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4.8. The EOL forms F14-F17 with the following productions are in-

F14:S>a,a-S,S->Sa, S>aS, a>SS, a > aa,
F15: S>a,a~ S, §- Sa, alv.wm, a-SS8, a-aa,
F16: S>a,a-S,a->aS, S>aS, a->SS, a-aa,
F17: S>a,a- S, a—aS, a - Sa, a->S8S,a-aa.

.o»or case the Eﬁ.oﬂrommm immediately follows from the fact that there is
vation for a’or ¢>. [

ry

uBBmaNam,E.m results of this paper. In most cases the question whether a
. form F={({S, a}, {a}, P, S) with short productions is complete can be

by running through the flowchart of Fig. 3 in accordance with the
1s contained in P.
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Abstract. Given a set K of n points on the unit sphere $%in d-dimensional Euclidean space, a
hemisphere of S? is densest if it contains a largest subset of K. In this paper we consider the
problem of determining a densest hemisphere and present the following complementary results:
(i) a discretized version of the original problem, restated as a feasibility question, is NP-complete
when both n and d are arbitrary; (ii) when the number d of dimensions is fixed, there exists a
polynomial time algorithm which solves the problem in time O?ml_ log n) on a random access
machine with unit cost arithmetic operations.

1. Introduction

This paper is motivated by the following simple geometric problem: let R be the
d-dimensional Euclidean space and let $¢ be the sphere of unit radius with center
at the origin of R? Let K be a set of n points on S°. Find a hemisphere of $¢ which
contains a largest subset of K. ) ,

This geometric problem was posed fo the authors by H. S. Witsenhausen for its
relevance to applications of statistical analysis and operations research. It was
apparently originated by J. B. Kadane and R. Friedheim as a formalization of the
following situation in political science. The coordinates of the pointsin K correspond
to preferences of n voters on d relevant political issues; the axis of the maximizing
hemisphere then corresponds to, a position on these issues which is likely to be
supported by a majority of the voters.”

In thinking about such applications, it is more convenient to formulate the
problem in terms of vectors and inner products. (This will also enable us to make

! The work of this author was supported in part by the National Science Foundation under Grant
MCS76-17321 and in part by the Joint Services Electronics Program (U.S. Army, U.S. Navy, and U.S.

Air Force) under Contract DAAB-07-72-C-0259.
2 Private communication of J.B Kadane, Department of Statistics, Carnegie-Mellon University.
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94 D.S. Johnson, F.P. Preparata

the useful restriction that all coordinates are national numbers, thus placing the
problem in the standard discrete form to which computational complexity
arguments can be applied.)

To be specific, let K ={Py, P, .., P,} be a finite subset of Q% where, as usual, Q
is the set of rationals. There are actually two parallel problems to consider:
CLOSED HEMISPHERE: Find that x ¢ R? such that x|>0 and {PeK:x : P=
0}{ is maximized.

OPEN Emznwwmmwm Find that x € R such that [{PeK:x - P>0}| is maxi-
mized.

The correspondence with the geometric problem comes from the fact that each
x € R? determines a hyperplane through the origin {y € R*: y - x = 0} which parti-
tions $ into the two open hemispheres {y € $%: y - x <0} and {yesy x>0}
However, observe that the vector problem is in a sense more general as it allows
more than one point along a single ray from the origin.

In this paper we present the following results: Both the CLOSED and OPEN
HEMISPHERE problems are NP-complete if the number of dimensions is not
fixed in advance (Section 2). This means that there can be no polynomial time
algorithm for the general problems unless many other famous intractable problems
also have polynomial time algorithms, an unlikely event [2, 3]. Interestingly,
however, as we shall see in Sections 3 and 4, a densest hemisphere can be
algorithmically determined for fixed d in time O(n®™" log n), where the adopted
computation model is the random access machine of [2], with all arithmetic opera-
tions having unit cost.! The latter result not only shows that the problem can be
solved in polynomial time for fixed d, but it also provides an attractive method for
cases in which d is a small integer, say 4 or less.

It may be pointed out that the presented algorithm can be modified to solve
interesting variants of the problem, such as the determination of a densest hemis-
phere when each point in K has an assigned weight. Another variant of the
problem, discussed by Reiss and Dobkin [1], is to determine if there is a hemi-
sphere which contains the entire set K. This variant, however, has been shown to be
equivalent to linear programming and may well be simpler than the general
problem discussed in this paper.

2. NP-completeness of the HEMISPHERE problems

In this section we present a proof that CLOSED HEMISPHERE, stated as a
feasibility question, is NP-complete. (The construction in addition shows that the

! For models in which the unit of time is a bit operation and hence arithmetic operations have costs
depending upon the lengths of the operands, the above running time bound would be multiplied by a
factor depending on these lengths, but would still be a polynomial.
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OPEN problem is NP-complete.) The statement of the problem as a feasibility
question goes as follows.

HEMISPHERE. Given positive integers d and M EE a finite set K < Q°, does
there exist a P* € R such that |P*|>0 and {Pe K :P - P*=0}|=M? ,

To prove that this problem is NP-complete, we must (i) show that it can be solved
non-deterministically in polynomial time, and (ii) reduce a known NP-complete
problem to it [2, 3]. For the former, we observe that if such a P* exists, another one
could be found as the solution to a linear programming problem involving the set
{PeK:P-P*=0}, and hence must have rational coordinates of polynomially
bounded length. Thus, all we have to do is guess these coordinates. i

To complete the NP-completeness proof for HEMISPHERE, we reduce the
NP-complete MAXIMUM 2-SATISFIABILITY problem [4] toit.

MAXIMUM 2-SATISFIABILITY (MAX 2-SAT)
Given: positive integers m and N>1
finite collection € of two-element subsets of
X ={x1, &1, X2, £2, - - - » Xm, %} such that |€|=N.
Question: does there exist a subset X’ < X with | X' n{x,, %}| =
for 1<i<msuch thatl{c€ ¢: X' nc #0}|=N?

We shall show how to transform any instance of MAX 2-SAT to a corresponding
instance of HEMISPHERE in polynomial time, in such a way that the answer for
the second instance is affirmative if and only if the answer for the first instance is
also affirmative.

In what follows, we shall use a shorthand notation for sets of vectors. If a, n€ Z
and 2 =0, we let (a)" stand for the set consisting of the single n-dimensional vector
(“n-tuple”)(a, a, ..., a), all of whose components are a. If S < Z is a finite set, S"
will represent the set of all possible n-tuples with components from the set S.
(Observe that |S"| =|S|".) Finally, if U is a set of n-tuples and V is a set of m-tuples,
UV is a set of |U] - |V| (n +m)-tuples of the form (a1, Gz, ..., @n b1, b2, - - ., bm)
where (a1, az, ..., a)eU and (b1, b3, ..., bm)e V.

We now describe our construction. Suppose m, N, and € provide an instance of
MAX 2-SAT. Let [€|=s and t = [logz(ms +1)]. We construct three sets A, B, and
C of d-dimensional vectors, with d = m + 1+ 3¢, specified as follows.

The set A will consist of 2m - 2> < 2m(2ms + 1)° vectors, subdivided into subsets
A; and A, 1<i<m, where

A=Y (O AN, -1,
and

A= (0) T =00 N, -1
The set B will consist of 2m - 2" < 2m(2ms + 1) vectors, subdivided into subsets B;
and B, 1<i=<m, where.

= (0) ' (@)0)" T (—-2)(0y*{1, -1},
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and
By =(0) ' (-4)(0)" " (-2)(0)*{1, ~1}"

Finally, the set C consists of one representative for each c € ¢, constructed as

follows. Denoting x[1]=x; and x[-1]=%, the two-element ‘subset ¢=

{xie:], xile]]} €€, with 1< i <j<m ande, ¢; €{1, —1} corresponds to the vector in C

P=(0) " (4&:)(0) " (4€;X0)™ ' (1)(0)*.
The instance of HEMISPHERE corresponding to m, N, and € is then given by
d=m+1+3, K=AUBUC, and M=2m-2"+m-2'+N.

Clearly, given m, N, and 4, this instance can be constructed in time polynomial in
the parameters m and s (and, clearly, it is an instance of HEMISPHERE). Thus, all
that remains is to show that the desired X' for the MAX 2-SAT problem exists if
and only if the desired P* for the HEMISPHERE problem also exists.

Assume first that the desired X' exists; that is, there is an X'c
(X1, F1, X2, £2, .+ + s Xms o} such that {X'n{x, #)l=1,1<i<m, and {ce6: X'
¢ #0)| = N. The desired P*=(p¥, p, ..., pd) is then given by
1 if 1<jsm and x;€ X',

-1 ifl<j<mand 5eX’,
1.5 ifj=m+1,
0 ifm+2<j<d
The reader may readily verify that
{PeA: P*- P=0)|=|A|=2m - 2%,
KPeB:P*- P=0)|=|Bl/2=m 2,
and
HPeC: P*- P=0}=N.
Hence, {[PeK=AUBUC: P*- P=0}\=2m - 2*+m -2'+N=M, and so P*
has the desired properties.

Now suppose P* = (p¥, p, ..., p}) is a vector having the desired properties for
d, K, and M. Then it must also obey the following claims, which will lead us to the
desired X". For convenience, let A* = {Pe A: P*- P=0} and let B* and C* be

dnalogously defined.
Claim 1. |A*|>2m - 2% - 2%

By assumption, M <|A'|+|B*{+|C"|, whence |A*|=M-|B*|-|C"|. But.
|B*|<|B|=2m-2' and |C*|<|C|=s, whence |A™|=(2m - 2> 4+m-2'+N)-
o2 —s>2m -2 ~m -2 —s Since s<ms+1=<2' and m<ms=<2'—1, the
claim follows. O

Claim 2. pk,,>0.

First suppose P+ <0, and consider the bijection (i.e., the pairing) f: 4> A

defined by f(pi1, P2. - - » D) =40 G2 - - qa), where
....AIS 1sjsmorm+2<j<d,
a= 1 j=m+1.

¥ From the definition of f we have P+f(P)=(0)"(2)(0)" for all P€ A. Thus, by our
assumption that pm+1<0, we have P*- (P+f(P)<0 for all PeA, and hence
. P*. P=>0 implies P* - f(P)<0. This means
{PeA: P*-P=0)|<|{PeA: P*- P<O}],
a contradiction to Claim 1. Thus we must have py+1=>0. Suppose p¥.1=0. By the
requirements of the HEMISPHERE problem, P* must have at least one non-zero
component, say p. Let
A'={PeA:p pE<O}
By the definition of A, we must have |A'l=2%>2-2%. Consider the bijection
g:A'> A’ defined by g((p1, P2, - - -, Pa)) =41, q2: - - - qa), where
—p; 1sj<d and j#{k, m+1},
N‘“ wu
1 j=m+1.
From the definition we have P* - (P+g(P))=2px - pi+2p¥i1=2p: - pE <0, since
we are assuming, p¥+1=0. Thus, at least half of the vectors in A’ have negative dot
< products with P*, and hence
T |{Pea: P*-P=0}<|Al-|Al/2<2m - 2 -2

in violation of Claim 1, Thus we must have p}.1>0, as claimed. O

“For each i, 1<i<m, consider the bijection k:B;uB;>B;UB; defined by
(P1 P25 . - ., pa))={a1.92, . - - , 44), Where
,uﬁls 1sjsmorm+2<j<d,
Di j=m+1.
finition, we must have P+ h(P)= (0)"(~4)0)* for all Pe B; u B;. Thus
mplies that P*- (P+H(P))<0 for all PeB; uB;, and so [{[PeBiu
0} < |B; U B;|/2 = 2", proving the claim. O

ience, let T denote the set of integers {m +2+2t, m+3+2¢t,...,m+
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Claim 4. p%,, > *
1 .qu_v. J
Define the set

A"={PeA:forallieT,p; - pF<0} .

M.M notice that |A"=2m - 2%, Consider the bijection k:A"->A" defined by
P1, P2 - .-, pa))=(q1, q2, . . . , qa), Where

Pi j=m+lorjeT,

P lsjsmorm+2<sjsm+1+21

It is not Qm=mﬂ=—~ to see tha =LPm+1™ m. TI|P If
t for all wm A" ﬁ ‘ AW.TNAANVVV 2 2% i
v 5 m M- L
Pm ~AM-.M.~ _ﬁ.. —u "—.—0_.- we would have _ _

q;=

{Pea”. p*. p<o} vﬂu 2m - 2%/2,
whence, |A*|<|A|~]|A"/2|=2m - 2% —2m - 2. This and Claim 3 would imply
A" +B*+|Ct<@m - 2% —m - 2%)+m - 2 +5
=M-m-2"+s-N
<sM-m-22+2'<M,

a contradiction. [J

Claim 5. For each i, 1 <i<m, |p¥|=pt../4.

By Claim 2 and the definition: B i
i s of B;uB;
By Claim 2. U B; and of index set T, we have for all

*
P .VM&PJIN@H?».T ) _3.*_.
jeT

wﬂm&—w 4, cwo have p¥.,=Y,.r |p}|, whence P* - P<4|p¥|-p¥...
|p¥|<p¥.., we would have P* - P<0 for all P € B; u B, whence

KPeB,LB;: P*- P=0})|=0
and so by Claim 3
|A*1+1B*+|C*<|A*|+(m - 12" +|C*|
<2m-2%4m-2'-2'+s<M-2'+s<M,
yet another contradiction. [

Claim 6. |C*|= N,

W +
. No. must rm.<o |C*|=M —|A*|-|B*|. Using the inequalities |A*}<|A|and |B*| < ,
(by Claim 3) we have |C*|=(2m - 2% +m - 2+ N)=2m - 2¥ ~m2'=N. O | -
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Claim 7. The set X' =* {x[1]: L<i<mand p} >0}u{x[-1]: 1=i <mandp¥ <0}
is the desired subset of X.

The set X is well defined and obeys | X’ n{x;, %} =1, 1<i=<m,since by Claim 5,
?* #0, 1<i<m. Furthermore, we claim that if Pe C is such that P¥- P=0, then
the two element set ¢ € € corresponding to P has nonvoid intersection with X'. For
suppose that ¢ ={x[s:], xi[s]Hfor s s;€l, —1}and I=<i<j<m and let e; be such
that xi[e;] € X’, 1 <i<n. We then have that X' nc = # if and only if se; = sg; =—1.
Now, recalling that ¢={x[s], xls}eP= (0) ™~ (45:)(0) " (45,)(0)" T (1)(0)* we

have that X' ~ ¢ = & implies, by Claim 5,
P* . P=dsip¥+4s;pF+phi1=4selpi] +4se|pHl+pha
=—4(pH+|pH)+pha<—2pmr1 +Pm1<0,

whence we conclude that P* - P=0 implies X'~ C #. Thus, by Claim 6, the set
X' satisfies all the conditions of the solution to the MAX 2-SAT problem for a

given X, ¢,and N. O

From the above arguments we conclude that the desired X * exists if and only if
the desired P* exists. Thus we have successfully reduced MAXIMUM 2-SATIS-
FIABILITY to HEMISPHERE, and completed the proof that the latter is NP-
complete. ) :

Our proof also shows that the corresponding problem in which we require that
P*. P strictly exceed 0 is NP-complete, as the reader may readily verify. In
addition, we note that the set K we constructed had the following property: for all
PeK, |P|>0 and {a|P|: a€R and a >0}~ K ={P}. Thus each point of X cor-
responded to a unique ray from the origin of R and hence to a unique point on § i
Therefore the geometric versions of our problems are also at least as hard as an
NP-complete problem. One final note on our construction is the observation that
the set K is contained in {-4,-2,-1,0,1, 4} and hence the complexity of
HEMISPHERE does not depend on having arbitrarily complicated coordinates for
the members of K.

3. Algorithms for finding densest hemispheres

In this section we shall present algorithms for the CLOSED and OPEN
HEMISPHERE problems which run in time O(n?) when the dimension d is fixed.
In the next section we present an O(n log n) algorithm for the d =2 case, which
enables us to speed up the algorithm for d=2 to O(n'logn).

The simpler of our two algorithms is the one for the CLOSED HEMISPHERE
problem, and we shall consider it first. To provide some concrete intuition, suppose
that d =3 and let K ={Py, P, ..., P.} be the given set of vectors applied to the
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origin; also let H(P;) be the plane through the origin orthogonal to vector P.. The
set of planes {H(P;): 1<i=<n} partitions the space into unbounded cones with
vertex in the origin. Clearly, if two points x, and x, belong to the same cone, then
x - PiZz0&x;- P,=0, that is, each cone is an equivalence class of points x
characterized by a constant value of the -function A'(x)=|{PeK:x-P=0}.
Suppose that A'(x) is maximized in some cone &. Then it must be maximized on
the face of this cone. To find this maximum value it is sufficient that we explore the
faces of &, which are contained in planes of the set {H(P,): 1<i=<n}. Thus there
are planes in this set such that if we project the set K on any of them and solve the
ensuing 2-dimensional CLOSED HEMISPHERE problem, we obtain the solution
to our original problem. Unfortunately, this subset is not known a priori, so that all
the members of {H(P,): 1=<i=<n} must be tried. This informally shows that the
given 3-dimensional problem can be reduced to a collection of (at most) n
2-dimensional problems of the same type. )

We shall now give a more technical description of the algorithm which—as the
preceding informal discussion illustrates—is defined recursively. It is also con-
venient to distinguish the points in K from their coordinates and restate the
problem in a slightly generalized form.

Closed hemisphere (CH)

Given integers d and D, with 1<D<d, a finite set V<Q such that T =
@mha“ yv=0 for all veV} is a D-dimensional subspace of R% and a set
K={P,P,...,P}withamap c:K~»TnQ" Find an x e T, with |x|>0, which
maximizes

A@x)=[{PeK:x c(P)=0}.

We say that [d, D; V; K, c] is the parameter set of the CH problem.

The closed hemisphere problem, as stated in Section 1, corresponds to CH with
d=D, V=0, c(P)=Pforall Pe k.

The CH problem is easily solved in two special cases:

(I) Suppose c: K ~ T ~Q* is such that ¢(P)=0 (the origin of R®) for all P K.
Then choosing any x € T' will maximize A (x). The number of steps required to find
such an x depends only on d, so the overail effort required in this case will be O(nd)
even if we have to verify that ¢(P)=0 for all Pe K.

(II) Suppose D =1 and case (I) does not hold. Then T is a straight line, and we
can find a rational basis vector v such that T ={av: « € R} in time depending only
on d. Given v, we can restrict our attention to just two candidates for x, v and —v,.
and choose the one with largest value of A(x). Again the amount of work will be
O(nd), most of the time here spent evaluating A(x).

Now suppose that neither (I) nor (II) applies. We shall show how to reduce the
CH problem under consideration to a collection of n or fewer CH problems in
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D -1 dimensions. Let U ={c(P): Pec K}—{0} and for each ueU, let H(u)=
{ye T: y - u =0}. The hyperplanes H(u) partition T into convex regions. On the
interior of each region A(x)is constant, although it may experience a discontinuous
increase at region boundaries. Let A* be the largest value of A(x) for x € 7, and,
for an extremizing x, let U’ = {c(P): p € K, ¢(P)+# 0 and ¢ (P)=0}. Clearly, for some
ue U’ there exists a y € H(u) with |y| >0 such that A*= A(y); thus, for such a «,
the D-dimensional CH problem can be replaced by a (D —1)-dimensional CH
problem [d', D'; V'; K', ¢'], whose parameters are so defined

d'=d, D'=D-1, Vi=vu{u}, K'=K,

n‘%v"aﬁvl%w_wht

for all Pe K. Observe that T'={yeR%: y -v=0 for all ve V}=H(u), ¢'(P) is
merely the projection of ¢(P) on H(u), and, for ail x € H(u), we have x - ¢'(P)=
x - (x(P)—(c(P) - uflul*)u)=x - c(P). Since the proper choice of u is not known a
priori, we must try the described reduction for each ¢(P)e U. This reduces the given
CH problem to a collection of at most n CH problems in one less dimensions. We
thus obtain a recursive procedure for solving the CH problem in D = d dimensions.
The overall running time is at most O(dn®), as can be seen by standard recurrence
relation arguments.

With this background, we are now prepared to consider the more complex
OPEN HEMISPHERE problem. Here again we shall present a recursive al-
gorithm, in which a given D-dimensional problem is reduced to a collection of
several (D —1)-dimensional problems. In contrast to the CH case, however, the
reduced problems of an open hemisphere problem are not necessarily of the same
type as their parent problem. Therefore it is convenient to define the following
composite MIXED HEMISPHERE problem.

Mixed hemisphere (MH)

Given integers d and D with 1<D<d, a finite set V< Q such that T =
{y=R% y-v=0 for all ve V} is a D-dimensional subspace of aa, and a set
K ={P,, P,,...,P,} with maps c:K>TnQ? and s:K ~>{0,1}. Find an xeT
which maximizes

A(x)=KPeK:s(P)=0 and x - ¢(P)=0}
u{PeK:s(P)=1 and x - ¢(P)>0}|.

We say that [d, D; V; K, ¢, s] is the parameter set of the MH problem.
The open hemisphere problem, as stated in Section 2, corresponds to MH with
d=D,V=0,c(P)=P and s(P)=1forall Pe K.
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The crucial difference between the CLOSED and the MIXED HEMISPHERE
problems lies in the function s : K - {0, 1} which dichotomizes the set K, and in the
fact that the 0 vector is in the range of allowable solutions.

In parallel with the previous discussion of the CH problem, the MH problem is
easily solved in two special cases, both requiring computational work at most
O(nd): . .

@) ¢:K -» TnQ? is such that ¢(P)=0 for all Pe K. Then any x € T maximizes
A(x) (in particular x =0).

(ii) D=1 and (i) does not hold. Then T ={av: a€ R}, and we can restrict
ourselves to the three candidates —v, v, and 0, choosing the one with largest value
of A(x). _

We now discuss the reduction when neither (i) nor (ii) apply. Let U and H (), for
each u e U, be as previously defined, and let A* =max{A(x): xe T}.

Lemma 3.1. There exists a uc U and a y € H(u) such that either
(1) A*=AQ), or
2) A*=lim,; A(y +au) and s(P)=1 for some Pc K.

Proof. Suppose (1) does not hold. Then A* must be realized by some x on the
interior R of some closed region R. Since x¢ R — R, we have |x|>0. Suppose
s(P)=0for all Pe K. Then A(x)=|{PeK: x - c(P)=0}]. However, note that x € R
and u - x=0 imply « - =0 for all z € R, by the definition of R and the continuity
of the inner product. This means that for all points ye R, A(y)=A(x)=A*, a
contradiction of our assumption that (1) does not hold. Thus there must exist some
PeK with s(P)=1, as claimed.

We must now show that, if the extremizing x is in the interior R of some region R
in the partition of T produced by the hyperplanes H(u), then x is of the form
y +au, for some ue U, y € H(u), and a > 0. First of all, for any z € R, A(z)=A*.
Let F be a face of R; obviously F < H(u) for some u € U. There is a point x€e R
which can be expressed as (y + au), where y is a point of F (hence y € H(u)) and
is a convenient’ chosen real number. All that remains to be shown is that there is
at least one such u € U which yields @ >0. Let Ur={uec U:F < H(u)}. For any
x€R and u € Ug, u - x #0. Suppose that for all u € Ug, x - u <0. Let R’ be aregion
of T that shares F as a boundary with R, and let x’ be a point on the interior of R’.
For all PeK such that ¢(P)¢ U, c(P)-x<0 if and only if ¢(P)-x'>0 and
similarly ¢(P) - x =0 if and only if ¢ (P) - x' =0. However, by supposition, for all P
with c(P)e Ur, c¢(P)- x'>0 and c(P) - x <O0. Since Ur #9, this means that A(x')>
A(x), a contradiction. Thus, there exists a u € Ur such that u - x>0, that is,
x u=(y+au) u=y- -u+aluff =aluf*>0, and hence a>0. O

This lemma suggests a method for reducing a given D-dimensional MH problem.
Since we do not know the vector u, nor whether (1) or (2) holds, for each u e U we
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generate two (D — 1)-dimensional Z.m subproblems, corresponding to (1) and (2)
respectively. In this manner, a given D-dimensional MH problem is replaced by at
most 2n (D — 1)-dimensional MH problems, each of which produces a candidate
for the solution of the original problem.

Specifically, in the hypothesis that (1) holds for u, the search for y corresponds to
the following MH problem with parameters [d,D; VK, c,s'):

d'=d, D'=D=1, Vi=Vulu)l, - K'=K,

c(P)-u
fuf?

s'(P)=s(P) forall PeK'.

c'(Py=c(P)~ u forall PeK’,

In the assumption that (2) holds, the conversion to an MH problem is a bit more
complicated. In the corresponding reduced MH problem [d’, D'; V'; K', ¢/, s'] we
set '

d'=d, D'=D-1, V=Vulu), K=K

n.%vun%vummvﬂkz forall PeK'.

The construction of the function s'(P), for all Pe K, is somewhat more delicate.
Suppose that in the original MH problem, P is such that c(P)- u <0. If s(P)=0,
then P contributes a unit to A(x) if and only if 0<c(P) - x=c(P)- (y+au)=
¢'(P)- y+ac(P)- u. Aslong as ¢'(P)- y >0 there will exist an @ >0 such that this
inequality holds. However, if ¢'(P)- y <0 we will have ¢(P)- x <0 and the in-
equality will fail. Thus we can only let P contribute a unitto A'(x), the maximum in
the reduced problem, if ¢'(P): y>0, and so we must set s'(P)=1. A similar
analysis for the other cases leads to the following set of rules for determining the
function s':

0 if s(P)=0 and c(P) - u=0,
orif s(P)=1 and ¢(P)- u>0,

1 if s(P)=0 and ¢(P) - u <0,
orif s(P)=1 and ¢(P)- u=<0.

s'(P)=

Let y,(u) and y,(u) be the solutions to the MH problems corresponding to u € U
for case (1) and for case (2), respectively. Then the candidates for x € T such that
A(x)= A* corresponding to y,(u) and y,(u) are given as follows.

The case (1) candidate is simply x;(u)= y,(u). In case (2) the situation is some-
what more complicated. Here the candidate will be of the form y,(u)+au, and we
must choose a carefully, so as to ensure that y2(u)- c(P)>0 implies (y2(u)+
au)-c(P)>0 for all PeK. But this is fairly straightforward. Let V=
{PeK:yy(u)- ¢(P)>0 and u-c(P)<0}. The desired implication will hold if
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y2(u) - c(P)>—au - ¢(P) for all PeV, so it will suffice to choose a = ¢/8, where
e =min{y,(¥) - c(P): Pe V}and & =1+ max{lu - ¢c(P)|: Pe V}.

A solution to the original MH problem can thus, by Lemma 3.1, be found among
the set {xi(u): ue Utu{xo(u): ue U and s(P)=1 for some Pe K}, and hence
involves solving at most 2n MH problems of one less dimension. We thus obtain a
straightforward recursive procedure, whose running time can easily be determined
to be at most

T(n, d)=02* 'dn)

where T'(n, d) is the time required to solve an MH problem with |K|=n and of
dimension D = d. For fixed d > 1, this is simply O(n?).

‘We might point out that there is a wide range of possibilities for improvements by
constant factors. In particular, there is much duplication of subproblems as it stands
now, since all permutations of a set of d elements of K will yield distinct sub-
problems even though many of these subproblems are identical. Furthermore, one
could save some effort by combining two points of K when their projections
coincide or lie on the same ray from the origin of R“. We leave the details of this
fine tuning to those interested in actually implementing the algorithm.

We content ourselves with the presentation of a major improvement, which
reduces the time to O(2% " log 1), as explained in the next section.

4. An improved densest hemisphere algorithm for two dimensions

In the preceding algorithms, we have for simplicity assumed that the deepest
possible level of recursion occurs for dimension D = 1. This also establishes the
base of induction O{nd) for the estimate of the running time. We now describe an
O(n log n)+ O(dn) algorithm for the MIXED HEMISPHERE problem with D =2
which could be used at the deepest level of recursion, thereby speeding up the
general algorithm for arbitrary dimension by a factor of at least n/log n. A similar
improvement for the CLOSED HEMISPHERE problem can be obtained in much
the same way.

Let[2,d; V; K, c, s] be an MH problem. Then T is a plane and {c(P): Pe K}isa
set of points in this plane: with a total work O(nd) we can express these points in
terms of two coordinates in 7. The solution to our problem is either 0 or a point
y € T with |y|>0. As before, set U ={c(P): Pe K and c(P)# 0}, and for each u e U
let H(u)={yeT:y - u=0} We observe that in this case each H(u) is a straight
line through the origin in the plane T. Let us think of each of these lines as two
directed rays leaving the origin in opposite directions. Pick an orientation for the
plane T, and label the two rays making up H(u) as R (u) and R*(u), where the
three rays R™(u), «, and R*(u) will be encountered in just that order if we start at
R (u) and proceed in a counterclockwise direction (see Fig. 1). The rays in
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R~ (W)

R*(uw)
Fig. 1. The orientation of R (%) and R*(u)in T.

H ={R~(u), R*(u): ue U} divide the plane T into wedge shaped regions. To find
the boundaries of these regions, we need only sort and relabel the elements of H as
Fos Tty - - - » F25—1, Where s =|U], so that if we start at 7o and proceed in a ooc:ﬁ?
clockwise direction, we would meet each r; in turn until we get back to ro (see Fig.
2). One way to accomplish this sorting would be to compute polar angles 8(r),
0= 0(r)<2m, for each r € H relative to some chosen rq with 8(ro) set to 0, and then
sort the values of 8(r). This has the apparent drawback that some of the 8(r)’s may
be irrational numbers. Fortunately, it is possible to determine if #(r)<8(@’) in
constant time, without actually computing the values of 6. Let ro= R*(uo) for some
uoe U, and suppose that r, r’ are distinct elements of H. Then the relationship
between 6(r) and 8(r') is specified as follows.

Choose u, u'e U such that re{R (u), R*(u)} and re{R ('), R*(u")}, and let
the coordinates of & and u’ in T be (a, b) and (', b"), respectively. Select points p
and p’ in r and #’, respectively, as follows:

_{(b,—a) if r=R(u),
uurlfv if r=R*(u),
,_ [, —a") if r=R (u),
m| rnw. 55135.

'3

Fig. 2. The regions of T (for |U|=4).
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advance. However, for fixed d =2, we have described algorithms for aonwmwmism a
densest hemisphere which require a number of operations at most O?.. log n).
It is worth pointing out that the described techniques are &_.mm% ».vvromc_m to an
interesting generalization of the problem, in which each Pe K is weighted through
a function w:k - Q. For instance, in the WEIGHTED MIXED HEMISPHERE
problem, we must seek an x € T which maximizes
Ax)= Y w(P)

PeW(x)

Since 7 and ¢’ are distinct, we must have either 0(r)>8(r'yor (r)<6(r).

Ifp-uo=0andp’- uy<0, then a(ry< a(r).

Ifp-uo<Qand p'- ug=0, then 6(r)> a(r').

Ifp-uo=p'-up=0 then, if r = r, we have 8(r)< 6(r"), otherwise 8(r)> e(r").

If none of the above hold, then 8(r)>a(r') unless :

) r=R (u)andp'- u>0,or

(ii) r=R*(u)and p'- u<o0.

Thus, using standard sorting algorithms we can determine our desired ordering
Fo, 1, ..., ru-y of H in time O(n log n). Let W, be the region bounded by r; and
Tiv1gmod 2s). As before, we note that A(x) will be constant on each of the convex
regions W, with possible discontinuities on the boundaries. There are thus essen-
tially 45 + 1 different candidates for an x which maximizes A(x), one for each ray r,
one for each region W, and one for 0. To be specific, choose a non-zero point p; in
each ray r, 0<<i<2s5-—1. Then 4 =Pi+Div1moazsy Will be a point in W, 0<is<
25— 1. The value of A(x) must be maximized by some point in {p;, ¢;: 0<i <25~
1ju{o}=cC

We can evaluate A (0) and A(po) in time O(nd). The remainder of the values can
be computed in time O(nd) overall, as follows. Suppose A(p;) has been computed
for some /, 0<i=<2s—1. Then

where

W(x)={PeK:s(P)=0and x - c(P)=0}
u{PeK:s(P)=1and x - c(P)>0}.

It is easily recognized that the algorithms described in Sections 3 and 4 can be
modified to solve this problem, since here again the set U ={c(P): P m.W }-{0}
induces a partition of T into plane-bounded convex regions, in each of which the
function A(x) assumes a constant value. )

We raise an open question whether our techniques can be modified to solve the
problem of finding a P* whose induced hemispheres partition the set X most
equally.

A@)=A(p)+{PeK: c(P)#0,5(P)=1, and R™(c(P))=r}], 1 ;
~{PeK:c(P)#0,s(P)=0, and R*(c(P)=r}| B References

1 \»S..v has been computed for some L0si<2s- 1, then {1] S. Reiss and D. Dobkin, The complexity of linear programming, Technical Report 69, Department

of Computer Science, Yale University, New Haven, CT (July 1976).

A(pis1)=Alg)+{PeK: c(P)#0,5(P)=0,and R™(c(P))= ...},
—HPeK:c(P)#0, s(P)=1, and R*(c(P))= r,,.}].

Since each Pe K is encountered at most twice in this procedure, the overall time is

{2] A.V Aho, J.E. Hopcroft and J.D. Ullman, Design and Analysis of Computer Algorithms (Addison-
Wesley, Reading, MA, 1974) Chapter 10.

[3] R.M. Karp, On the complexity of combinatorial problems, Networks § (1975), 45-68.

[4] M.R. Garey, D.S. Johnson and L.J. Stockmeyer, Some simplified NP-complete graph problems,
Theoret. Comput. Sci. 1 (1976) 237-276.

O(nd). Finding that x € C with maximum A(x) now requires only O(r) time. The
total time needed to solve the MH problem with D =2 is thus dominated by the ;
time for sorting H, and is O(~ log n)+0(nd) as claimed.
Using this procedure as the final step in the recursion of Section 3 thus gives an
algorithm for the OPEN HEMISPHERE problem on n points and d dimensions
with running time at most O(d2% 2n4"! log n). The analogous algorithm for the
CLOSED HEMISPHERE problem has running time bounded by O(dn®™! log n).

5. Closing remarks k.

In this paper we have shown that both the closed and open HEMISPHERE
problems are NP-complete when the number of dimensions d is not fixed in




