible to M. In fact, if L is NP-complete and LaM,
hen M € NP implies that M is NP-complete.
E In accord with the above definitions, the “problems” we shall consider in this
per, although many are more naturally thought "of as optimization problems,
be presented as recognition problems (with the straightforward details of the
encoding of entities such as graphs and integers into strings of 0’s and 1’s omitted).
,OE. proofs can then consist of showing that known NP-complete languages reduce
%o the ones we are considering. (A list of the known NP-complete languages we shall
ase, together with their definitions, is given in the Appendix). In general, we leave
o the reader the straightforward verification that (a) the language is in NP and (b) the
escribed mapping can be performed in polynomial time.

is known to have a polynomial time algorithm, but such that if any onc of the proble
does have such an algorithm, then they all do.

These results have stimulated many researchers to examine other combinato;
problems for which no polynomial time algorithms are known, to determine wheth
they too are NP-complete, and their efforts have resulted in the discovery of additio
members of this class [15, 17, 19]. Such results have considerable practi
significance. If one knows that the problem he wishes to solve is NP-complete,
thus is unlikely to have any polynomial time algorithm, he may feel justified in con}
centrating on more hopeful alternative approaches. p

He can look for algorithms which, although admittedly exponential in the wory
case, seem to work quickly on most practical problems (e.g., the simplex method)]
or even which are just “less exponential” than previous algorithms, and hence exte;
somewhat the maximum size problem which can be solved within practical
limits [16]. Alternatively, he can look for fast algorithms which, although they
do not actually find optimal solutions for the problem, are guaranteed to yield
Iutions which are “close” to optimal [6, 9, 11, 12]. E

An important motivation for this paper is that in many real-world applica
the standard problem does not occur with full generality, but rather in a restricteg
form, due to additional constraints imposed on the input domain by the practic
situation at hand. In some cases, such constraints may make the problem
amenable to efficient algorithmic solution, whereas, in other cases, the restrictéq
problem may be essentially as difficult to solve as the original problem. In this paj
we examine certain natural restrictions on the domains of a number of knows
NP-complete problems, to determine whether the resultant subproblems are stl
NP-complete, or if they do have polynomial time algorithms. ‘.

Our results show that many known NP-complete problems remain NP-completes
even when their domains are substantially restricted. In addition to the immediatg
significance of kmowing that these restricted problems are NP-complete, the nat . SRR . I
of the restrictions makes the completeness results uscful in two other ways. Fi Property: There is a set S< N such that
they increase our knowledge of the essential elements which made the ori
problems NP-complete. Second, they give us valuable tools for proving other cond ?Wﬁ w({u, v}) > W.
pleteness results. For instance, by observing that Satisfiability With At Most 3 18 ¥S.0eN-S
terals Per Clause, a restricted form of Satisfiability, is still NP-complete, Karp Qm

v

was able to derive the NP-completeness of Chromatic Number, Exact Cover, M8 iKarp proved the NP-completeness of this problem by a reduction from the Partition

Cut, and a number of other problems. .4 Pproblem. Thus, his proof relies on the fact that the edge weights can be represented
In the first half of this paper, we show that an important restricted version of space proportional to the logarithm of their magnitudes, since there is a dynamic

Cut is still NP-complete, and from that derive the completeness of the Opt ..ﬁ. amming algorithm for Partition which runs in time polynomial in the input

Linear Arrangement problem, as well as a number of more closely related problen ngth, if those inputs are expressed in unmary (i.e., in length proportional to their

> . e A pagnitudes). .

The second half of the paper considers the effect of restricting the allowable tyP! ] . . . . ..

of graphs for NP-complete graph problems <uch as Node Cover, Chromatic Numl 58 L One nm:m_: conjecture, therefore, that if we nomm:or& Max Cut by requiring each

and Hamiltonian Circuit, by either restricting the maximum degree of the n = weight to be exactly 1, the new problem, which we call Simple Max Cut, might

or allowing only planar graphs, or both.

. Simple Max Cut And Related Problems

iIn [13], the following problem was shown to be NP-complete:

Max Cut
Taput: Graph2G = (N, A), weighting function w: 4 — Z (the non-negative integers),
Fpositive integer W.

3 2 We use the ordered pair (N, 4) to denote a graph G having node set N and edge set A,
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w:x.». Let clauses Cj, Cs, ..., C, and integer k be given as input for Max Sat2.
In analogy with the proof of Theorem 1.1, we may assume that each clause contains
ctly two literals, not necessarily distinct, and label them as (a; v by), (a; v b2), -,
(a, v by)- Furthermore, we may assume :E.n. no two clauses are identical since, given
kot necessarily distinct clauses Ci, C;, ..., C, and integer k', an equivalent problem
twith all clauses distinct is obtained by replacing each clause C; = (u; v v)) with the
: Frwo clauses (4, v ¢;) and (v, v ¢;) (where ¢, is a new variable) and setting integer k' =
Maximum Satisfiability With At Most 2 Literals Per Clause K 77 g i : .
: Corresponding to this input for Max Sat2, we shall construct a graph as input
o Simple Max Cut in two steps, first giving the nodes and a basic framework of
dges, and then adding in'some additional Eo@-na-mvn&mo ‘edges. Let x4, X2, o5 X
the variables occurring (¢ither complemented or uncomplemented) in the p clauses.
he set N of nodes for the graph G is :

N={T:0<i<3p}u{F:0<i<3p}
Uf{t;:1<i<n0<j<3p}
U{fir1 <i<n0<j<3p}
U{nil <<i<npu{E:1<i<nh

become easy. As added support for this view, notice that if W = |A4|, then
problem simply asks whether G is bipartite, which can be determined quite easily]
In fact, however, Simple Max Cut is NP-complete, as we show using a two-stey
reduction from Satisfiability With At Most 3 Literals Per Clause (Sat3 — for fo
definition, see the Appendix). We first consider the following restricted version of
the Maximum Satisfiability problem of [12]: ’ 4

Input: Disjunctive clauses Cy, Cs, ...y Gy each containing at most two literals, :
sitive integer k.

Property: There is a truth assignment to the variables which satisfies kX or m
clauses.

‘We use the abbreviation Max Sat2 to denote this problem. Observe that, when k =}

this problem can be solved in polynomial time [3]. However, we now show
Sat3 can be reduced to Max Sat2, proving that Max Sat2’is NP-complete.

Theorem 1.1. Sar3 « Max Sat2. ’
¢ basic framework 4, of edges is

Proof. Suppose we are given an input for Sat3, that is, a set S of disjunctive clausey
each containing at most 3 literals. If any clause has fewer than 3 literals, we may

place it by an equivalent clause which has exactly 3 literals, merely by repeating o "
of the literals which it contains. Hence, we may assume that each clause in S ¢
tains exactly 3 literals, and we label them (a; v b, v c,) through (@, Vv b, v c,), wh f
each ay, by, and ¢, Tepresents either a variable or its negation. The correspon

set S’ of clauses and value k for Max Sat2 are given by:

Ay = {T, F}:0 <i<3p,0<j<3p}
v xb.:\.:w“ 1<i<n0<j< wﬁw
U {xpfub: 1 <i<n,0 <) < 3p}
{1 <i<n,0<j<3p}
For any given partition N = S; U Sy, ;1 0 §; = 8, we will say that edge {u, v}
bis “bad” if both u and v belong to the same set in the partition and is “good” other-

wise. Notice that all edges in 4, will be good for any partition N = S, U S, which

5 = U {(a), B2 (), (@), @, v b)), (@ v E), (bvED,
=t fobeys () all 7, belong to the same set in the partition and all F; belong to the other
(a,vad), (bvdy), (eivd)} , and (b) for each i, x, and all 1, belong to the same set in the partition and x;
k=Tm. fand all f;; belong to the other set. Furthermore, if any pair F,, F; belong to different

Bets in the partition, then at least 3p+1 edges from 4, will be bad, since each such
bair of nodes are mutually adjacent to 3p+1 other nodes. Similarly, if any pair x;,
&, belong to the same set in the partition, then at least 3p+1 edges from A, will
pe bad, since there are uﬁ+_. disjoint 3-edge paths between x; and X

- 'The following additional edges are included in G:

A, = {{a, b}:1 <i<pand a; # b} , .
U {{ay, Fy—}: 1 <i<p}o{{bs, Fu )1 <i<p}.

“o...uwﬁ for Simple Max Cut is the graph G = (N, 4, U 4;) and W = 1A, +2k.
E'Given a truth assignment for the n variables which satisfies k or more clauses,
truct the partition N = §, U S, as follows:

7m or more of the clauses in S’ can be satisfied simultaneously if and only if U8
original set S is satisfiable. For note that, if we'have any satisfying assignment fol¥
then either one, two, or three of a;, b;, ¢, must be set “true” for each i. The rea
may verify that, in all three cases, there is a truth setting for d; causing p eci
seven of the clauses in S” arising from clause { to be satisfied. Furthermore, no set'3
of d, will permit more than seven of the ten clauses to be satisfied, and at m

of the clanses can be satisfied if all of a,, b;, and ¢, are “false”. :

We now prove the completeness of Simple Max Cut by reducing Max Sat2

Theorem u.n.. Max Sat2 « Simple Max Cut. :
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. Suppose there is a partition N = §; U S, such that |[{{u, v} € 4: ue §;, ve S,}| >
¥ . Since W is positive, both S; and S, are nonempty. Let j = n—|S,]. Form
Es) =S, v {uy, u3, ..., u;} and S; = N’'—Si. Then N’ = S;uU S; is a partition
for G’ with [S7] = |S3| = n, u; € S|, u,€ S, and

{Fi:0 <i<<3p}u{x:x is false, | <i<n}
U {#;,: x; is false, 1 <i<n0<j<3p}
U {x;: x; is true, 1 <i<n}
v {fi;: x; is true, 1 <i<n0<j<3p),

[{{u,v}eA':ue S}, ve )| =n*—{{u, v} ¢ A ue S}, ve S3}
=n*—|{{u,v}ed:ue S, ve S,;}|
<nt-w=Ww,

S, = N-S,. 4
Since, for each satisfied clause, one or both of g, and b, belong to §,, exactly nim,.
edges in A, arising from that clause must be good. Furthermore, by our previous}
comments, every edge in A4, is good. Thus we have at least W = {41 +2k good?
edges. i3

Now, suppose we have a partition N = S; U S, for which W or more edges ared

good. Since k > 0 and |4,} < 3p, the number of bad edges cannot exceed 3p. B
our previous discussion, this implies that all the F, must belong to the same set,
say S;. For the same reason, exactly one of each pair x,, x, must belong to S,
Thus, a consistent truth assignment is obtained by setting x, “true” if and only if .«w
belongs to S,. For this truth assignment, clause i is satisfied whenever a; or b, or
both belong to S,. However, it is not difficult to see that, of the edges in A, arising}

from clause i, exactly two are good if one or both of a; and b, belong to .S, and none’

are good if g, and b; both belong to S,. Therefore, since at least 2k edges from 4

must be good, this truth assignment must satisfy at least k clauses. ] 4

Now, suppose there is a partition N’ = S{ u 83, with 4, € S, 4,€ S}, and | S| =
HSi = n such that |{{y,0}ed':ueS|, veS}<n*—~W =W. Then N=
bS, U Sy, where Sy = S{n Nand S, =S;NN, is a partition for G satisfying

{{v,v}ed:ue Sy, ve S}l = [{{u, v} ¢ A':ue S}, ve S3}|
=n*—H{{u,v}e 4’ ue S}, ve S}
A >nl—n*-W)=W.

L Thus G has a cut of weight greater than or equal to W if and only if G’ has a cut
with weight not exceeding W, which separates ¥, and u, and divides the nodes of
the graph into two equal sized subsets. The reduction is proved. []

An easy corollary to the completeness of Simple Max Cut concerns the following

" A useful restatement of Simple Max Cut is:
problem: 1

Minimom Cut Into Equal-Sized Subsets inimum Edge-Deletion Bipartite Subgraph

Input: Graph G = (N, 4), two distinguished nodes s and 1, positive integer W, Input: Graph G = (N, 4), positive integer k.

Property: There is a partition N = §; u S, with S, 1 S, = @, | S| = |1S,l, s€ S,

w,.aeha:.ﬁ Qrmm»Eu»n:omﬁwmnmwrmosagmn_&bmwo_.mninnommam.
te Sy and {{u, v}jedrueS;ve S5 W. : - P e e e e e o e s e e S

& J.W;w» the following node-deletion version of this problem is also NP-complete follows
from Theorem 1.4 below.

Observe that this problem can be solved in polynomial time if no restriction is mad
as to the sizes of the subsets [13]. However, as defined, the problem is NP-complete,;
as we can conclude from the completeness of Simple Max Cut and the following:

Minimum Node-Deletion Bipartite Subgraph
Theorem 1.3. Simple Max Cut « Minimum Cut Into Equal-Sized Subsets. ,

put: Graph G = (N, A4), positive integer k.

Proof. Given a graph G = (¥, 4) and positive integer W, as input for Simple Max}
Cut, let n = |N| and U = {uy, u,, ..., u,} satisfy U~ N = @. The correspondin;

input for Minimum Cut Into Equal-Sized Subsets is the graph G’ = (N', A’), nodes % heorem 1.4. Clique « Minimum Node-Deletion Bipartite Subgraph.
and u,, and positive integer W’, defined as follows: h ¢ .

,ﬂ,.z%mawn G has a bipartite subgraph formed by deleting & or fewer vertices.

N =NuU; of. Given a graph G = (N, 4) and positive integer j as input to Clique (for a for-

A = {{u,v}:u,ve N’ and {u, v} ¢ 4}; definition of Clique see the Appendix), let n = [N| and U = {uy, u,, ..., 4,}

w ‘w Where U ~ N = g. The corresponding input for Minimum Node-Deletion Bipartite
=nT—-w. ¢
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fl) =t+i1<i<nt
i

Subgraph is the graph G’ = (N’, 4’) and integer k defined as follows: ;
fb) =rt+1+i, 1 <i<n—t

N =NulU; .

A = {u,v):u,0e N, {u, v} ¢ 4, and [{u, 0} nUI<1}; 3 e

k =n—j. 9 _ - n*+n+lY _ _
OO A : v I M1

The reader may verify that G contains a clique of j nodes if and only if G’ has a

partite subgraph formed by deleting n—j or fewer nodes. [] - A=a+=+~v N0
3 {m,0}cA
The final result of this section concerns the Optimal Linear Arrangement proba ! w e+l
lem [1], defined as follows: AA 3 v —kn* = W.

_Tioi suppose there exists a 1—1 function f: N’ > Z such that
Y @SOS W.

{u.v}eA ‘
2 there exists such an f having range {1, 2, ..., a*+n}. Let F denote thesetof 1 -1
ions f: N’ — {1,2, ...,n*+n}. Observe that for any fe F

Optimal Linear Arrangement
Input: Graph G = (N, 4), weighting function w: 4 — Z, positive integer W.
Property: There is a 1—1 function f: N - Z such that

Y wl{m o) lf - < W.
woled . _ [n*4n+1
This problem is a special case of the well-known quadratic assignment problem ?ME._H w-f ?v_+?ME_\AS —f (o) = _A.AMA..:..CI: = A 3 v
a number of related facility location and component placement problems. We u -* " -
v po P provems. e Therefore, there exists an f€ F such that

a reduction from Simple Max Cut to show that this problem is NP-complete, evex
in the restricted case where all edge weights are required to be 1 (which we
Simple Optimal Lincar Arrangement). )

T If @)= (o)l = kn*.

{x,v}eca

Pefine

Theorem 1.5. Simple Max Cut o Simple Optimal Linear Arrangement W* = max M“ (£ G)—F (o)

‘ seF f{uved
Proof. Given a graph G = (N, A) and positive integer k as input for Simple Max pnd
_Cut, let n = |Nl,r = n*, and U = {u;, t, ..., u,} where Un N = ¢. The corroy Fr={feF: 3 If@~f @)l =W*.
T St ¥ W LT - S

sponding input for Simple Optimal Linear Arrangement is the m_.wnr G = (N, AY)

and positive integer W defined as follows: . [Clearly W* > kn* and F* is nonempty. We shall now show that there is at least

one f € F* which maps the elements of U into a set of r consecutive integers, thereby
partitioning N into those vertices that go before and those that come afterwards.

For cach f'e F*, define the set
, S(f)={veN:Ju,uy;eU with fu) < f(v) < fu)}
and let m (f) = |S(f)]. Then there exists a function g € F* such that m(g) <m €3)

or all f& F*. We show that m(g) =0, and hence g is our desired mapping.
j Suppose m(g) > 0. Let vo € S(g) be such that g(v) =g (v) for all ve S{g).

for each ve N’, define .
L(v)=|{ueN':{u,v}ed andg @ <g W}

N =NuU;
A = {{y,v}:u,ve N’ and {u, v} ¢ 4};

#
N\.I.. Aa +w=+ —v lw:».

(Notice GN:ANM _vﬂ M_. (v—1u) which is the minimum W achievable for acoms
1Su<v e

plete graph on ¢ nodes.) -1

Suppose we have a partition N = S; U S, which satisfies |{{s, v} € 4: u€ Siy

veS,)| >k Let S, = {as,a.,a} and S; = {61, b3, ..., bu—}. Define S/

follows:

R(v) = [{ueN':{u,v}e A and g@)>g @}

fla) =1, I1<isy
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Note that ve U implies L () = R (v) = 0. Suppose L (vo) = R(v,). Let uye
be such that'g (u,) > g () for all ue U. Then by definition of vy, g (v) < g (v) <3
g (uo) implies that ve U. Consider the function g € F which is identical to Q/
except that g (vg) = g () and g (i45) = g (vo). It is not difficult to see that .

[y Restricted Graph Problems

ny of the reductions which were first used to show certain graph theoretic prob-
to be NP-complete involved the construction of rather complicated graphs,
highly non-planar and with nodes having arbitrarily high degree. Since in many
ctical problems node degree may be bounded (e.g., fan-in, fan-out restrictions
n circuit elements), or graphs may be planar, it is worthwhile to determine whether
the complexity of the graphs involved in these reductions was necessary.

E In certain cases, we can observe trivially that it is. For example, consider the
Ryroblem Clique [13]. Since the largest clique possible in a planar graph has size 4,
nd the largest clique possible in a graph with maximum node degree k has size k+1,
can find the largest clique in either case in polynomial time by examining all
fubsets of 4 or fewer (k+1 or fewer) nodes, in time proportional to at most n*
hr n*+!, respectively.

.. More interesting are the cases where the answer is not readily apparent. For
pstance, it is implicit in the literature that Max Cut, when restricted to planar
fraphs, can be solved in polynomial time. [14] presents a polynomial time procedure
or reducing the problem of finding the maximum cut in a weighted planar graph
,n. that of finding a minimum weighted matching in a complete graph derived from
the dual of the original graph. Although [14] then resorts to a non-polynomial
branch and bound technique, the weighted matching can be found in polynomial
lime using a method of Edmonds [4].

} On the other hand, we have found that a number of graph problems remain
gVP-complete even when restricted to planar graphs and graphs with limited node
degree. In this section, we shall present these completeness resuits, which concern
aph k-Colorability, Node Cover, and Hamiltonian Circuit. The formal definitions
these problems appear in the appendix.

The following table gives the principal restricted versions of these problems which
pre prove to be NP-complete:

2 l8@-g )l = w* and m(@) < m(g)

{u,v}ca ,w

which contradicts either the definition of W* or the choice of m.. ...H.._Em. L (v5) A
R (vo). Let E

t = max {g (v): ve N',g () <g(vo) and L(v) > R (v)}.

The value of # is well-defined since there exists aue Uwithg (1) < g (vo) and L (u)
R(u) =0. Thus, if g(v,) = ¢ and g (v,) = 1+1, we must have L(v) < .x?».
The function g € F, which is identical to g except that g (v,) = g (v2) and g (v,)
g (vy), satisfies

...Ww. lg@~g (@)l vrmﬂ_m @W—-g @) = we,

contradicting the definition of W*. ;mn&.ono. we must have m(g) = 0.

" Since m (g) = 0, the elements of U are mapped by g to a set of consecutive inte g
Define a partition N = S, U S, by

S, ={veN:g(v) <g @) for all ue U},
Sy ={veN:g(v) > g () for all ueU}.

We now have

kn* < 3 lg (W)~g (v)] :

{n.oles ) Problem Node degree at most
= 2 l@-g@+ X lg@-g@+ Y lg@—g@) 1. Planar Graph 3-Colorability 4
{uolea {w.o}ea Jooie , 2. Undirected Hamiltonian Circuit 3
et 1 41 o #P=2 3. Planar Directed Hamiltonian Path 4-Out, 3-In
AA V+ Aa v+:a D {u Ve A: 4. Node Cover 3
13 3 *+miffu, v} e d:ue Sy, ve S) 5. Planar Node Cover 6

n® n? n? .
Tttt {u, v}ed:ue S, ve S,

<

E For results 1, 3 and 5, it was not previously known if the planar problems were
pomplete, even if no restrictions were placed on node degrees. In fact, concerning
psult 1, it was previously known only that Graph k-Colorability, with k an input
diriable, was NP-complete. .

The degree constraints in 1, 2, and 4 are all best possible, in that each of the pro-
Pems becomes easy if the restriction on node degree is reduced by 1. Node Cover
01d Undirected Hamiltonian Circuit are clearly trivial for graphs with maximum

which, since k is an integer, implies

H{u,v}ed:ue S, ve 5} > k.

This completes the proof of Theorem 1.5.
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degree 2, and a wellknown result of Brooks [2] implies that a connecteg!
graph with maximum degree 3 is 3-colorable if and only if it differs from K, :ﬁ,v.
complete graph on four nodes, which is easy to determine.

In addition to the above results, there are a number of more or less immediate]
corollaries. Result 2 implies that Directed Hamiltonian Circuit with node degreg}
bounded by 3-Out, 3-In is NP-complete; however, the largest degree bounds fod
which we know this problem to be easy are 2-Out, 1-In or 2-In, 1-Out. Also, we may’
substitute’ Path for Circuit in result 2. However, we do not know whether Pla
Directed Hamiltonian Circuit, Planar Undirected Hamiltonian Circuit, or ngn
Undirected Hamiltonian Path are NP-complete, and these remain significant opeg:
problems.

The proofs of the results given in the table follow. For each problem, we uwoi.
that there is a known NP-complete problem which reduces to it.

The set 4 of edges for G is given by
= {{v1, 02}, {2, 03}, {4, v3}}

Uifx,x}i<i<ng

U {{vs, x;}, {va, X} 1 i< m}

v {{ai, pua}s {bis 712} {ew w:w“ 1<i<p}

v mﬁen. v.;v. Ae? ‘Savu 1 < i Aﬁv

U {0 Yizbs Biw yiads 12 ia}: 1 i <p}

O {{Bias Yis) (i3s Vis)s (s is} 1 1 < < p}

U {{yuys): 1 <i<p}
- Observe that for each clause C; in the original input, the subgraph consisting
Eof ¥115 Y125 Y13» Yias Vi3, Y16 and the variable nodes corresponding to ay, by, and ¢,
s just a copy of our graph H.
" Now consider any satisfying truth assignment for C. Define f: N—{y;;: 1 <i <
.,,\.nm <j s Qw by setting .\.Ae—v =1, .\.Aenv =2, .\.Aeuv = mw.\.ﬁkb 1 mﬁﬁ.\,ﬁ.x _v =
for x, true, and f(x;)) =2 and f(x,) =1 for x, false. Clearly f assigns dif-

Theorem 2.1. Sat3 « Graph 3-Colorability.

Proof. The key construct in our proof is the graph H shown in Fig. 1. The graph ﬂ :
has two important properties which are straightforward to verify. - ferent values to adjacent nodes. Furthermore, since the truth assignment satisfies C,
(2.1A) Any coloring of the nodes g, b, and ¢ such that 1€ {f(a),/(}),/(c)} can 11 = f(v)) € {f(a)), £(b),f(c)} for each i, 1 < i< p. Therefore, by (2.1A), f can
be extended to a valid 3-coloring f for H which has f(ye) = 1. be extended to a 3-coloring f: N~ {1, 2, 3} for G. ) o
(2.1B) If f is a valid 3-coloring of H with f(a) = f(b) = f(¢) = i, then f(ys) = {4 t  Conversely, suppose f: N - {1, 2, 3} is any 3-coloring of G. Since the edges in A4
force {f(x)), f(X):1 <i<n}={f(v1).f(v2)} and {f(ps): 1 < i <p}={f(vh
it follows from (2.1B) that f(v,) € {f (), f(b:),f (c)} for each i, 1 <i < p. Since
jwwe also must have f(x) # f(x)), 1 <i<n, it follows immediately that sctting x,
Ftrue if and only if f(x,) = f(v,) gives a truth assignment which satisfies C.
t - Thus C is satisfiable if and only if G is 3-colorable, and the reduction is proved. {1

w.:_nonaE 22, Q«%} u-O&eS?:Q o Planar QRE. 3-colorability.

.5.8». .:uo Wov. structure E& in this proof is :5 wzﬁr N& EQE.& in Fig. n igow
will be called a crossover with outlets u, u’', v, and v' as labelled. This crossover,
& simpler than our original, was provided by Michael J. Fischer. H has 13 nodes
and obeys the following properties, as the reader may readily verify.

- (2.2A) Any valid 3coloring of H gives the same color to u and «', and the same
Lcolor to v and v'.

£ (2.2B) For any (i, /)€ {1,2, 3} x {1, 2, 3}, there exists a 3-coloring of H using
fcolors 1, 2, and 3 such that u and u’ receive color i, and v and v’ receive color j.
¢ Given a graph G = (N, 4), we construct a planar graph G’ = (N, 4") as follows
fsec Fig. 3):

b (i) Embed G in the plane, allowing edges to cross each other, but such that no
More than two edges meet at any one point (other than their mutual endpoint)
nd no edge touches a node other than its own endpoint. (This can be done in any
lumber of standard ways in polynomial time).

Fig. 1. Graph H for Theorem 2.1.

Let C = {C,, C,, ..., C,} be any set of clauses, in variables x;, X3, ..., X m_<3
as input for Sat3. As in the proof of Theorem 1.1, we may assume that each clause
contains exactly 3 literals and label them by C; = (a,v b, v ¢,). We shall 8?«.:&3;
a graph G which is 3-colorable if and only if C is satisfiable. :

The set N of nodes for G is given by

N={v, 0,0} ufx,xp1 <i<nju{p1<i<p 1<j<6}
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u

(i) X \ , oy

. Fig. 2. Crossover H for Theorem 2.2,

() ,mo—. each edge {x,y} € 4, call its representation in the plane the {x, y}-line
To each such line which is “crossed” by other lines, add new points, one co.zq:._.
each endpoint and the nearest crossing to it, and one between each pair of adjaceny

crossings Fig. 3. Construction of G’, as it affects the {x, y}-line.
(iii) Replace each crossing in the graph by a copy of graph H, identifying

ontlets 1 and u’ with the nearest new points on either side of the crossing on_one:
of the lines involved, and identifying v and o' with the nearest new points on t
other line. . -

(iv) For each {x, y} € 4, choose one endpoint as the distinguished endpoint .,
coalesce it with the nearest new point on the {x, y}-line. The edge between the]
other endpoint and its nearest new point on the {x, y}-line will be called the operd 4
edge of the {x, y}-line.

This completes the construction of G'. . ) 4

Suppose G’ is 3-colorable and let f:N' = {1,2, 3} be a valid 3-coloring. Then J§
restricted to N = N’ will be a valid 3oloring of G. For suppose not. .dﬁu.a:.
would exist an {x,y}€ 4 such that f(x) = f(»). Consider the {x &..:ba in G
and assume without loss of generality that x is the distinguished ouawoaﬁ. for thiy
line chosen in Step (iv). Then by (2.24) all the new points on the {x, ww-r.uo mus
have the same color as x. Thus both endpoints of the operant edge for that line wu‘

the same color, a contradiction.

Conversely, if /: N - {1,2, 3}.is a valid 3-coloring for G, it can be extended to
3-coloring for G’ as follows: For each {x, y} € 4, color each new point on the
¥, y}-line with color f(x), where x is the distinguished endpoint of the line. This
ures that all the operant edges of G’ are validly colored. By (2.2B) this 3-coloring
34 be extended to the interior nodes of the crossovers, thus yielding a valid 3-col-
g of G'.

us G’ is 3-colorable if and only if G is, and the reduction is proved. [}

eoren 2.3. Planar Graph 3-Colorability « Planar Graph 3-Colorability With Node
ree At Most 4.

The key to our construction will be the use of “node substitutes™. Fig. 4(a)
s the 3-outlet node substitute H,, with its first, second, and third outlet nodes
ed. For k > 4, the k-outlet node substitute H, is formed by adjoining to Hy—,
QDY of H; having its first outlet coinciding with outlet k~1 of Hy-,. The outlet
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Upir | SISk Sy 1 SIS k4L

nodes of H, are the nodes having degree 2. The outlets which originally belonge}

to Hj, retain the same labels, with the second outlet of the adjoined H; becomig)
outlet k—1 and its third outlet becoming outlet k. Fig. 4(b) shows Hj.

{Uiis Sk} 1 SISK;
{Uh1,0 Siprap 1 KIS k+1
{(Ukttirts St 1 SIS K5

{Set1a410 Ukrr.1}

2 2 3 4

Mhe inlet of Fyyq is Uy, ¢ and its outlets are Uyyy,; through Upeg s44. Fig. 5 shows Fy,
P, and Fi.

Fig. 4. Node substitutes H; and Hs.

It is easy to prove by induction that, for afl k > 3, the following facts hol 53,3
S U
(2.3A) H, has 7 (k—2)+1 nodes, including k outlets. 1522 T R
(2.3B) No node of H; has degree exceeding 4. v u ﬂcm.n U t S3,2
AN..WQ N&.n .—w ﬂg. , B . - Qf* hhrl mN-‘ I*L mN-A L CM.N
(2.3D) H, is 3-colorable, but not' 2-colorable, and every valid 3-coloring of § C U v . Uz s s
assigns the same color to every outlet node. 2,1 .- 3,1
. [ Cu.‘
Given any planar graph G, we show how to construct a planar graph G, using nog E
substitutes, which has maximum degree 4 and which is 3-colorable if and only if§ . F F
; 1 2 : 3

> is 3-colorable. !
Fix a planar embedding of G and arbitrarily designate the r nodes of G w
have degree exceeding 4 as vy, v,, ..., 0. We ‘construct a sequence of graphs i
Go, Gy, ..., G, = G' as follows: G, is constructed from G;—;. Let d be the deg
of v, in G,— and let {u, 0.}, {2, v;}, ...; {a, v;} be the edges incident with v,, takéd
in clockwise order. To form G, delete node v, from G-, replacing it with a co
“of H,, and replace each edge {u;, v,} by an edge joining u, to outlet j of the no i
substitute. S B
It follows from the construction and previously stated facts that, for 0 <k
G, is planar, G, has r—k nodes with degree exceeding 4, and G, is 3-colorable}
and only if G is 3-colorable. Thus, G’ = G, satisfies all the required properties, cof§

pleting the proof. [} 4

Fig. 5. Fans F,, F;, and Fs.

Tt is easy to prove by induction that the following facts hold for allk > 1:

F(24A) F, contains k*+k—1 nodes, none with degree exceeding 3. -
4B) F, has one inlet node of degree 1 and k outlet nodes, none with degree

fxceeding 2.
'(2.4C) For any outlet node of F;, there exists a path from the inlet to that outlet
b ich includes each node of F; exactly once.

Dne more property of F, will be required and, since its proof is not quite as straight-
ward, we present it as a lemma.

Theorem 2.4. Undirected Hamiltonian Circuit a Undirected Hamiltonian Circt

With Node Degree At Most 3. . 4 ma 24.1. Suppose a graph G contains a subgraph H isomorphic to F,, k > 1,

 such a way that
0) no two nodes of H are adjacent in G unless the corresponding nodes of Fy are ad-
w0 Nu g

i) any node of H which is adjacent to a node of G not belonging to H corresponds
ither an inlet or outlet noede of Fi. .

en, any Hamiltonian circuit of G contains a path from the “inlet” of H to some “out-
a of H, consisting precisely of all the nodes of H.

Proof. This construction will also use a “node substitute”, which is formed frg
a special graph, called a fan. The one-outlet fan Fy consists simply of a single n
The single node, labelled Uy, is both the inlet and the outlet of F. Inductively, §
sume we have defined the k-outlet fan F,, k > 1, withinlet U, , and outlets Uy, throh
Uy .+ The (k+1)-outlet fan F4, is formed from Fy by adding the following nog
and edges: .
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Proof of Lemma. The Lemma holds trivially for k = 1. Suppose it holds fog
.Fy—;, k > 1, and consider a graph G which contains a subgraph H isomorphic to F3
in the specified manner, and which contains a Hamiltonian circuit C. We considef
the nodes of H as being labelled identically with the corresponding nodes of Fg
Observe that H, and hence G, contains a subgraph H' isomorphic to Fy—; whi X
has inlet node U, , and which satisfies the two conditions of the Lemma. By he,
induction hypothesis, C contains a path from U, to some Uy, which include§
precisely the nodes belonging to H'. The node Uy~ and the remaining nodes of &
are shown in Fig. 6.

godes ot one of the copies of F, are the inlet nodes for D,, and the outlet nodes of
fhe other copy are the outlet nodes of D,. For each node v, in N, the graph G’ contains
4 copy D(9) of D,. The inlets of D,(i) will be denoted by v,(i), v(i), ..., t.(i) and its
E . tlets by u,(f), u(f), ..., u,(i). The specification of G’ is completed by including in G,
b r each edge {v,, v,} € 4, the two edges {u(i), v()} and {w(), v,()}.

The following useful properties of double-fans D, are immediate consequences
the corresponding properties for F,:

(244) D, contains 2 (n*+n—1) nodes, none with degree exceeding 3.

(2.4b) The ninlet nodes and n outlet nodes of D, each have degree not exceeding 2.
f (2.4c) For each outlet and each inlet of D,, there is a path between them which
Bocludes every node of D, exactly once. T

b (2.4d) Suppose an undirected graph H contains a subgraph D isomorphic to D,
the manner specified in Lemma 2.4.1. Then every Hamiltonian circuit of H con-
ins a path from an “inlet” of D to an “outlet” of D, containing precisely all the
hodes of D.

Observe that G’ has maximum degree 3, since each inlet or outlet of a D,(i) has
ft most one edge joining it to a node not belonging to D,(i), using propertics (2.4a)
ind (2.4b).

 Suppose G has a Hamiltonian circuit C, i.e., an ordering of the nodes as yy, y», ...,
P, where m = |N'|, such that for all j, 1 <j<m,{y;, y;+1} €4’ and such that
Vo V1) € A’. We may assume without loss of generality that y, and y,, do not belong
S the same double-fan D,(i). Thus, by construction of G’, one of y;, y,, must be
n inlet of some fan D,({) and the other must be an outlet of another fan D,(j).
Since G’ is an undirected graph, we may assume that y, is an inlet of some fan D,(i),
ghen, by (2.4d), C determines an ordering D,(i;), Dy(i3), ..., Dufis) of the double-fans
ghch that all the nodes of D,(i) precede all the nodes of D,(i)) in C whenever 1 <
B < j<n. But the construction of G’ implies that v,, v, ..., v;, must then be
{ Hamiltonian circuit of G. (Notice that this argument fails when n = 2, however,
4 this case we may let G’ = G.) T ‘ ‘

g Conversely, suppose vy, vy, .., Uy, is a Hamiltonian circuit C of G. By construc-
Jon of G some outlet of D,(i;) must be connected to some inlet of D,(i;+,) in G',
1 <j < n, and similarly for D,(i,) and D,(i;). It is then a simple matter to con-
ftruct a Hamiltonian circuit in G’ using (2.4c).

j Therefore, we have shown that G’ contains a Hamiltonian circuit if and only if G
goes, completing the proof of Theorem 2.4. [

Uk-1, j

—e o— vee —e

Uk,1 Sk, Uk,j Sk,j Yk, j+1 = Ukk Sk

Fig. 6. Remaining nodes of H.

Consider the set T of nodes of the form U, ; and S; ,, 1 < i < k. By the constru
tion of F, and the assumptions on H, there are only two ways by which the nodeg
of T can be accessed by circuit C: ;

(2) From nodes of G not in H via an outlet Uy ;.

(b) From an outlet Uy—y, of H', via the corresponding S;,;.

Since C contains a path from U,,; to Ui—,; which uses all the nodes of H',
anly way that (b) can occur is via the edge {Uy-1.5 Si, ;}- Using this edge, the pa
from Uy.; to Up—y,; can be extended to a path from U, ; to cither U, or U,
consisting precisely of the nodes belonging to H. If this is nor what occurs in
then either that edge is not used, or it is used and C exits from the set of nodes-23
before all nodes of T have been covered. In either case, a non-zero and equal numbe
of U-type and S-type nodes from T will remain to be covered by subsequent vi
of the Hamiltonian circuit to the set T. However each such visit of T by C must bo
enter and leave via a U-type node, and hence must use one more U-type node th
S-type node. Thus, not all the S-type nodes could be covered by C, contradicting
the fact that C is a Hamiltonian circuit. Therefore, C must contain a path from U4
to some outlet U, ; consisting precisely of all the nodes of H, as claimed. The Lemm4

follows by induction. [}

v

em 2.5. Exact Cover a Planar Directed Hamiltonian Path.

Given a graph G = (N, A), we now show how to construct a graph G' = (N, A} @oof. Given any collection S of sets, we must construct a planar directed graph G

having maximum node degree 3, such that G' contains a Hamiltonian circuit if 8 ich has a Hamiltonian path if and only if S contains an exact cover. We first
Foduce some terminology.

fet G = (N, A) be a directed graph with nodes p,, p;, ..., pm- The edges in 4

ordered wE.mm {pw, p;y. We will call p; and p, adjacent whenever either {p;, p,> € 4

only if G does. .
Let N = {vy, p3, ..., b} Where n = |N|. Let D, denote the double-fan form

by joining two copies of F, with an edge connecting their inlet nodes. The ou
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ith o for G, te N*isa k-extension of @ if the length of 7 is k and ot is a partial

or {py, oy € A. Any Hamiltonian path (H-path) of G can be identified with a st for G
m ‘ﬂ»a—u or G.
PivPiy -+ Promy Of nodes such that N = K {pin} and {Piy Pyt € 4 for g j For any string § = by by .. bk € N*, we say that veéN belongs to B if and only
ke o = b, for some i 1 <i<k, and (4, v) € A belongs to B if and only if 4 = b,

fad 0 = b+, for some i, 1<i<k

i f Now suppose we are given a collection S = {81 Sz s S, of sets with Us: =
n =1

1y = {1ty Y25 -+ u,}. The planar directed graph G = (N, 4) is specified as follows:

g The set N of nodes, which depends only on # and f, is

1<j<m
Let N* denote the set of all finite strings of elements from N. A partial H-pat]

for G is an element of N* which is a prefix of some H-path for G. For any pa

N\~
0t 4 e @ ————— ¢ & &
N={bpcspl<is<nl <j<t}
v{ar0<i<n+tll <j<t}
U {y.s:0 Lign, 1 <j<t}
v {dpen fir1 < < ny v {fen}

...)q.w\ll'...
[ N

set of edges is made up of two parts, 4 = A U A, the first of which depends

haly on 7 and ¢ and forms a skeleton for G (see Fig. 7):
f 3 )
w Ay = {Ca0.5 Yo.0» Fu.rr Gerr i 1 <J <1}
o dg2 o oot U {louss Gous+1s Bt Pttt 1 <j<t-1}
* * ° . U {Gon fi)r et1s Y2}
/ \ / \ . P4 # 0.00J17> Untlr ol
} <“ ' <oo ) /«o U {{fis 4 S €05 {din fi+1)s < fireds
L& o. N o. &N Y ot {di» a1 a1 dpy, e €ds Cuos e) 1 <i<n}
n‘ Q44 G_.‘ n-.- 92 U_.No‘.n .‘Murn n“.oﬁ.—.ﬂ.ﬂ.' U AAﬁuLo ﬁ_.h+_.vn A§~.h+»u Q-LVu 1< i m n, 1 M.N. < nlﬁw.
flesh out the skeleton provided by 4. For

g remaining edges in 4 = Ay ud;
Bach iand j,1 <i<n1<is<t they connect certain nodes from {ay.p, By €1

1 Y1.1}» depending on whether or not i, belongs to S Ifu, ¢ S;, then 4, contains
ight edges-shown in Fig. 8A.If u; € S, then 4, contains the seven edges shown

in Fig. 8B.

wo_. K, . A_o_.
D LA A :.D.Rt

. -9 & o
dy 0y bpyCay 022 D22C22 T bt Car s

-1,

b

® L] °
Y21 ¥2,2 Yo
° <_ ~4y

Ya-1,t
L]

N e

dpt Bogt Cnt
¥n,t

n-1,1 Ya-1,2
. °

€
: f;o‘|‘|\lol||...llon£

»

Gp e, t-t

(Aa)

m:i
Fig. 8. Edges in 4.

Fig. 7. The skeleton of G.
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that G is planar.

disjoint, as required by Exact Cover.

of G which are incident with nodes of interest.

N

Ni-1,

Fig. 9. Cases for Lemma 2.5.1.
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This completes the description of G. The reader should observe from Figs. 7 Eﬁm

mc“%MHN—S the R_umwﬁEb between G and the covering problem is as ».ozo:,.,”
mva . at we E..o building an H-path for G, in step-by-step fashion, and, at th
. e time, generating an exact cover for U. Clearly, the H-path must gm? it}
0,13 Y0,1: 80,25 Y0,25 ++» Q0,1 Yo,u.J1- For each k, 1 <k < ’

5 » 40,6 Vo0 J1- , 1 < k < n, at the step the H-

MMM_MWMm Ma!n do n_uowmn edge {f;, e;) if S, is to be included in the cover, and edge Qwvw
fitis ot o be included. We then proceed left (right) along the a5 b, c,, lin
o M:.. onoMM“wn MRHB m.—?%., Mn_w finally arriving at fi+,. Helping us in the msom.,
’ 0 irectic ravel that line is the fact that the nodes y,— 1<j<h
'8 mRMMMv:Q which elements of U have been covered by wnoiocm__w._m.hooﬂﬂm\ mﬂ M
oNnEoE aw,wwmnr gnﬂwﬂ already been visited by the partial H-path if and only

u no, n covered yet. Note that, w :

MQ choice, at f;, all nodes y,_; are already F,SW “;Monwwo Mwﬂwhmuﬂwwa o . (2R) If © = wx'c,, is a partial H-path of G, the only possible 3-extension oSk
as bee : i et o
o o*.:pmmﬁn&. When we _.8&._ M..:, after having made a decision for each set §g
e Yu,; can have been visited by the partial H-path (or it could not be
The o 0 &M H-path), so all elements of U have been covered by the selected s
o v MMM o Mu w»_.oaoo the transmission of information from one row of y; ; no
s ol s Mwo so prevent § S, from being chosen whenever any of its n.HnB.

y been covered. This latter property insures that the sets in the cover

mmm,”o M“Eoinm Lemma mros.m how the edges in A, force the desired paths, b
g the relevant properties of Figs. 8A and 8B. Figs. 9A and 9B show all edge®

: 3 '3 . 3 ;
ei“-””“.qwum.m..w.ﬁﬂg.&.\. 1<i<nl<j<t Letx=d, if j=1 and x = ¢ ~g}
;X' =& if j =t and x' = a, 1, otherwise. Let » be any partial H-p X

~<
3 i~}
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Pof G satisfying .
B (i) every vE N—{a; j, by, ¢1,5} adjacent 10 yi-1,5 belongs to w, and

L (ii) Nome of ayy, bup €y belongs to .

I Then the following hold:

E Case 1. u,¢ S, (Fig. 94)

" (L) If = oxa is a partial H-path of G, the only p
By, Vi1 €3 ¥ and by Yiy €y X

L (IR) If ©= wx'c,,, is a partial H-path of G, the on
gre by Vi1, @3 X and by Yus Gy X

;' Case 2. u,€ S, (Fig. 9B)

(L) Same as (IL).

ossible 4-extensions of © are

Iy possible 4-extensions of ©

Oq,; d1,5 %-

oroof of Lemma. (Case 1L) Let y be an H-path with prefix =. The last node of 7
must be 2,4y, The only possible 4-extension of T which has been excluded isbyyyi,y 0V
twhere v 5 ¢y, But then ¢ would have to be the last node of 7, since properties (i)
Fand (i) of « insure that {x’, ¢, belongs to y; that is, ¢, ; does not yet belong to
ihe H-path and the only way that path can reach ¢y ;is through x'. This contradiction
fproves (1L).

[ The other cases follow similarly. (3

Using Lemm:
 F-paths and exact covers,
has an H-path whenever S contains an
rem 2.5, we must show the converse. :
¥ Suppose that G has an H-path 7. Let T = {k| {fs, &> belongs to }. We shall
show that S’ = {S,| k€ T} forms an exact cover for U. Define the partial unions
Up=@gand U= U Sl <k<n

Then we have the following:

a 2.5.1 and our informal description of the correspondence between
the reader should have no difficulty in verifying that G
exact cover. To complete the proof of Theo"

Z:

Lemma 2.5.2. For each k,1 <k <n+l,if oeN* and of is a partial H-path

U‘,‘,e\ G, then
(i) None of {arbipcrpdue k<I<n 1 <j <t} belong to .

Qi) Al of {a1,; bip st 1 ¥ <k-1, 1 <j <t} belong to ©.
b (iii) For each j,1 <Jj <1 Ye-1. belongs to w if and only if u; ¢ Up—s.
(V) If there exists j such that u; € Up—y 0 S, then d, is the only 1-extension of wfy.

..Umv_.eon of Lemma. The proof is by induction. The basis k =1 is immediate since
jany H-path must begin with dg,1 Yo.1 90,2 Y0.2 -+ @0,: Yo.1 fi- The induction step
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follows almost entirely by Lemma 2.5.1. The onl S L » v
3 y other possibility is that e, might 1 = {{F, ;, Ves}: a5 = X, is the jt* occl ce of variable x; in C}.
be extended by d, f;+, (or by e, fi+;). But then an argument similar to the proof] By = {Fu .”L. s, = X J ' }
of Lemma 2.5.1 shows that e, (respectively d,) must be the last node of the H-path} weo graph G = (N, 4) is defined by:

which is impossible. (] : ONnoON,
) N = 1\ \u
It is now clear that {S, i i : N e
ar that {Sy] ke T} is an exact cover for U. Since any H-path m : » »
have wro form @feis Y1 @ui1,1 Pu2 Gut1,2 o Yus Gusr,e, Lemma 3.5.2 (i) for k =4 . A=UdvU4vB B,
n+1 insures that .mm Sy = U, = U, and (iv) insures the disjointness of the sets i§ - ...; \

the cover. This completes the proof of Theorem 2.5. 0

v\L no <QTSV of Lea.aa i g

%.ceorve that every uoaoomQEmmmomngﬁBo&u.ﬁn%oﬂSﬁEa«Qn.om&ucmom
v -:mm»c_n if and only if G has a node cover of size 5p.

o.cma:d that the directed graph G constructed in the proof need not have : : e following properties of the subgraphs H; are easy to <on.».<“
trarily large degree, in fact, no node has in-degree exceeding 3 or out-degree e@ £5.6A) There exists a node cover for H, containing m (i) nodes, including all
ceeding 4. It is not known, however, whether these are the strongest possible degri Ries T, 2nd no nodes F,,. There also exists such a node cover which includes

constraints for which Planar Directed Hamiltonian Path remains NP-complefl odes Fi,; and no nodes T} ;. .
' 2. 6B) No node cover for H, contains fewer than m (f) nodes, and every node
L ¢ for H; which includes both a node F,, and a node 7;,; must contain more

ks m () nodes.

Theorem 2.6. Sat3 a Node Cover With Node Degree At Most 3

Proof. Suppose we arc given a set C = {C1, Cy, ..., C,} of disjunctive clau#l k . ) . ) .
cach containing no more than 3 literals. As in the proof of Theorem 1.1, we frow, suppose we are given a truth assignment to the » variables which satisfies

assume that each clause contains exactly 3 literals, possibly with duplication, get C of clauses. The corresponding node cover § contains the following
the literals oon....anm in clause C, as a4, a,,5, and @, 3, 1 <k <p. Let Xgy Xay' :

denote the variables occurring in the P clauses, and for each i, 1 < i<, let
denote the number of occurrences of variable x, (as literal x; or literal %) in'fl des all .- .
clauses. Arbitrarily index the m (;) occurrences of variable Xx; as occu iy For each variable x, which is set “false”, the cover of m (i) nodes for H; which

occurrence 2, ..., occurrence m (i). We shall construct a graph G, having node degig gudes all F;.

at most 3, and give an integer k > 0, such that C is satisfiable if and only if For each clause C,, all the nodes of N, except some one of them ¥, such
a node cover of size k. ) literal a,,; is true for this truth assignment (at least one such literal exists since

We describe the graph G = (N, 4) in several steps. First, for each variabld plause is satisfied). .

we have a subgraph H, = (N, 4)), a simple circuit with IN] = A = ns.n Mearly, these nodes cover all of the edges belonging to the sets 4,1 <i<n,
shown in Fig. 10. Observe the alternate labelling of the nodes. i 4L, 1 < h < p. Each edge {7y, Vs.} in B, is also covered since either ¥,
hos 10 S or @, = X, is true and T, ; belongs to S. Similarly, each edge in B, is
bed by S. Thus, S is a node cover. Furthermore, the number of nodes in S is

u.uon each variable x, which is set “true”, the cover of m (i) nodes for H, which

20+ D m@) =2+ = 5,

L]
L L) Py o 1 i=1

.ﬁ-A “. . i - Y :
W T The Timi)  Fi, mti) .
Buired.
Fig. 10. 3
ig. 10. A subgraph H;. ersely, suppose we have a node cover S for G such that (S| = 5p. § must

For each clause C,, we have a subgraph Hj = (N}, 4;) where N} = {Va.1» B at least two nodes from each Nj, in order to cover the edges in A4;: for a total

and 4 consists of an edge joining each pair of nodes belonging to Nj. The

Mnmom. iEoromnE.oE»:omom.osmon_nmﬂz.”omuo&o?oamoBomnn .\,,
ollows: g

past 2p such nodes. Similarly, by (2.6B) S must contain at least MAS @) =3p
=1

Bvom the N,. Hence S must contain exactly 2 nodes from each Ny, and exactly

. des f; . Thus by (2.6A) and (2.6B), S t contain, fi ach N,
By = {{T,;, V..}: a,, = x, is the j® occurrence of variable X; oes trom each N;. Thus by (2.6A) and (2.6B), S must contain, from e !
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Table 1. Values of ¢ [, /]

% 0 1 2

cither all the 7}, nodes and none of the F ; nodes, or all the F, ; nodes and nong
of the T, nodes. A consistent truth assignment can be obtained by setting x; “trye?
if § contains all the T, nodes, and setting x, “false” otherwise. The reader m ,
verify that, because of the edges in B, and B,, this truth setting satisfies the uﬁ h

of clauses. [ 0 s " 15
. y 1 13 13 14
Remark. Theorem 2.6 was obtained independently by Peter Herrmann TB; 2 14 14 1

Theorem 2.7. Node Cover o Planar Node Cover.
‘ Given ‘a graph G = (N, A) we construct a planar graph G’ = (N, 4') using
Bihese crossovers as follows:

f (i) Embed G in the plane, allowing edges to cross each other as in Theorem 2.2.

Proof. The key structure used F this proof is the mnmmr m‘ pictured in Em 11, w i

as labelled. i (i) Replace each crossing by a copy of H, as shown in Fig. 12.
v, . :
f(h ,.O Q ... \ / .
- s
v ‘ Vi BEFORE (6) . " AFTER (6

Fig. 12. Construction of G’ (only outlets of crossovers shown).

' The crossovers which replace crossings on the edge {x, y} will be called crossovers
~on the {x, y}-line. The edges connecting these crossovers to each other and to x
- and y will be called edges on the {x, y}-line. The endpoints of these edges will be called
 the nodes on the {x, y}-line. Such nodes which are also crossover outlets will be called
the {x, y}-outlets of their crossover. The one which is nearest x will be the crossover’s
'y outlet, the one nearest y its x outlet, for each crossover on the {x, y}-line.

' Let d be the number of copies of H used in constructing G'. Observe that the
.. ges of G’ can be partitioned into two sets: line edges, those which are on the
{x, y}-line for some {x, y} € A, and crossover edges, those which are part of one
of the d crossovers. All the edges on the {x, y}-line can be covered by taking either x
Hind all the x-outlets of crossovers on the line, or y and all the y outlets. The edges
M the crossovers can only be covered by crossover nodes.

E Now, since in G’ each edge-crossing of the planar representation of G has been
laced by a planar graph which itself contains no crossings, G’ is planar. More-
over, the size of G’ is clearly at most a polynomial in the size of G. The proof of
he theorem will thus be concluded by showing that, for any k, G has a node cover
size k if and only if G’ has a node cover of size k+13d.

Va
Fig. 11. Crossover H for Theorem 2.7.

Now for each i, j, 0 < i,j < 2, let ¢ [i,j] be the minimum cardinality for all n0 '
covers C of H obeying ]
{VuVaCl=i and {{V;, ¥V} nCl =

Observe that, by symmetry, when i or j equals 1, the value of ¢ [}, Jj] is indepen:

of which element of the corresponding pair is in C. Table 1 gives the values of ¢ [LE

We leave to the reader the straightforward but tedious verification of the entri
From Table 1, we observe that the following properties hold: &

(2.7A) For 0 <1<2, ¢[1,1]-¢[0,1] <1 and ¢[},1]—c[4,0] <
(27B) For 0 <I1<2, c[2,1]—c[1,1]=c[,2]-c[L 1] =
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Suppose there is a node cover S of G = (N, A) with |S| = k. We construct a nodg
cover of G’ from S as follows. For each edge {x,y} € 4, let f (x, ¥) be an endpoint]
of that edge which is in S. Then define :

$' = {v: v is the f(x, y) outlet for a crossover on the {x, y}-line for so

try}ed). : oreover, T contains at least one fewer {x, y}-outlet than does 5, and exactly the
Since S is a node cover for G, fis defined for all edges in 4, and so S U S’ cov

- me number of non {x, y}-outlets. Furthermore, T u {x} will cover all the line edges
all the line edges of G'. Moreover, since each crossover is on two lines in G', S’ con

hat § did, and so T* = (S*—S)uTu{x}isa node cover of G’ with

tains exactly two outlets for each crossover, one from each outlet pair, and so |S'] 4
24. All that remains is to cover the as yet uncovered crossover edges. For these]
observe trom Table 1 that any set which contains two nodes from a crossover, on
from each outlet pair, can be extended, by adding 11 of the crossover’s internaf
nodes, to form a node cover of the crossover made up of ¢ [1, 1] = 13 node:
Let S be the set containing, for each crossover, the 11 additional nodes need
to extend S’ to a node cover for that crossover. Thus SuU 5’ uU'S” is a node co
of G’ having k+2d+11d = k-13d nodes. )

Conversely, suppose there is a node cover of G’ having k+13d nodes. Let

k* = min {|S|: S is a node cover of G'}, and
M = {S: S is a node cover of G' and |5| = k*}.
For each Se€ M, define

m(S) = |{x€e S: x is an outlet node for some crossover in G'}|,
m* = min {m (S): S€ M}, -

and let S* € M be some node cover with m (S*) = m*. Sincé S* must contain 13}
nodes from each of the crossovers in order for it to cover all the crossover .&ma
(see Table 1), we know that |[S* n N < k. We conclude our proof by showing that g
S’ = 8* n N is a node cover-of-G. - s Sl . -
Suppose it is not. Then there exists some {x,y} € 4 such that S’ n {(x,y}=04
and hence S* N {x,y} = . Let the number of crossovers on the {x, y}-line be /
Then there are I+ 1 edges on the {x, y}-line, and hence at least /+1 of the nodes ong
the line must be in S*, and since neither x nor yis, all/+ 1 must be outlets. If we let n(?),
be the number of crossovers on the {x, y}-line with i of their {x, y}-outlets in 5%
we thus have n(2)—n(0) > 1. We shall show that this leads to a contradiction-
Let X, be the set of nodes in the ith crossover on the {x, y}-line, 1 i<, and
let S;=X,nS*. Let T, < X, be a node cover of the crossover containing its %
outlet (but not the y outlet) and the same non {x, y}-outlets as does S;, and havi
minimum cardinality for such node covers. For each i, let r (i) be the number OY
{x, y}-outlets of the ith crossover which are in S*. Then we have, by (2.7A) and (2.7B] *

r (i) = O implies |T}] <1Sd+1,
r (i) = 1 implies [Ty| < [Si,
r (i) = 2 implies |T,] <|Si|~1.

1 we have by the above that

t=1 =1

N. t T = UT, s = {J 8,. Since n(2)—n (0) >

T <I8|-1

|7 = |S*I—1SI+ITI+1 < |S*] = K%, and

m(T*) =m(§*)-1= m*—1,

v Nis anode cover of G and the theorem

L ontradicting the definition of m*. Thus S*
,,., proved. [

. Notice that, if the graph G given as input for Node Cover has no node degree
lexceeding 3, the graph G’ constructed in the proof as input for Planar Node 09.6—.
will have no node degree exceeding 6. This implies that Planar Node Cover With
INode Degree At Most 6 is NP-complete. It is not known whether this degree bound

s best possible. ,I/AT&‘N zr.o xﬁ& rord SFAL

e obher “re deckion” Yo
degree B4 o

3. Concluding remarks

1 We have seen that a number of graph-theoretic NP-complete problems remain
.‘ P-complete when the structure of the allowed inputs is substantially restricted.
; Similar questions can be asked for restricted versions of other NP-complete problems.
 For example, it is not yet known whether Steiner Tree [13] for planar wmwwwm
t or multiprocessor scheduling with 3 processors, unit time tasks, and an ».ngc..m:.w
 partial order [19] are NP-complete. The open status of Cum:oﬁo.n Hamiltonian
Circuit for planar graphs has been mentioned previously. The question of whether
'Max Cut with restricted node degree is NP-complete also remains open.

. In examining such problems, it is important to keep in mind that two types n.u».
b results are possible. Not only is it important to find simple subcases which are still
rtant to find large subdomains for which the problem

: NP-complete, but it is also impo . prob
f can be solved in polynomial time. We have given one example in this latter direction,

 the case of Max Cut for planar graphs. Other recent papers [5, 7, 8] have shown that

 Clique and Chromatic Number can be solved in polynomial time for “transitively

orientable” graphs, “chordal” graphs, and “circle” graphs. . . )
Both types of results should prove useful to designers of practical combinatorial

f algorithms.
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APPENDIX
Definitions of NP-Complete Problems

Satisfiability With At Most 3 Literals Per Clause (Sat3) [13]

~=\m:: Set ..”.». clauses C = {Cy, C,, ..., C;} in variables x,, X,, ..., X,, €ach o_wcm‘oﬁ_
being the disjunction of 3 or fewer literals, where a literal is either a variable x§

or its negation X.

Property: There is a truth assignment to the variables which simultaneously mwcmmna

all n.rn clauses in C (a clause is satisfied if any one of its disjuncts is x, for some “true .
variable x,, or %, for some “false” x,).

Clique [13]
Input: Graph G = (N, A4), positive integer k.

Property: G has a clique of size greater than or equal to k, i.e., a set N' < N with
IN’| =k and such that for all nj,n,e N, {ny, n,} € 4. ‘

Exact Cover-[13] . .

Input: Collection of sets S = {S;, S3, ..., S}
Property: S has an exact cover, i.c., a subcollection S’ & Ssuchthat{J S; = G Siy
and for all S, S;€ 5", 5, S; = 8. st

Graph k-Colorability {13}
Input: Graph G = (N, A4). 4

Property: G has a legal k-coloring of its nodes, i.e., thereis a map f: N - {1,2,.. K}
such that {n;, n,} € A implies f(n,) # f(n2). 3
Undirected (Directed) Hamiltonian Path (Circuit) [13]

Input: Graph G = (N, 4). (Directed graph G = (N, A)).

Property: G has a Hamiltonian path (circuit), i.e., an ordering of the nodes N I._"
{ny, Rz oy m} such that for 1 <i<|N], {n, nr } €A Knp, nrH> € A), and

3
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u.B the circuit case only) {mi. n} € A ({1 € A).

ode Cover [13]

b put: Graph G = (N, A), positive integer k.

? perty: G has a node cover of size less than or equal to k, i.c., a subsct N &N
Lith |N'| <k and such that for all {x,y}e 4, {x,y} "N # 0.
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