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Introduction

gEven optimization problems whose objective functi

Strong Lower Bounds on the Approximability
of some NPO PB-Complete Maximization

Problems

Viggo Kann*

Department of Numerical Analysis and Computing Science,
Royal Institute of Technology, S-100 44 Stockholin, Sweden

Abstract. The approximability of several NP maximization problems
is investigated and strong lower bounds for the studied problems are
proved. For some of the problems the bounds are the best that can be
achieved, unless P = NP. .

For example we investigate the approximability of MAaX PB 0 — 1 Pro-
GRAMMING, the problem of finding a binary vector z that satisfies a set
of linear relations such that the objective valuc Mun.a. is maximized,
where ¢; are binary numbers. We show that, unless P = NP, Max PB
0—1 PROGRAMMING is not approximable within the factor n!™¢ for any
€ > 0, where n is the number of inequalities, and is not approximable
within m!/2~¢ for any € > 0, where m is the number of variables.
Similar hardness results are shown for other problems on binary linear
systems, some problems on the satisfiability of boolean formulas and the
longest induced circuit problem.

oximation of NP-complete optimization problems is a very interesting and
e area of research. Since all NP-complete problems are reducible to each
er one could suspect that they should have similar approximation properties,
Ahis is not at all the casec.
= the range of approximability of N P-complete problemms stretches from prob-

B that arc approximable within every constant in polynomial time, ¢.g. the
ppsack problem [§], Lo problems that arc not approximable within n¢ for some
2.0, where n is the size of the input instance, unless P = NP. A problem that is
D to be this hard to approximate is the minimum independent dominating
oblern (minimum maximal independence number) {7].

fmail: viggo@nada.kth.se, supported by grants from TFR.

ot is bounded by a poly-
b in the size of the input may be hard to approximate. Krentel defined a
8 of optimizalion probhlems called OrrPllogn], that consists of all NI> op-
ion problems that arc polynon ally bounded [12]. This class, which we
faall NPO PB, can be divided into two classes, Max P13 and MIN PB, con-
- g maximization and minimization problems respectively [l :. Berman and
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Schnitger started to investigate the approximability of Max PB problems and y € sol(z), |y| < p(lx]). Moreover, it is decidable in polynomial time whether,
proved that there are MAX PB-complete problems, i.e. Max PB problems to g for any z and for any y such that |y < p(lz|), y € sol(z).

which every Max PB problem can be reduced using an approximation preserv-¥§ P32, Given an instance z and a feasible solution y of z, m(x,y) denotes @m
ingreduction [4]. Several problems are now known to be Max PB-complete [9)7 7 positive integer measure of y (often also mm:ma the value of S. Hwo ?nofo:
Later, some minimization problems were shown to be MiN PB-complete [10], m is computable in polynomial time and is also called the objective function.
and recently Crescenzi, Kann, Silvestri and Trevisan proved that any MiN PB- ¢ 4. goal € {max, min}.

complete problem is NPO PB-complete and that any Max PB-complete prob-
lem is NPO PB-complete [6]. The classes of MiN PB-complete, MAX PB-com-
plete and NPO PB-complete problems thus coincide. :

For every NPO PB-complete problem there is a constant o > 0 such that
the problem is not approximable within n®, where n is the size of the input*
instance, unless P = NP. For some problems, for example minimum independent
dominating set, this constant can be chosen arbitrarily close to 1, which means
that these problems are incredible hard to approximate.

The problems known to be this hard to approximate are mainly minimiza-
tion problems. Only a few maximization problems are known to have such an
extreme nonapproximability bound, and they are all problems on graphs where
one looks for a maximum induced connected subgraph [13]. The problem Min
DiSTINGUISHED ONES, where one look for a satisfying boolean variable assign-
ment containing as few true variables as possible from some distinguished set
of variables, is NPO PB-complete and not approximable within n!=¢ where n
is the number of distinguished variables [10]. The corresponding maximization
problem is also NPO PB-complete, but no strong lower bound on the approx-
imability is known. One could ask whether minimization problems in some sense -
can be harder to approximate than maximization problems. :

In this paper we will, however, show that this is not true. We will show that .
several maximization problems, for example MAX DISTINGUISHED ONES, have
nonapproximability bounds similar to n!~¢. We will do this by constructing ap-
proximation preserving reductions from either MIN INDEPENDENT DOMINATING
SET or LONGEST INDWCED PATH and use the fact that these two problems have
strong lower bounds on the approximability. We conclude that a convenient way
to establish both NPO PB-completess results and strong lower bounds is to re-
duce from MIN INDEPENDENT DOMINATING SET or LONGEST INDUCED PATH.
Note that our results do not make use of the quite complicated machinery of
interactive proofs and the PCP model that recently have been used for showing
approximation hardness of several optimization problems, see for example [3].

In the appendix all problems treated in the text are defined.

The class NPO is the set of all NP optimization problems. The goal of an
NPO problem with respect to an instance z is to find an optimum solution, i.e.
feasible solution y such that m(z,y) = goal{m(z,y’) : ¥’ € sol(z)}. In the
ollowing opt will denote the function mapping an instance x to the measure of
an optimum solution. . .

An NPO problem is said to be polynomially bounded if a polynomial ¢ exists
uch that, for any instance & and for any solution y of z, m(z,y) < ¢(|z]).
The class NPO PB is the set of all polynomially bounded NPO problems.
NPO PB = Max PBUMIN PB where Max PB is the set of all maximization
,”E.o_u_oam in NPO PB and MIN PB is the set of all minimization problems in
NPO PB.

Given an instance £ of an NPO problem and a feasible solution y of z, we
define the performance ratio of y with respect to z as R(z,y) = m(z,y)/opt(z)
- for minimization problems and opt(z)/m(z,y) for maximization problems.

Definition2. Let A be an NPO problem and let T be an algorithm that, for
any instance z of A, returns a feasible solution T'(z). Given an 59?3& function
r: N — (1, 00), we say that T is an r(n)-approzimate algorithm for A if, for any
instance z, the performance ratio of the feasible solution T'(z) with respect to «
verifies the inequality R(z, T(z)) < r(|z]).

Several polynomial time approximation preserving reductions have been de-
fined in the literature. The PTas-reduction [6], which preserves the performance
ratio very well, is suitable for defining complete problems in approximation
classes. A problem A € NPQ is NPO-complete if, for any B € NPO, there is a
Ptas-reduction from B to A. Similarly, a problem A € NPO PB 1s NPO PB-
complete if, for any B € NPO PB, there is a PTAS-reduction from B to A. In the
same way MAX PB-complete and MIN PB-complete problems can be defined.

Proposition3 [G]. Any MIN PB-complete problem is NPO PB-complete and
any Max PB-complcte problem is NPO PB-complele.

The approximability for problems that are not approximable within a con-
stant is usually described as a function of the size of the problem instance, or
more precisely, as a function of some size parameter, like the E:ﬁvw_. of nodes
or edges in an input graph. The PTas-reduction does not preserve size param-
eters, so this reduction cannot be used when investigating the approximability
{or nonapproximability) of problems that are very hard to approximate, like
NPO PB-complete problems. For such problems it is not relevant whether the
reduction increases the performance ratio by a constant factor. We will use the

1.1 Preliminaries

Definition1. An NP optimization problem A is a fourtuple (I, sol, m, goal)
such that

1. I is the set of the instances of A and it is recognizable in polynomial time.
2. Given an instance z of I, sol(z) denotes the set of feasible solutions of z.
These solutions are short, that is, a polynomial p exists such that, for any
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Proof. Halldérsson has proved that, unless P = NP, Min INDEPENDENT D
INATING SET is not approximable within n'=¢ for Eh% € > 0, where n is the o
of the number of nodes and edges in the graph [7]. We will —wmc this fact to WE:
that Z.ﬁ.n PB 0 — 1 PROGRAMMING is hard to approximaite. oo
We will construct a reduction from MIN INDEPENDENT DOMINATING SET
”w §¢x PBO-1 mvwoow>§§.~zo :m.m:w the following idea. The objective func-
tion, _.o..nrm number of nodes in the independent dominating set is encoded b
introducing an order of the nodes in the solution. The order is encoded b !
macw_..& z::.:omn of 0 — 1 variables in the programming problem, see Fi H%M
solution of size 1 shall correspond to the 0 — 1 programming ov._.mg?o <M_.: .
and a solution of size p shall correspond to an objective value of |n/p| o

S-reduction, defined in [10], which is a reduction that guarantees that the perfor-
mance ratio is preserved within some constant factor, but has full control over

the increase of the size if the problem instance.

Definition4. ([10]) Let A and B be two NPO problems. A is said to be - :
reducible to B with size amplification a if there exist three functions f, g, a, and

a positive constant ¢ such that:

1. for any z € I4, f(z,7) € Ip is computable in time polynomial in |z},
2. for any z € I, for any y € solp(f(z)), g(z,y) € sols(x) is computable in

time polynomial in |z| and |y|,
3. a: Rt — R* is monotonously increasing, positive and computable,

4. for any z € I4, for any y € solp(f(z)), Ra(z,9(=,v)) < Re(f(2),y),

5. for any z € I4, |f(z)] < a(|z]). 000000 .
000000 only zeros in upper part
Proposition5 [10]. Given two NPO problems F and G, if there is an §- 010000
reduction from F to G with size amplification a(n) and G is approzimable withia size of 100000 .
some monolonously increasing positive function u(n) of the size of the input in- solution |1 0 0 0 0 1 o [on¢ 1 in cach row
stance, then F is approzimable within c-u(a(n)). Conversely, f F is not approz- 001000 .
solution: e e ¢ 0 @ o !

imable within ¢ - u(a(n)), then G is not approzimable within u(n).

For constant and polylogarithmic approximable problems the S-reduction
preserves approximability within a constant for any polynomial size amplifica-
tion, since clogh(n?) = pFcloghn = OA_om\n n). For n® approximable problems it
only does this for size amplification O(n), since ¢ - (0O(n))¢ = O(n°).

WW.QH. AH_.M idea of the reduction from MIN INDEPENDENT DOMINATING SET to MAXx
. ] - ROGRAMMING. The variable 7 = | if and o i i ] i

4 0 ! = aly if v; is the jth nod

. solution. There is at most one 1 in each column and in each Ho.é ’ ¢n the

mn_sw: an instance of MIN INDEPENDENT DOMINATING SET, i.e. a graph with
odes V = {v1,...,vm} and edges E, construct m? variables i‘_ 1<4,j<m
1 g ) —_ )

2 Lower Bounds
. au.iam.zmm Yps 1 < p <'n, and the following inequalities:

In this section we will prove lover bounds on the approximability of the follow ;
NPO PB-complefe problems: Max PB 0 — 1 PROGRAMMING [4], Max N Vi € [1..m] o<1 (st most one 1 i cach column) (1)
! : = each column

BER OF SATISFIABLE FORMULAS [14], MAX DISTINGUISHED ONES [14], 1

oF

<
[

ONEs [14], Max CBIN SaTR1R2 (maximum constrained binary satisfiable lix Vi m
ear subsystem) {1], MAX BIN IRRELEVANT SAT® (maximum irrelevant binary Jj€flm] m <l (at most onc 1 in each row) (2)
variables in linear system) [2], and LONGEST INDUCED CIRCUIT. v ) m ,r m

In the references above the problems are defined and are also shown to be } Vie[l.m—1] Mu 2l — 52 >0, (only scros in upper pag) &
Max PB-complete. The problems are therefore NPQO PB-complete by Propo- .n:_. u.u.ﬁz 3)
sition 3. Formal definitions of the problems can be found in the appendix. : Y(vi,v5) € £ 3 af + M“ z¥ <1, (independence)

We first show that Max PB 0 — 1 PROGRAMMING is hard to approximaleg k=1 =1 7T (4)
This result was obtained as a side-effect in the proof of Theorem 5 in [6]- viell. 5k & o
will then modify this proof to prove hardness results for the other problems €llm] »WUH B +&._?:MchMM 2 1, (domination) (5)

. . g k€l..m]
Theorem 6. Max PB 0 — 1 PROGRAMMING is not approzimable within 7 ) .
for any € > 0, where n is the number of inequalities, and is not approzim Vie[l.n] y < Mm:nw a\mz\gv (objective variables) (6)
within m}2~¢ for any ¢ > 0, where m is the number of variables. : y > nfi)
ekt (7)
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‘ n
: ctive function is defined as 3oy Yp- . . .
HraOo EMH__,\uoi verify that an independent dominating set o*.. size M.s_hﬁwxww .
no—.naMMo:m to a solution of the 0—1 programming problem with objectr !

and vice versa. .. .
_.:\M.M:%Omo that the minimum independent dominating set has size

the performance ratio s/M for the independent aoa_cmﬂww Hwomnn %.Mw”%mw m

nownMvmvos@ to the performance ratio _.\:\NS‘_ n\rr:\ J_m.ﬂ\omw M1 e mool
ing problem, where m/mn 18 \he re e oo

- %MMMW“.: %Mommmm n large enough the relative error can be demﬂ M_.MWMWE M

OMMM _g:w for proving the theorem it is enough to choose n = ™

) 1

u@&;nﬁ—ﬁv—— t —VMO erves HTQ N.T@HOu::—N.Tw—:.% w1 ﬂ .E‘N. MW.O».O— OW M. §
ﬁwww. Ser thi
H——m —.mm—:n_‘.—D: is nr —u:m_u an 'u4 Hwn—r—nwwn—w —wr mrmmwﬂ——n.—uw.w—nn—ﬁﬂu; _ _m —V :r

. . oy s n..
pect to the number of inequalities and amplification O(m ) with respe

res

the number of variables. The ¢

with the fact that MIN IND

within nt—¢ for any € > 0, w

in the graph [7].

here n is the sum of the number of nodes and e

ER OF SATISFIABLE FORMULAS is not approTimi

m ——
TheoremT. Ma» TN where n is the number of formulas, unless P =

within n!—¢ for any € >0,

construction of the proof of Theorem 6 in the follo

= ...,vm} and edges E, construct
th nodes V = {v1, m e e m 5

Proof. We modify the

way. Given a m—.wvv f = o
variables zJ, 1 < i,j £ m, m vana Yp, 1 <

formulas &, = yp A, 1 S p < m where ¢ is the ¢
formulas: o

vie[l.m],1<j<ksm o vk,
viel.m,1<j<k<m

vj € l.m—1] AS:& ) = (Vs =)

s.w<ﬁt

: .
<?:e...vmm.<>..~mf:ﬁ£ zf vz,

m \n

vi € [1.m] V zbv Vz3,

ESL o ivivs)EB

ke[l..m]
ym/i]

vp € [1..m] Yp = Vit Th

. o Coar in
It is clear that the boolean formulas (8-13) restrict the MH_Mﬁmwwn

the same way as the inequalities (1-7) wsm that »WUJ:::M: T

1 as the sum LY 3

Ap,l<p<mis the same » .

WEMMMZZWzo Therefore MAX NUMBER OF mkz.mm;mrm mmm%& 3

W%_,ox.—amim within nt—¢ for any € > 0, where n 1s the num :
a

unless P = NP.

M, then

heorem now follows from Proposition 5 togethery

EPENDENT DOMINATING SET is not approximna ._‘

onjunction of the followr
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Theorem 8. Max DISTINGUISHED ONES is not approzimable within n'=¢ for
any € > 0, where n is the number of distinguished variables, and Max ONEs
bis not approzimable within nl/3~¢ for any ¢ > 0, where n is the number of
Frariables, unless P = NP.

¥ Proof. First we prove the result for MAX DISTINGUISHED ONES. This time we
modify the construction of the proof of Theorem 7. We first construct a formula
ith clauses of unbounded size and then rewrite the clauses as 3-SAT clauses.

b Let yp,1 < p < m be the distinguished variables. Apart from the m? + m:
§ variables H.N and y, we will need m variables ¢,, 1 < p < m, and m variables zp,
1< p<m. We define these variables by

¥

m m
Vpe[l.m] t,= < ah, = = < &w. (14)
=1 L k=1

Ead

We then can reformulate the formulas (10), (12), and (13) as, respectively,
L1 Vi, (15)

Vj e :.;:I :
Vie[l.n]z v V oz, ; (16)
Jivsvj)ER
Vi e Tﬁ& Yi = :3\".._. :.‘Nv

We can now rewrite the equivalences in (14) and (17) as clauses using the
iting rule u = v — (v V 7) A (W V v). All clauses now consist of 2 literals
pt (14) and (16). We use the standard method of rewriting these as clauses
B3 literals. In this process we introduce O(m? + |E|) new variables.

& The conjunction of all these clauses is equivalent to the formula ¢ in the proof
d Theorem 7, and the number of true distinguished variables in a variable as-
gament will exactly correspond to the number of satisfied formulas in the other
. Since the number of distinguished variables is m, MAX DISTINGUISHED
JES is not approximable within m!~¢ for any € > 0, unless P = NP.

$In order to formulate the problem as a Max ONEs problem instance we use
dea in [14] and create copies of the distinguished variables to make each such
pable more valuable than all the nondistinguished variables together. O

orem 9. MaXx CBiN SATR1R2 is not approzimable within n'~¢ where n is
mber of optional relations, and not within n'/?=¢ where n is the number
riables, for any € > 0, and for any Ry, Ry € {=,>,>,#}, unless P = NP.
BX BIN IRRELEVANT SATR is not approzimable within n'/3~¢ for any £ > 0,
or any R € {=,>,>,#}, where n is the sum of the number of variables
e number of relations, unless P = NP,

oof is by S-reduction from the Max PB 0 — 1 PROGRAMMING instances
ructed in the proof of Theorem 6, and will appear in the full version.

em 10. LONGEST INDUCED CIRCUIT is not approzimable within ni=¢ for
> 0, where n is the number of nodes, unless P = NP.
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. Wﬁwo n
€ (o] HZUCOEU m 'ATH ﬁrm.ﬁ 18

~ T00 (cﬁ HWQ;OQ mHOE—. ﬁw,— pr Tw@g HLOZOHWM‘H, Vﬁ

to UQ HAM o H w Ocnu—mvwmﬂw % mh:w SO». Qﬁﬁnoxumuww—u—m ccwvr.—nu n _OH any € :

Q—cﬂuﬁ an -mwvc». Hm.vww to HLOZQEMH HZUCO@U H>H= - —\ bnm
m y Q A .mv. ((G Quhﬁﬁ

dges
de v; € V and add e
] i new node w; for each no : dges
. m_.mwr M%Awwnwnﬂ_m\ﬁ_usm,\m also add one special =oam<~ﬂa that is connecte
;) for 1 <@ <V : node v
(wi, vi) nodes, i.e. we have edges (wo, S.V ».;o_. 1<i<| b ding in node v¢) caa
! MME i 9._8& path in G (say, starting in node v, an
H ﬂb - - .
Mo Mﬁ.a:&mn to an induced circuit in l_rm new mw b Arrany

o d wo. The circuit will have length N.w+.c,o=m huced patl). ins
" e th %_.  hand, every induced circuit 1n 25. new Am %om bt e
" O:mMrMoém_ give :W an induced path in Q om_sam_so_wm_ :M gmo s loss than B

et ; ircui tain the specia :

ircui 1 d t thal does nol con 1 . : a
o >M :E:MW&-.M”M“.EM any node in the circuit we will get an induced p
any w node, so

in G containing 2 edges less than the circuit.

3 Summary and Discussion
i ili in the paper. Fo
The following table summarizes the nonapproximability results In pap
efo
each result we give the name oﬂ the ?.ocnma,n
b and the size parameter n, saying that the p
nb—¢ for any € > 0, unless P = NP.

oblem is not approximable withi
[
b |size parameter 1
1 linequalities
1/2}variables

rMuLAs| 1 |formulas ) ,
SFLABLE FO 1 |distinguished variables}.

1/2 variables

problem
MaX PB 0 — 1 PROGRAMMING

Z?x NUMBER OF SATI
MaX DISTINGUISHED ONES

1/3|variables .
A b R1iRa 1 |optional relations
Max OB SATH 1/2|variables .
IRRELEVANT SATR 1/3|variables-+relations
MaX BIN IRRE f3|vare
LONGEST INDUCED CiRCUIT

NDUCED CIRC
In all the treated maximization EOUWEm wx.nm.wﬁ WMMWNMM.WES D
it 1 ide whether there exists S
et ZHU-MOEMNWWNM@W@ able Lo in polynomnial p::w nam;:s some solutio
T s | 1vi ion in the input instance.
i de a trivial solution . | ol
have chosen to E,MM“E be to extend the space of mo_::o:m._,z;—r w%wwmno& .
¢ . . . . . S O
Mrsmmrom““@w\u_:o 1. This would make1t possible to cast Maﬂuno i
e | 5. I ample, we can I -
o problems. For exampie, W . .
e mmawmm_m“urmv FoRrMULAS by constructing n nOv.ﬂﬂ OM ".Wozmwm: »
i sa jecti 1 1se it 1s 1. ot}
A.ZEMM_WHNM:%& is satisfiable the ov,_moséﬁék_:o_,w ”—MM”MMMM_WM e e
1 as
1 i umber of satisfied formu . . here o
mwwﬂwnﬂma%mﬁwﬂ‘ problem. We thank Magnis Halldérsson for
the -hard 3- ;

raph by adding the nodes ;

the nonapproximability exponenty

..,we V. Kann. Polynomially bounded minimization

.M. W. Krentel. The complexity of optimization problems.

- A. Panconesi and D. Ranjan. Quantificrs and approximation.

NPO problems can be found in [5]
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Thus the exact formulation of the problems with respect to trivial solutions

is of importance. Since the problem should be to find a good solution and not

to find any solution, we think that our definition is the natural definition when

studying the approximability of these optimization problems.
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Some Typical Properties of Large
AND/OR Boolean Formulas

MIN INDEPENDENT DOMINATING SET

. = i ! C V such that for’
Instance: Graph G = (V, o G ie. a subsel V' C ,
1 ting set for G, re.,
Solution me_ :-M vaosw\mwwrmww: ”M M v M V' for which (u,v) € E, and such that no eﬁ.o
u - . . . m‘
nodes in V' are joined by an edge in e V]

etr mm.c—ﬁW%
n g nn NDQ w

Measure:

Max PB 0 — 1 PROGRAMMING

> Lehxstuhl Informatik I1, Universitit Dortmund, D-44221 Dortmund, Germany
rix A € Z™™, integer m-vector beZ™

lefmann@Is2.informatik.uni-dortmund.de
) and .
Institute of Computer Science, Academy of Sciences of Czech Republic, Prague,
Czech Republic, savicky@uivt.cas.cz

, nonnegative
-mat,

Instance: Integer m X n
binary n-vector ¢ € {0,1}".

>b.
Solution: A binary n-vector z € {0,1}" such ﬁwpa Az > b

ie., CiTi. :

Measure: The scalar product of cand z,1 .Mu”\ Abstract. In this paper typical properties of large random Boolean AND/OR
formulas are investigated. Such formulas with n variables are viewed as rooted
binary trees chosen from the uniform distribution of all rooted binary trees
with m leaves, where = is fixed and m tends to infinity. The leaves arce labeled
by literals and the inner nodes by the connectives AND/OR, both uniformly

" at random. In extending the investigation to infinite trees, we obtain a close

relation between the formula size complexity of an arbitrary Boolean function
; f and the probability of its occurrence under this distribution, i.e., the nega-

tive logarithm of this probability differs from the formula size complexity of
,, f only by a polynomial factor.
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bitrary Boolean function f, we establish a close relation between its for-
pha size complexity L(f), which is the minimal size of an AND/OR fornla

essing f, and the limit probability P(f) of the occurrence of f under the
bution described above, when m approaches infinity.
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