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Oz @p . d), where

d—1 d d -
_x for 1<k<d-2
e?__.;;,&u: k TlAL; A»iv» or I=k=d (.2

—:aiml_v:_\il: for k=d—1.

Equality occurs only for a special type of triangulated balls. Theorem 1.3 for
the special case when C is the dual of an unbounded simple polyhedra w
proved (using the “g-theorem™) by Billera and Lee [16].

In Sect. 12 we discuss an extension of the LBT to arbitrary polytopes and
polyhedral manifolds. For a polyhedral complex C, let f¥(C) denotes th:
number of 2-faces of € which are k-gons. The following theorem. whch
was conjectured in [35, p.67], extends the lower bound theorem to arbitrary
d-polytopes.

Theorem 1.4. If P is a d-polytope with n vertices then

P+ Y ;LSEw%TAaiV TR

k23 2

Thé analogous statement for arbitrary polyhedral (d — 1)-manifolds {even poly-
hedral (d — 1)-spheres,) is still open.

Theorem 1.4 follows from a recent theorem of Whiteley ([66], Sect.4) om
infinitesimal rigidity of certain embedded graphs associated with d-polytopes
(See Sect.4.) Previously, it was proved for rational d-polytopes (namely.
d-polytopes whose vertices have rational coordinates,) using some deep results
from algebraic geometry ([58, Ch. 4, 46, 59]). In the second part of this paper
([38]) we study the class of d-polytopes which satisfy (1.3) as an equality.

Griinbaum proved ([31, p.200],) that the graph of every d-polytope con-
tains a refinement of the complete graph on d+1 vertices. Barnette extended
this result ([11]) to arbitrary polyhedral {d — |)-manifolds. In Sect. 13 we prove

Theorem 1.5. The graph of a triangulated (d—1)-manifold C, d=4, contains ¢
refinement of the complete graph on d+12 vertices iff C is not a stacked (d-1

sphere.

’ In Sect. 14 we present a few open problems which were raised during ths
research. In particular, we briefly consider the LBT in the context of McMul-
len-Walkup “generalized lower bound conjecture™ and discuss related prob-
lems on f-vectors of triangulated manifolds.

The basic reference (and source of inspiration) for convex polytope theory
is Griinbaum’s book [31]. We try to follow the definitions and notations of
[31]. Other books on the subject are [48] and [21].

1 would like to thank Richard Stanley for many valuable discussions on f-
vectors of polytopes, and for introducing to me the recent exotic applications
of algebraic geometry. I am thankful to Margaret Bayer, Louis Billera, Anders
Bjérner, Robert Connelly, Henri Crapo, Micha Perles, and Walter Whiteley for
helpfu; discussions during the various stages of this work. I would like to
thank Lou Billera also for the warm hospitality during my visit at Cornell in
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summer 1984. Being familiar to some of Perles” unpublished work was. as
msual. a great advantage. This research was supported by the Weizmann
postdoctoral fellowship. My work at Cornell was supported in part by NSF
grant DMS 8403225.

) Preliminaries

We shall use the following definitions and notation on simplicial complexes:
Let C be a finite abstract simplicial complex on the vertex set V. Thus, C is a
wllection of subsets of V (called the faces of C)) and if TeC and S<T then
L=C. For SeC the dimension of S is dimS=|S|—1!. f,(C) denotes the number
~ k-dimensional faces (briefly k-faces) of C. The f-vector of C is the vector
“.AMHA_,.\OAQ,\._AQ,:.v. The k-th dimensional skeleton of C, skel,(C) is de-
fned by
’ skel (C)={SeC:dim§S <k}

11() denotes the set of vertices (0-faces) of C. (Thus, V(C)< V) I-faces of C are
wlled edges and skel,(C) is called the graph of C and is denoted by G(C).
For a face SeC the link of S in C, Ik(S, C), is defined by:

Ik(S, C)={T\S: TeC. T =S},

ik(S, C} is also called the quotient complex of C by S.) Let V be a set of
vertices and 4 be a family of subsets of V. 4 denotes the simplicial complex
spanned by A. (Le.,, A={S<V:S<T for some TeA}.) For a face SeC, the star

of § in C is defined by st(S, C)={Te C: T>S}. The antistar of S in C is defined
by ast(S, C)={TeC: T nS=0}.

Let C and D be simplicial complexes with V=V{(C), U=V(D) and VnU
=0. C* D, the join of C and D is defined by:

C*D={TeVoU: TnVeC, TnUeD}.

Note that st(S, C)=S*1k(S, C).

A simplicial complex C is pure if all its maximal faces have the same size.
Maximal faces of a pure simplicial complex are called facets. Two facets S, T
of a pure simplicial complex are adjacent if they intersect in a maximal proper

face of each. A nure simnlicial complex C ig stronely
C ongiy

€ach A pure simpaiciai comp:ex 15 St f for every two

1 3
& 11 100 CVCIY WO

fBicets S and T of C, there is a sequence of facets S=S,,5,,...,5,, =T, such that
$;and §,, | are adjacent, 0<i<m.

A d-pseudomanifold is a strongly connected d-dimensional simplicial com-
plex, such that every (d—1)-face is contained in exactly two facets. A d-
meudomanifold with boundary is a strongly connected d-dimensional simplicial
oomplex, such that every (d — 1)-face is contained in at most two facets. For a
d-pseudomanifold with boundary C, the boundary of C. #C. is the (d—1)-
dimensional pure simplicial complex whose facets are those (d — 1)-faces of
which are included in a unique facet of C.

Let C be a pure simplicial complex and let F be a facet of C. The stellar
sbdivision of C at  the facet F is defined by C[F]
=(C\F)U{Ru{u}: R=F,R+F}. Here, u is a new vertex.

mocto,
Mecie
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4. Theorems of Cauchy, Steinitz, Alexandrov, Gluck and Whiteley

We make an essential use on the following theorem of Gluck [28].
Theorem G. A triangulated 2-sphere is generically 2-rigid.

Let us give a quick survey of Gluck’s proof. Theorem G follows from the
fundamental theorems of Cauchy and Steinitz. Cauchy’s rigidity theorem ([22])
asserts that if P and Q are two convex 3-polytopes and ¢: V(P)—>V(Q) is a
ooB_u:,)._Eolm_ isomorphism, which induces an isometry between every face of
P and its image in Q, then P and Q are isometric. Steinitz’s theorem (see [61.
31, p. 235, 147]) asserts that every polyhedral 2-sphere is combinatorially isom-
orphic to the boundary complex of a 3-polytope.

Cauchy’s theorem implies that every simplicial 3-polytope P is rigid. Since
the set of embeddings of P which actually realize P as a convex polytope is an
open subset of the set of all embeddings, the graph of P is generically 3-rigid.
By Steinitz’s theorem every triangulated 2-sphere is isomorphic to the bound-
ary complex of a simplicial 3-polytope and is therefore generically 3-rigid.

A d-polytopal framework is an embedded graph obtained from the graph of
a d-polytope P by triangulating the 2-faces of P in an arbitrary way.

Alexandrov ([1]) extended Cauchy’s arguments and proved that every 3-
polytopal framework is infinitesimally rigid. (Note that Alexandrov’s theorem

combined with Steinitz’s theorem give an even more direct proof of Theorem

G. This is the variant in [28].)
Whiteley ([66]) have recently found a significant generalization -of
Alexandrov’s theorem to higher dimensions :

Theorem W. A d-polytopal framework, d =3, is infinitesimally rigid.

The basic connection between rigidity and the LBT can be seen at this point?;
Note that in a d-polytopal framework % (P), based on a d-polytope P, there

(k—3) additional edges for each k-gonal 2-face. Thus, #(P) has auun:f\-’.
+ Y- {(k—3)f}(C) edges. Theorem 1.4 follows from Theorem W and thélb

kz3 Am+~v N

inequslity e=dn— 5 for the number e of edges of an infinitesimal

d-embedded graph with n vertices. In particular, this gives the essential
=1 of the lower bound inequalities for simplicial polytopes.

Remark. Gluck’s proof of the generic 3-rigidity of triangulated N.w‘.,_ﬁ_
unusual. Convexity is not involved in the assertion of the theorem but i
much present in the proof. Steinitz’s theorem is a sort of a low din
miracle, and Cauchy’s theorem gives a much stronger rigidity pro

needed. Recently, Tay and Whiteley ([62]) found a direct proof fot*(}
theorem which does not depend on Cauchy’s or Steinitz’s theorems. Gy
apprcach ([30]) may also supply a direct proof for Gluck’s theorem. ks

5. The MPW-reduction

Pt @, (n, d)=a,(d)n+b,(d). (Thus, a,(d)= A&
=1) Easy calculation gives
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3
d-polytope with n vertices and is gi
- . 1 v given by formula (1.1). For a pure (d— {)-
dimensional simplicial complex C with n vertices define XQH\;M‘VISA (n i
j ASALY

d).
Thus, for =3, y(C)= — d+1
- 23, ¥(O)=fi(C)—dn+ 5 ) andford=2, y(C)=f,(C)—n. Define

and O =£(C) =, (n,d),

P(C)=Y {(Ik(S, C)): Se C,|S|=k}.
Thus, 7,(C)=y°(C)=»(C).

Proposition 5.1. Let C be a (d—1)

f -dimensional simplici
iegers, £ h=d- 1. There e g ional simplicial complex, and let k, d be

ositive constants w,(k, d), 0<i<k—1, such that
k-1

n(C)= 3 w,(k,d)y'(C). (5.1)

i=0

Proof. First note that

(k+DA(O)= 3 f_ Ik, ). (52)

i=1

»v for 1sk<d-2 and a, ,(d)=d

2 A&_I d+1

5 vSLEI:+=FLQI:H§+:s_.?&. (5.3)
&
;C. be a pure (d—1)-dimensional simplicial complex, d>3, with n vertices
sy 0,. Assume that the degree of v in G(C) is n; (i, Solk(v;, C))=n,). Note

Aml

% m=21,(C)=2 (an~ (* ) +(0)). Therefore

pa n
,M_Snl_g.;&ls”a*l;&lC M m+nb,_(d—1)

i=1

] \Ll.‘p)\. \&.,Tﬁ// - .
;_T:= Cu/::lf 2 \\+Na_T~EICi@.f:?;;&l:.

H.Aw+ Dou(n,d)+2a,_,(d—1)7(C).

.

f

, (5.4)
8.2) and (5.4) we get
e A+k) 7 (C)=2a,_,(d-1)y(C)+ M Ve 1k (v;, €)). (5.5)
Bei | . i=1
,uw:om:ozm of formula (5.5) give (5.1). The value of w;(k,d) is
2a == (5)  osisk-2,
! (5.6)

2/tk+ 1)k i=k—1
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Corollary (the MPW-reduction). Let d=2 be an integer. Let C be a (d—1)
dimensional simplicial complex with n vertices, such that y(Ik(S, C))=0 for every
SeC, |S|<k. Then (i) f,(C)2 @, (n,d). (i) If f,(C)=e,(n,d) then y(C)=0.

Remark. Note that if C is a (d — 1)-pseudomanifold then y*~2(C)=0.

6. The lower bound inequalities for triangulated manifolds

For d=3 define a class %, of (d— l)-pseudomanifolds inductively as follows: €,
is the class of triangulated 2-spheres. For d=4, a (d— |)-pseudomanifold C
belongs to €, if for every vertex v of C, lk(v,C)e%,_,. Note that every
homology 2-sphere is a triangulated 2-sphere. Therefore for d 24, €, includes
all homology (d —1)-manifolds (and, in particular, all triangulated (d-1}
manifolds). €, is exactly the class of homology 3-manifolds.

Theorem 6.1. If Ce%, then C is generically d-rigid.
Lemma6.2. Let C be a strongly connected d-dimensional simplicial complex.
Then C is generically d-rigid.

Proof. (Compare [36].) If every two vertices of C are adjacent then C is clearly
generically d-rigid. Otherwise, since C is strongly connected, there are two noss
adjacent vertices u, v of C, and two adjacent d-faces S and 7, such that we$

and veT. Let C be the simplicial complex obtained from C by adding to C all

d-faces of SUT. The affect of the operation C— C on G(C) is just adding ome

new edge {u,v}. The graph induced by G(C) on the vertices of SUT is 8]

complete graph on d+2 vertices minus an edge (“{“u,v”}”). This graph
clearly generically d-rigid and by the Replacement Lemma (Sect.3) if ¢
generically d-rigid so is C. Repeated application of this operation will'¥
minate with a complex € whose graph is complete. C is clearly genericall
rigid. :
Proof of Theorem6.1. By induction on d. For d=3, ¥, is the class
angulated 2-spheres which are generically 3-rigid by Gluck’s theoremy
assume the truth of the theorem for d—1 and prove it for d. Let Ce®%,.
vertex veC, the neighborhood N(v) of v is defined by N(v)={v}u{ue
{u,v}eC}. For a vertex veC, lk(v, C)e%,_, and by the induction hyp
lk(v,C> is generically (d—1)-rigid. By the cone lemma (Sect.3),:
={v}*ik(v, C) is generically d-rigid. Let K,(N(v)) denote the complete &

rigid iff CUK,(N(v)) is generically d-rigid. Repeated application of _.Ew -
ment shows that C is generically d-rigid iff C={J{K (N (v)): veV(C)} is gl

complex, hence generically d-rigid.
Theorem 6.1 and the MPW reduction give:

Theorem 6.2. If C€, and C has n vertices then ,(C)Z @,(n,d) for all dghg

pal

Proof. Let H be a subgraph of G(

.wertices.) Denote Y(H)=f,(H)—df,(H)+
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works of Alexandrov and Po i ’
vor gorelov. Whiteley’s proof
mS:N_ma (but more delicate) inductive argument ® prool of Theorem W' uses
. Theorem 6.1 strengthened the fact th .
_ ; . at the graph of a triangulated
_:M:mEmOE is &-8:.:008&. Barnette [11] proved that the mBnrm of M<mn€
_”vw; Mann_ (d—1)-manifold is d-connected, thus extending a result of wN::m_W_.\
uriﬁ _M @mmmanm that the graph of every d-polytope is d-connected
€ € a graph with n vertices and e ed . i
. . ges, n=d. Recall that b (G
dimension of the space of stresses of G wirt. a generic &-macoaam:W%WVA%v M_M
. b, (G) 2

d+1
~an+ (“71)
n 2

56:% that for Ce%,, y(C) is the dimension
generic d-embedding of G( Q).

Theorem 6.1 implies also an u
pper bound for th
subgraphs of graphs of triangulated manifolds, © number of edges of

and equality holds iff G is generically d-rigid. Theorem 6.1 thus

of the space of stresses of a

Theorem 6.3. Let Ce¥, and let H

A&.:

be a subgraph of G(C). Then SIH)Zdfy(H)
2 v+i9.

C). (We may assume that H has at least d
A&+_

. Note that if H i
G then b,(H) < b,(G). Therefore, 2 v atif H is a subgraph

H(C)=b,(G(C) 2b,(H) 2 y(H).

We conclude this section b i
4 n by showing that the proof of Theorem 6.1 appli
.-..u_“mrzw_ more general situation. (We use this fact in Sects. 9 and :.v MMBM
mM_MMH%wmoo.:sQoam (d—1)-dimensional simplicial complex and let T be a
4 ). It is easy to see that U{K(N(@): v a vertex of T} is a strongly

nected d-dimensional simplici
o onal simplicial complex. Therefore, the proof of Theorem

sition 6.4. Let C be a stron
. gly connected {d ~1)-dimensional simplicial
lex. Let T be a tree in G(C) which satisfy: (i) Every vertex u e\vﬁnﬁ

M to some vertex of T, (ii) k(v, C) i j igi
T Th e M.mmtw. &-M@WEV Is generically (d—1)-rigid for every

ono
ene

cal utz: a stacked (d — 1)-sphere is a triangulated (d--1)-sphere which j
hic to the boundary complex of a stacked d-polytope. As easily seen _%
gked (d — 1)-sphere iff C can be obtained from the boundary com _Gm {
by repeated applications of stellar subdivisions of facets. peee

th& d k be \.a_.xm\i integers d>3, d>k>1. Let C be 4 simplicial
% €.§ h vertices and ¢, (n,d) k-faces. Then C is q stacked (d — 1)-

¥
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Proof. The MPW reduction shows that for Ce%,, if fo(C)=n and f(O
=@, n.d) for some 1<k<d, then f,(C)=¢(nd), ie, y(C)=0. Define: (H
={Ce%,: 7(C)=0}. By Theorem 6.1 every Ce%, is generically d-rigid. There-
fore, for Ce%,, Ce%yiff C is d-acyclic. (See Sect. 3.)

Lemma7.2. If C€%?, d=4, then for every vertex ve C, Ik(v, C)e%,,.

Proof. Assume to the contrary that ﬁm\&m v is a vertex of C. and
Ik(r. C)¢%? ,. Thus, lk(r. C) is not (d—1)-acyclic and from the Cone Lemm:
(Sect. 3} it follows that st(r. C)=1¢* lk(r, C) is not d-acyclic. Since Cost(r. ) C
is not d-acyclic as well. A contradiction.

Proof of Theorem 7.1 (end ). The case d=4 of Theorem 7.1 was proved alread;
by Walkup ([63, Th. 1]). (Barnette’s result mentioned below also covers thw
case.) Assume now that for d=5, if Ce%}_, then C is a stacked (d— 1)-sphere
Let Ce%?, d=5. Recall that y*(C)=3Y {y(k(S, C)): SeC, |S|=k}. (See Sect. 3+
Lemma 7.2 implies that for every Se C, y(Ik(S, C))=0. Therefore, for every k2 1.
1*(C)=0. By Proposition 5.1, f,_(C)=¢,_,(n,d). By Lemma 7.2 for eveny
vertex veC, lk(r, C)e%? ,. By the induction hypothesis lk(v,C) is a stacked
sphere, and therefore C is a triangulated (d — 1)-manifold. Barnette proved ([9.
11]) that if a triangulated (d— 1)-manifold C with n vertices satisfies f,_,{Cy
=@, ,(n,d) then C is a stacked (d—1)-sphere. This completes the proof of
Theorem: 7.1.

A direct proof of Theorem 7.1 is given in Sect. 9. We use there a charactet-
ization of stacked spheres which is proved in the next section.

The proof of Lemma 7.2 gives more:

Theorem 7.3. Let C be a generically d-rigid pure (d— 1)-dimensional simplicial
complex. Then for every vertex v of C, y(ik(v, C)) £7(C).

Proof. Define G, =G(lk(v, C)), G,=G(st(v, C)) (=G, +{v}). Let H be a .BEEE_
(d — 1)-acyclic subgraph of G,. By the cone Lemma, H*{v} is a maximum é
acyclic subgraph of G,. Therefore

Uk (e, O) b, (G )=by(G,) Shy(G(C)=7(C).

Q Taoo o Boao A H
o. ATiangutaiea mani

In this section we study triangulated manifolds C such that lk(r,C) & 2
stacked sphere for every vertex v of C. For manifolds of dimensions greales
than 3 this condition implies a severe topological restriction. We also derive a
characterization of stacked spheres among pseudomanifolds in &, which is used
in the next sections.

Consider the following two operations on triangulated manifolds. Let C
and D be pure simplicial complexes with disjoint sets of vertices, § be a facet
of C and T be a facet of D. Let ¥ be a bijection between V(S) and V(T). The
connected sum C#,D of C and D is the simplicial complex obtained by
identifying the vertices of § with the vertices of 1"by ¢ and deieting the favet §
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1=T). Connected sums of two triangulated manifolds is a triangulated man-
dold. Note that if E=C4,D then for veS§,lk(v,E) is a connected sum of
Ik(r. C) and Ik (¥(v), D). All other links are unchanged.

Let C be a pure (d—1)-dimensional simplicial complex, S and T be two
disjoint facets of C, and ¥ be a bijection from V(S) to V(T). Assume further that
no vertex of S is adjacent to a vertex of T and that no vertex in C is adjacent
to both a vertex v in S and to its image ¥(r) in T. Let C* be the simplicial
complex obtained from C by identifying the vertices of S to the vertices of T
via ¢ and deleting the facet S(=T). We say that C” is obtained by forming a
handle over C. Note that lk(v, C¥)=1k(r, C) unless veS (=T), and then lk(r. C¥)
=lki(r. C)# 1k (Y (v), O).

Note also that

7(C 4, D)=7(C)+y(D), (8.1)
d+1

:mjuﬁDL 5 V (d=dim C—1). (8.2)

Walkup defined the class s#°¢(k) of (d — 1)-dimensional simplicial complexes
as follows: #7(0) is the class of stacked (d — 1)-spheres. Ces#?(k) if C=D" for
seme Des#?(k—~1). Define #?=J{#“(k): k=0}. Note that a connected sum
of two complexes in #¢ is in #% In fact, # is exactly the class of simplicial
complexes obtained from boundary complexes of d-simplices by successively
wpplying the operations C#,D and C¥. For d 24, if Ce#™'(k) then rank H,(C)

d+1

=k and Q.AQH»A w
ad CY, it follows that if Ces’?, then Ik(r, C) is a stacked (d —2)-sphere for
every vertex v of C.

The notion of a missing face (see [3]) will play an important role from
aow on.

V. From the description of links of vertices of C#,D

Definition 8.1. Let C be a simplicial complex on the vertex set V. A subset S of V
is @ missing face of C, if S¢C but for every proper subset R of S, ReC. A k-
missing face is a missing face with k+ 1 vertices.

Theorem8.2. Let C be a (d—1)-pseudomanifold, d=4. If for every rertex
eeC.lk(v, C)e = 1(0) and C has no (d —2)-missing faces, then Ce #".

Lemma8.3. Let P be a stacked d-polytope. (i) P has no k-missing faces for
I<k<d—1.(ii) If P is not a d-simplex then P has a missing (d— l)-face.

Proof. Let P and Q be two simplicial d-polytopes such that Q is obtained from
P by adding a pyramid over a facet T of P. (The boundary complex of Q is
obtained from the boundary complex of P by a stellar subdivision of T) It is
aasy to see that every missing face of P is a missing face of Q and, in addition,
@ bas one new (d—1)-missing face T and f,(P)—d new [-missing faces of the
form {u, v} where u is the new vertex of Q and t¢71 Lemma 8.3 follows by
mduction from the definition of stacked polytopes.

Proof of Theorem 8.2. Let veC and let S be a (d—2)-missing face in lk(r. C).
(Unless C is a simplex there is a vertex v in C whose degree is more than d
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and therefore lk(r, C) has a (d —2)-missing face.) Since C has no {d — 2)-missing
faces. S must be a face of C and therefore T=Su{v} is a (d — 1)-missing face of
C. Cut C along &T and patch with two (d—l)-simplices. (As was shown by
Walkup, [63, Lemma 4.2], this onmnm:os can always be performed)} The
resulting complex is a (possibly not connected) triangulated (d —1)- manifold €
If C is connected then C is obtained from C by forming a handle. If C is no
connected it has two connected components and C is their connected sum
Theorem 8.2 follows by double induction on y(C) and f,(C).

Corollary 8.4. Let C be a {d = |)-pseudomanifold, d Z5. If for every vertex ve(.
k(r. C) is a stacked (d— 2)-sphere, then Ce #.

Proof. It is enough to show that C does not have (d —2)-missing faces. Indeed.
if S is a {(d—2)-missing face of C and ¢ is a vertex of § then S\{r} is a (d—3}
missing face of Ik{r. C). This is impossible by Lemma 8.2(i) since lk(r. ) s
stacked (d —2)-sphere and (d —3)> L.

Remark 8.5. Perles proved (see [4]) that if P is a neighborly 4-polytope then
every link of a vertex of P is stacked. Thus, the class of triangulated RS
manifolds with stacked 2-spheres as the only links of vertices, is much larget
than #* Having only stacked spheres as links impose a severe topological
restriction on d-manifolds for d=4. Problem: Which 3-manifolds admit a
triangulation with only stacked 2-spheres as links of vertices? (Compare [23])

We derive now from Theorem 8.2 a useful characterization of stacked
spheres. Recall that a cycle M in a graph G is chordless if M is an induced
subgraph of G. (Thus, M is a subgraph of G with a set of vertices ¥ (M)
={r,,....0,}, m=3 and edges {v,,v;},... {0 1,0} {t,,v;} and the only
edges of G with endpoints in V(M) are edges of M.) A graph is chordal if it
does not contain a chordless m-cycles for m=4.

Theoremn 8.5. Let Ce%,, d=3. The following are equivalent:

(1) C is a stacked (d — 1)-sphere,
(i) G(C) is chordal and C has no k-missing faces for 1 <k<d—1.

Proof. ii)—(ii). Let C be a stacked (d —1)-sphere, d23. By Lemma 8.2, C has
no k-missing faces for 1 <k <d—1. It is left to show that G(C) is chordal. Let P
and Q be two simplicial d-polytopes such that Q is obtained from P by adding
a pyramid over a facet T of P. G(Q) is obtained from G(P) by adding a new
vertex « and connecting it to all vertices of T. From this description it is clear
that if G(P) is chordal then so is G(Q). Therefore, graphs of stacked (d—1I}
spheres are chordal.

(ii) = (i). The proof will proceed by induction on d. For d=3 we have to
prove that every triangulated 2-sphere C with a chordal graph, is a stacked 2-
sphere. Assume to the contrary, that C is a counterexample with a minimal
number of vertices. If C has a 2-missing face :F: C is the connected sum of
two smaller triangulated 2-spheres C, and C,. G(C,} and G(C,) are chordal
and by the minimality of C, C, and C, are stacked and therelore so is C.
Thus. C does not have a 2-missing face. Let » be a vertex of degree 4 or 5 i
C. (Such a vertex always exists unless C is the boundary of a 3-simplex.) Hr
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has 4 neighbors they form a 4-cycle (with the edges of Ik(v. C) and this 4-cycle
must have a diagonal. Since C has no 2-missing faces C is a stacked 2- sphere
with 5 vertices. If v has 5 neighbors then by the same argument C is a a stacked
2sphere with 6 vertices. A contradiction.

Let d=4, and assume that the implication { (ii) = (i) holds for every d'<d.
Lot C be a member of %, with a chordal graph and no k-missing faces for
1<k<d—1. First we show that C is simply-connected. Otherwise, let M be a
minimal cycle in G(C) which is not null-homotopic in C. M must be chordless
wnd if M is a triangle it must be a 2-missing face. Let r be a vertex of C. I['S is

r k-missing face of tk(r,C), 1 <k<d—2 then cither S itsell or Suf{e} is a
missing face of C. This is impossible by the assumption on C. If M is a
thordless cycle in Ik(p, C) then since C has no 2-missing faces, M is chordless
m C as well. Thus, by the induction hypothesis, lk(v, C) is a stacked (d—2)-
sphere for every vertex v of C. Since C does not have (d —2)-missing faces and
w simply-connected, by Theorem 8.2, C is a stacked (d — 1)-sphere.

Both conditions of Theorem 8.5(ii) are necessary. The graph of every 2-
neighborly d-polytope is chordal. The d-cross polytope has k-missing faces only
for k=1. The implication (iij—(i) does not hold for arbitrary (d—1)-
peeudomanifolds as shown by the 3-neighborly 3-pseudomanifolds of Altshuler

if2n.

9. Direct proof of Theorem 7.1

Lemma9.1. If Ce%?, S is a missing face of C then either dimS=1 or dimS=d
-1

Proof. The lemma says nothing for d=3. Let Ce%?, dz4. Let us first show
that C has no 2-missing faces. Assume to the contrary that T is a 2-missing
faice of C. Let v be a vertex of T and let E=T\{v}. E is an edge of C, the
vertices of E are adjacent to v and are therefore vertices of st{v, C). But E itself
does not belong to lk(v, CHEuU {v}¢C), and therefore E does not belong to
wir.C). Since st(v, C) is generically d-rigid, E depends on si(y,C) wrt a
generic d-embedding. However, E¢st(v, C) and therefore st(v, C)UE is not d-
acyclic. Since st (v, C)UE < C, C is not d-acyclic. A contradiction.

i Tis a k-missing face of C, 2 <k<d—1 then for every subset S of T of size
k-2 T\S is a 2-missing face of Ik(S, C). By Lemma 7.2, Ik(S, Q)% ., ,. But
d—k+2>4 and therefore Ik(S,C) does not have a 2-missing face. A con-

tradiction.
Lemma9.2. If Ce%} then G(C) is chordal.

Proof. Assume to the contrary that Ce%) and M is a chordless m-gon in C.
m24. Let E={v,.v,} be an edge in M. Let U be the set of vertices of M which

are not in E. and :: H be the induced subgraph of M on U. (H is a path} lLet
W be the set of vertices of C which are adjacent to some vertex of U. Clearly
1,.r,6 W. Define a simplicial complex D on Wby D= U{st(u, C): ueU}. Since
M is chordless E¢ D. By Proposition 6.4, D is generally d-rigid. But the vertices of
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E belongs to D, therefore D UE is not d-acyclic and since DUE< C. C is not d-
acyclic. A contradiction.

Direct proof of Theorem 7.1 (end). Let Ce%?, by Lemmas 9.1 and 9.2, C has
no k-missing faces for 1<k<d—1 and no chordless m-gons for mz4. By
Theorem 8.5, C is a stacked (d —1)-sphere.

Remark. Most of the work is needed just for the case d=4. If one assumes the
assertion of Theorem 7.1 for d=4. then the general case follows easily b
induction, from Lemma 7.2 and Theorem 8.2.

Corollary 8.4 and Theorem 7.1 imply:

Theorem 9.3. If C is a simply-connected triangulated (d — )-manifold, d 25, and
for every vertex ve C, y(lk(r. C))=0 then y(C)=0.

Second proof of Theorem 9.3 (hint ). In order to show that y(C)=0 it is enough
to prove that for every edge EeC, a generic d-embedding p of C\E has a nem-
trivial infinitesimal flex v. (See Sect. 3). Let E={v,,v,} be an edge of C. Sincz
Ik (r,, C) is acyclic, st(r,, O\E has a non-trivial 5:3.8&:.5_ .:mx. Choose such
a flex v,. We will extend this infinitesimal flex to an infinitesimal flex of C £
t r=d(vy(v,), volvy)):

b Let %,.,o“v;vm omAzwwamo in C, and let ¢ be an infinitesimal flex of mzz...O m
Consider the restriction of ¢ to Dy=st{{u,w}, O\E and extend it to an infimp-
tesimal flex & of D, =st(u, O\E. This can always be done (here we use the fan
that d = 5). The extension is unique unless v,,v,€D,, but either v, or v, are mat
in D,. In this case extend £ under the condition that &m?:“.mcﬁvnw.

Apply this operation to extend v, to stars of all the vertices in C. It can _i
shown that if an infinitesimal flex is defined on st(v, C) using this procedure v
a path ! from v, to v, then it depends only on the homotopy class o._. :_.n cn.._;
Therefore, if C is simply-connected one gets a well-defined non-trivial infinitey

imal flex on C\E.

Third proof of Theorem 9.3 for boundary complexes of simplicial polytopes. Let
d d+1

50 = O~ d =14+ (S0 (7] ) (=150 ha{C), see Sect. My

is easy to check that

> {rk(, C): veV(C)} =35(C) +(d = 1) y(C). o0

It is plausible that 6(C)20 holds for every simply-connected Em:ﬂg
{d — 1)-manifold C, d=5. This is known only when d =5 and when d>5 and Cis
the boundary complex of a d-polytope. Clearly if 6(C)=0 and the left bamd
side of Eq. (9.1) is equal to zero then: y(C)=3(C)=0. .

For a triangulated 4-manifold C, the Dehn-Sommerville equations awest

that 8(C)=10(y(C)—2) where y(C) is the Euler characteristic of C. In particw-
lar, if U is simply-connected then §(C)=10b,20 where b, =rank H,(0)20ix

the second Betti-number of C.

The inequality 8(P)=0 for a simplicial d-polytope P, d25, is a special e |
of the “generalized lower bound inequalities™ [49, 55] (see Sect. 14). (in fus,
the “g-theorem™ in its full strength implies that if y(P)=0 then (P)=0. Thib ]

implies also, by (9.1), Lemma 7.2 for polytopes.)
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10. The lower bound conjecture for pseudomanifolds

The lower bound conjecture for pseudomanifolds. (a) If C is a (d—1)-
pscudomanifold with n vertices, then f,(C)=¢,(n,d)} for 1<k<d—1. (b) If
equality holds for some k, d>k>1, then C is a stacked sphere.

The case k=d—1 of part (a) of this conjecture was proved by Klee [42].
The remaining cases are still open.

Definition 10.1. A (d — 1)-pseudomanifold is normal if every face Seskel, ,C has
2 connected link.

Note that the class €, of (d— 1)-pseudomanifolds defined in Sect. 6 is the
<fass of normal (d — 1)-pseudomanifolds whose singular part has codimension
greater than 2. (If Ce%, and S is a face of C of size d—3, then 1k(S.C) is a
triangulated 2-sphere.)

The class of normal pseudomanifolds is closed under taking links of faces.
Therefore, the LBT for normal pseudomanifolds reduces by the MPW-re-
duction to the case k=1. As in the proof of Theorem 6.1 the generic d-rigidity
of normal (d — 1)-pseudomanifolds follows from the generic 3-rigidity of normal
2-pseudomanifolds, which are just triangulated 2-manifolds. Part (a) of the
LBC for normal pseudomanifolds would thus follow from the following old
standing conjecture:

Conjecture G [28, 25]. The graph of every triangulated 2-manifold is generically
Yrigid 2.

Remark. Connelly gave in [24] an example of a flexible embedding of a
triangulated 2-sphere, and thus refuted the old conjecture (going back to
Euler.) that every triangulated 2-manifold embedded in R3 is rigid.

Conjecture G would also imply part (b) of the LBC for normal pseudo-
manifolds as follows: It is enough to show it for normal 3-pseudomanifolds and
then to proceed as in Sect. 7. Conjecture G implies that a 3-pseudomanifold C
s generically 4-rigid. Thus if ¥(C)=0 then C must be 4-acyclic, and every link
of a vertex of C must be 3-acyclic hence a triangulated 2-sphere.

In order to reduce the LBC for arbitrary pseudomanifolds to the normal
ase, and also to extend Theorem 1.1 to arbitrary pseudomanifolds with
singular set of codimension greater than two, we need the following normaliza-
ton process [S7, p. 83] {compare {29, p. 151, {7]).

Let C be a (d—1)-pseudomanifold. Choose a non-empty face S of C of
smallest possible dimension k. k<d —2 with a non-connected link. “Pull apart™
€t § to get a new complex Ny(C) as follows: Create a copy F, of F for each
womponent K, of 1k(F, C) so that the link of F; in the new complex Ny(C) is K.
Repeated applications of this operation will terminate with a normal (¢ - 1)-
preudomanifold N(C).

Direct computation gives:

(il O) = (n,d) > (f,(IN(O) — @, (n.d)  for every 1<k <d. (10.1)

¥ Whiteley and Graver have recently pioved (independently) that all tiangulations of the torus
we pencerically 2-rigid. Connelly proved (private communication) that every triangulated 2-mun-
M admits a generically 3-rigid subdivision
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142 ,
It is likely but unknown that if Ng(C) is generically d-rigid so is C. 3 i) flO) = @b (n;, ny, d), for every k, 1<k<d—1.
Remarks 1. Altshuler constructed in [2] 3-pseudomanifolds such that none of . 3::5 If f(O)=gp(n,n,,d) for some k, 1<k<d—1 then C is a stacked (d—1)-

their 2-dimensional links are spheres. E 2
2. Note that the lower bound inequalities need not hold for a strongly M Proof. Let u be a vertex not in C and D=Cu({u}*aC). D is a (d—1)-

connected (d — 1)-dimensional complex, in which every (d—2)-face is included ' pseudomanifold (without boundary). )

in at. least two facets. A counterexample is two tetrahedra identified along an V

cdge. Claim 11.2. D is generically d-rigid.

nSeNs Note that for every vertex veD, different from u, Ik(r, C) is a homology
i . {d —2)-sphere, and is generically (d— 1)-rigid by Theorem 6.1. Choose

11. Manifolds with boundary “ Tin G(D) which contains all vertices nwm %nxoaﬂ: u. The conditions of w”ﬁw\wmmw
In this section we prove a lower bound, conjectured by Bjdrner [17], for the ;. tion 64 hold and therefore Cis generically d-rigid.

number of k-faces of a triangulated (d — 1)-manifold with boundary as a func-
tion of the numbers of interior vertices and boundary vertices. The problem
was originated in the study of polytope pairs, see [40, 41, 17, 16]. We first need
a few definitions.

A d-tree ([34]) is defined inductively as follows: A complete simplicial
complex on d+1 vertices is a d-tree. If C is a d-tree on the vertex set 4
u¢V(C), and S is any (d—I)-face of C, then the simplicial complex obtained
from C by adding u to the vertex set V and adding the new facet Sufu),isa
d-tree. A simple d-tree ([63]) is a d-tree in which every (d —1)-face is included in
at most two facets. (Le., it is a pseudomanifold with boundary.) A simple d-tree
is actually a triangulated d-ball. In fact, given a m&owoa d-polytope P, d23, P
¢an be divided uniquely into d-simplices S, ...,S,,, such that every (d—2)-face
of any of these simplices is a face of P. The sets of vertices of these simplices =i
form the set of facets of a simple d-tree. This gives a 1—1 correspondenc

between simple d-trees and stacked d-polytopes, d 2 3. AR

d+1 I
A d-tree on n-vertices has ¥, (n,d)= AMV n— A»H _V k k-faces ([34]). A uiﬁ* ;
result of Beineke and Pippert [19] and Bjdrner [17], asserts that every strong ‘
connected d-dimensional simplicial complex C with n vertices has at’

" Proof of Theorem 11.1 (continued ). Put n= f (D) (=n;+n,+1). Recall that for
k21, 3,(D)=f,(D)—¢,(n,d), (Sect. 5.) Put y,(D)=0. A simple inspection shows

that N
SO =@, ny, d)=y(D)—y, _ (k(u, D). (1L.1)

Proposition 11.3. Let D be a generically d-rigid (d —1)-pseudomanifold. Then for
every vertex v of D, y,(D)=7y,_,(k(v, D). If equality holds then y(D)=0.

Proof. Wmmm: that y(Dy=Y {y(Ik(S, D)): SeD,|S|=i}. Proposition 5.1 asserts that
D)= w,(k,d) y'(D). The coeficients w,(k,d) are given by formula (5.6).

L =0
‘We need the following two inequalities:

Y (D)zy' ™ (k(v, D)+ (Ik (v, D)). (11.2)
wik,d)+w,, (k,d)y>w;(k—1,d—1) forevery 1<igk—1. (11.3)

" To prove (11.2) divide the set of (i— 1)-faces of D into three parts. (a) Those
gfaces 'S which contain the vertex v, (b) Those faces S which do not contain v
t'Su{v}eD and (c) the remaining (i —1)-faces of D. Note that the sum of
(S, C) over faces in the first family is exactly y'~!(lk(v, C). If § belongs to
B second family and T=Su{v} then by Theorem 7.3, y(Ik(S, D))= y(Ik(T, D).

¥, (n,d) k-faces. This bound applies, in particular, to (d — 1)-pseudomanifol : — )
with boundary. Beineke and Pippert showed that equality holds only’ foi*Jes 5 —.WAM,“%WI%MAMJFANEV, mwwx?ﬁ.&ono the sum of 1k(S, C) over all faces in
trees. (The earliest result of this type was proved by Klee {40].) s O“vno<w LW.&@ ﬂmnmwwwh A_ :Mwbquv d .

Define a stacked (d—1)-ball to be a triangulated (d—1)-bait C iEnW. ¢ . o: ,». ’ :».m (5.6) and note that always a,(d)>a,_(d—1)
obtained from m.m:d@_a (d—1)-tree by navmﬁo.& stellar subdivisions of facet d 1Ak +1) A _V+_\QA+: AV =1/k A»I_vv
Equivalently, C is a stacked (d—1)-ball if C is the antistar of a vertexati e 4 l i—1
stacked A&ul Cnm@—gmnn. ! A HﬂUOm—:O: A.r : _Nv and : _wv,

Let C be a stacked (d — 1)-ball with n vertices, n, of them on the bous L. i1
m‘sa a, in the ::m:ob (n, is m_imwm at _nmmﬂ.m.v‘ﬁ::mv Cis ocr&nma.‘ q s> w,(k, d) y/(D) = w,(k, d) y(k(v, D)) + Y wik,d)(y'~ '(Ik(v, D))+ y'(Ik (v, D))
simple (d — 1)-tree with n, vertices by n; applications of stellar subdi =0 iz1
facets. Let ¢°(n,,n,,d) be the number of k-faces of C. As easily seed WNAE o) w. (k. k-2 .
number depends only on n;,n, and d, and is given by formula (1.2): | , T Wiy 1lk, d)) y(lk(v, D)) 2 .Mo wik—1,d—1}y'(lk(z, D))
Theorem 11.1. Let C be a triangulated (d—1)-manifold, d=4, with gﬁmgh_. “‘*Mtncw?.b:.
boundary. If C has n, vertices in the interior and n, vertices in the bo indah] ' v ) . ) . . o o

1 es the required inequality. Since (11.2) is a strict inequality if y,(D)

H

(Ik(v, D)) then y(D)=0.
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Back to the proof of Theorem1l.1. By Claim 112, D is generically d-rignd . : 3 .O.:o difficulty in dealing with Q.::.no::m 12.1 is the fact z_w: the m.o:m:.o .&-
Formula (11.1) and Proposition 11.3 give part (i) and show that in case of - ngidity of &-boc:o?: ?mamso:ﬁm 1s m#.x a local property as in Ea.m_anro_m_

lity y bv.no In order to prove part (ii) we need . @se (for d=4). In the case of a simplicial d-polytope, d>4, (or a triangulated
eauality . B @ 1)-manifold,) the graph induced on a neighborhood of any vertex is already
Claim 11.4. If y(D)=0 then D is a stacked (d — 1)-sphere. B pocrically d-rigid. This is not the case for dopolytopal famewers. e oy
Proof. Let E=Ik(u,D). If E is not connected, apply the normalization pro- "W example, let P be a pyramid over the octahedron Q, and consider the neigh-

! i i t. 10 to the vertex u. The proof of Claim 11.2 apply for B borhood of any vertex of Q. .
MMA,“M:AW_M:_MMM_:%M@W and by formula (10.1), y(D)> (D)= 0. A contradiction. #&  For a d-polytopal framework # based on a d-polytope P it is only for the
:om s oo:m@n»ma then for d25, De%, and by Theorem 7.1, D is a stacked 4 4. fighly non-generic) embeddings which realize P as a convex polytope that it is
— 1)-sphere. For d=4, lk(u b|v may be any triangulated 2-manifold. Howeves, @il possible to prove “local” infinitesimal rigidity at any vertex [66, p. 456]. This

;- @ tur, implies the infinitesimal rigidity and hence the generic rigidity of %
i We do not know how to find such a pleasant embedding for arbitrary polyhe-
E:dnl (d - 1)-manifolds (or even polyhedral (d — 1)-spheres).

" We mention now two corollaries of Theorem 1.4. A polyhedral complex P
# k-simplicial if every j-face S of P, j<k is a simplex. Theorem 1.4 and the
f MPW-reduction imply:

sm 122, Let P be a k-simplicial d-polytope with n vertices then

. i d inequalities u;. 2@:(n,d) for 1<i<k.
conjecture, and showed that the conjecture imply the lower bound inequ: flm v Let us check now what does Theorem 1.4 says for simple polytopes. If P is
for pseudomanifolds without boundary. It can be shown that the assertion. &8 & .

Theorem 11.1 for arbitrary pseudomanifolds with boundary io.:E also j i polytope with n ,\.oq:omm then \_SHW and Y kfy=f,(P)(d~1). The
from the generic 3-rigidity of all triangulated M-anﬂo_am AO.o:._aoan ;s. ., 3 m&. y(P)2 0 reduces in this case to:

proof can be applied to all normal (d— 1)-pseudomanifolds with boundary
singular part of codimension 3 or more. ;

since y(D)=0, G(D) is 4-acyclic and lk(u,D) must be u-mowodo. Therefore,
Ik(u, D) is a triangulated 2-sphere, De%, and by Theorem 7.1, D is a stacked 3-
sphere. ]
Proof of Theorem 11.1(ii) (end). By Claim 11.4, D is a stacked Qi_Yu_-—lJ_

hence C is a stacked (d — 1)-ball.

Remark 11.5. Bjorner conjectured in [17] that Theorem 11.1(i) holds for every
(d—1)-pseudomanifold with boundary. Bjorner proved the case d=3 of this

d+1
Ez-aLSSMA T v

2

beriori this follows, of course, from Billera, Lee and Stanley’s complete
Mactérization of fivectors of simplicial polytopes.

JA:d-polytope P is elementary if y(P)=0. In [38] we study the function y(P)
- topes and especially the class of elementary polytopes. We prove there
guotients and faces of elementary polytopes are elementary and that for
Rrface S of an elementary polytope P either § or Ik(S, P) is a simplex. We
maal 0.that the class of elementary polytopes is self-dual. The starting point
. B proof is the fairly simple identity: For a 4-polytope P, y(P)=y(P*). It
For a d-polytope P, with boundary complex #(P), y(P) stands for .R\h v fiabe, interesting to find a natural isomorphism between the spaces of
the polytopal frameworks based on a 4-polytope P and its dual P*.

12. A lower bound conjecture for polyhedral manifolds

For a polyhedral complex C, f5(C) is the number of N-mm.oom of C which
gens. For a polyhedral (d - 1)-dimensional complex C define: Y

d+1
i@nb:fM;L551§+A 5 V

kz3 -

Perhaps the ultimate generality for noaon":nml_w.ﬂ (and a convea
text to study this conjecture,) is for “graph manifolds”. which arél
[11]. (See also [12].) o

As we already mentioned in Sect. 5, Whiteley’s theorem implies
Conjecture 12.1 for boundary complexes of d-polytopes (Theorem
viously, it was proved for rational polytopes as a consequence Ol
resulis in algebraic-geometry. In fact, for such a polytope Py
dimension of the second primitive intersection homology group

_eu._ subgraphs of triangulated manifolds
b o
a %uu.io diverge from lower bound theorems. We prove using some

yious results a property of graphs of traingulated manifolds of a

H is embeddable in a graph G if G contains some subgraph
».W hic to H. Griinbaum proved {[31, p. 200]) that K, |, the complete
toric variety associated with P. (See [46], [58, Ch. 4], [59]) Howeysig Fdi1 vertices, is embeddable in the graph of every d-polytope.
shown by Perles [31, pp. 92-95], there are polytopes whic A«\& in [11] that K,,, is embeddable in the graph of every
binatorially equivalent to rational polytopes. ;
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polytedral (d — t)-manifold. (These results are immediate in the simplicial case)
For a graph G with no vertices of degree 2, TG stands for any graph ho-

meomorphic to G.
Theorem 13.1. Let d =4 be a fixed integer. ~Nf~ is embeddable in the graph of
a triangulated (d — 1)-manifold C iff C is not a stacked (d — 1)-sphere.

Proof. 1t is well-known and easy that if C is isomorphic to a stacked d-
polytope then K, , is not embeddable in G(C). In fact, G(C) does not contain

K,,, even as a minor.
Let K; denotes a K, minus an edge. The two vertices of a TK7(d>4) of

degree d — 2 are called special.

Lemma 13.2. Everv two non-adjacent vertices of a simplicial 3-polytope serve &
special vertices of a TK3; every two non-adjacent vertices of a stacked 4
polytope(d > 3) serve as the special vertices of some TKg, ;.

Proof. The first part follows from the 3-connectivity of C, the second part cam
easily be checked directly.

Proof of Theorem13.1 (end). Let C be a triangulated (d — 1)-manifold, and
assume that C does not contain a TK,,,. We can assume that C has so
vertices of degree d (otherwise we delete them successively). We apply im-
duction on d. Let v be a vertex of C and u, w be a pair of non-adjacent verli
in Ik(v, C). By Lemma 13.2, (and the induction hypothesis if d>4,) u and w as®

the two special vertices of some TK;,  in 1k(v, C). Therefore u and w are st

adjacent in C nor they are connected in a path that avoids st(v,C)
directly implies that C has no 2-missing faces and no chordless m-gons
mz4. For d>4 the induction hypothesis implies that C does not cos
missing k-faces for 2<k<d—1 as well. By Theorem 8.5, C is isomorphic.je
stacked sphere. :

Remarks. (1) For triangulated 2-manifolds the situation is this. Kg'B8
embeddable in any triangulated 2-sphere (stacked or not) by (the easy’ 'Y
Kuratowski's Theorem. It is plausible but unknown that K is embed
every triangulated 2-manifold which is not a sphere. This will follow'fre

oldstanding conjecture of Dirac [27] which asserts that K, is embed
more than 3n—6 edges. Assuming’;

more inian ecges

Theorem 13.1° hg

applies only &

varti
vertices an

with
Wil 7l

every graph
truth of Dirac’s conjecture it can be shown that
arbitrary (d — 1)-pseudomanifolds. (While our proof
manifolds in €.) T

(2) Griinbaum proved ([31, p. 200]) that for every &-no_ﬁovn‘l skel
embeddable in skel,(P). Problem: For which simplicial d-polyl
skel(4,, ,) embeddable in skel,(P)? By van Kampen-Flores theor

117) this may never occur if i2{d+1/2]— L.

14. Concluding remarks and open problems

14.1. y(M) and the topology of M. For a manifold M, (of dimension
define y(M)=min{y(C): C is a triangulation of M}. For everys

1
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M, which admits some finite triangulation, y

. we have proved that y(M)=0 only i i
: = yif Mis
M)=3(2 - y(M)), where x(M) is the Euler
3 Walkup proved [63] that
i M) 10, and y(M)=10 iff M

(M) is a non-negative integer, and
a sphere. If M is two dimensional
. characteristics of M.
E. Mw_. MNw-Bms_.moE M which is not a sphere
7 ( 18 §% x 87 or the corresponding :o:-oanimz.
:.__...uh_“__omm%ﬂm also showed E.mﬁ the only triangulations C of these Em::oEM
o e _M:%a e.ﬁm\wvﬂl_%.\ mnm_ in #%(1)) .:a For all other 3-manifolds M
n—son.l y = only when M is the three dimensional projective
In [39] we show that for every fi i
. y fixed non-negative inte 2

n.neo«__w :::o_x many d-manifolds M for which y(M)<c. gers ded22, there

¢ would like to understand how the topology of M affects the invariant

¥ 1M). Let b(M) denot - i
: OEWENAE,ANVV.V enotes the i-th (reduced) Betti number of M. (Thus, bi(M)

.

: Cejecture 14.1. For a (d — D-manifold M, d24, y(M)=b,(M) Aarr _v
2 5, )

d+1

I Cesi(k) then y(C)=
: . (k) then y(C)=b,(C) 5 ) (Are these the only cases of equal-

I.qa Walkup proved ([63]) that

fo - i
domanifolds in r every 4-manilold M, (and even every

%) y(M)z3E(2—x(M)) and equality holds iff

n“; — W _ €m o _ :m.-ﬂmzm ¥ QSV hcm a A& ~v :.—N:: DMQ E Nﬂmﬂ:.—ﬁ—mm :—0 w=
| ﬂﬂcc—ﬂm_u C» :DA:E o HT@ minima S_—:—Uﬁﬁ C_ vertices In a ri-
m Agv 1

ition of M (see [501). Let i, d be fixed integers, d >3 oAXTI’J It
% ! « « h B v N .
em_”rmun n%.:o nmm:M that a(M)= C(i,d) b,(M)i+1, where C(i,d) is a positive
gant depending on i m:ﬂ& (compare [18]). We conjecture that similarly
0) ¥(M)=D(i,d)b,(M): ,d) i iti

‘m_.:.mnal&. (i,d)b;(M)i, where D(i,d) is another posttive constant de-
, ould like to know the exact values of y(S! x §* x 8, ¥(8?x $?) and

tihnel’s 3-neighborl - . "
= iﬁﬁJWo.on complex projective plane with 9 vertices ([43,
i

:

.l . i
I vm a xmxma integer, &W_. For a vector of non-negative integers f
_“.”.. -1 f_ =1 define h(f1=(hg,hy,...,h,) where

k .
=Y (T
i=0 i .

..m.“m\\“_n”omm_a_ Mm :m simplicial d-polytope or a {(d —1)-dimensional
k. . gnvwc_wom ‘ZMD.S. of C. h-vectors of simplicial polytopes

.ooEEE:o y r: an <<.m:w:h.mh£. This concept plays a crucial
Eom tial theory of simplicial polytopes and in several other
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areas of combinatorics ([48, 54, 55]). (The original notation was g\ for h; and

W+ for b, —h;) . 4

s A m::w_wo__.m_ d-polytope P is k-stacked if P can be triangulated i:ros

introducing new j-faces for j<d—k—1. A Em:mc::aa. (d — 1)-sphere C is k-

stacked if it is the boundary of a triangulated d-ball B with the same d—k-h

skeletor. . . )
McMullen and Walkup suggested in [49] the following far reaching gener-

alization of the lower bound conjecture.

The generalized lower bound conjecture. (i) (The generalized lower bound in-
d
@c:u::mm.v:wmmmm::n:&m_ &-Uo_ﬁonmm:a cM»MTal_ Em::_::_?

- =0. (i) If i P)—h,(P)=0 then P is a k-stacked polytope.
:%MMH.@M:MHM:R%_%SMH cwﬁcsa inequalities were proved by .m.ﬂm.:_av\. [55] as
part of his proof of the necessity part of the :w-%oo_.mi,.,. Part ::._m still open.
Note that y(P)=h,(P)—h,(P). The Dehn-Sommerville equations (see [4%.
567]) assert that hi,=h,_,, 0<i<d. In particular, if d=2k+1 then h ,—h=0
simplicial d-polytope. )
o MNM%:E@W g:o«%& wrm:v”ro assertions of the GLBC and the :w;@mo,wns
are ' true for arbitrary triangulated spheres. (See [32, 56]}) In part (i), “a k-
stacked polytope” should be replaced by “a k-stacked sphere™>.

For a triangulated (d — 1)-manifold C define

& r\» _.

551&@7 AL MT:SL-;D.
i=0

Schenzel proved ([52], see also {57, pp. 84-857) that every triangulated (d—1+

manifold with boundary C satisfies h,(C) 20, for every k=0.

Conjecture 14.2. Let C be a triangulated (d — 1)-manifold (without boundary)

d d
Then for every k, 0<k< E 1 b (O)=R(O)2 AT _V b, (C).

Note that Conjecture 14.1 is a special case of conjecture 14.2. .,:_n Dehn-
Sommerville equations assert that f,(C)=0 and m_.AQnS-_..AO, 1<i<d.

Many of the results of this paper have obvious analogs in the context o:,._u
generalized lower bound inequalities. Proving them seems hard. Only z_w third
m:oa of Theorem 9.3 and the proof hinted there for Lemma 7.2 extend directy.

14.3. Flexible weak embeddings. Let C be a pure simplicial o.o:_v_n.a. An
embedding of the vertices of C into R* is a weak embedding of C if the images
of the vertices of every facet of C are affinely independent. If ﬁ is the
boundary complex of a stacked d-polytope then every 2wmx embedding oq,a.
into R is rigid. Bricard constructed in 1897 ([207) a flexible weak embedding
of the octahedron into R*.

d
consequence from the GLBC would be that for _M»M—; -1 every d-polytope whose boamdisy

d
complex is k-stacked (as a sphere) is a k-stacked polytope. We doubt if this is true for »W—M._

* The conjectured equality cases for spheres do not imply the conjecture for polytopes. Cux ;
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Conjecture 14.3. Every non-stacked 3-polytope have a flexible weak embedding.

14.4. Rigidity of spaces and separations properties. All topological spaces men-
tioned here admit finite triangulations. A topological space X is d-rigid if every
triangulation of X is generically d-rigid. A simple sufficient condition for d-
rigidity follows from the generic d-rigidity of strongly connected d-dimensional
<implicial complexes.

Theorem 14.4. Let X be a topological space. If for every Y <X which separates
N.dimY2d—1 then X is d-rigid.

Conjecture 14.5. Let d>3. Let X be a topological space. If for every Y <X
which separates X, H, ,(Y)#0 then X is d-rigid.

14.5. Rigidity of tight manifolds. A triangulated 2-manifold M enbedded in R?
is tight (see [45, 8]) if M nH is connected for every half space H of R?. (This
property is known as Banchoff’s two piece property and is weaker then tight-
ness in more general contexts.) M is strictly tight if it is tight and no two
adjacent facets of M are in the same plane (in particular if the vertices of C are
i general position).

Strictly tight embeddings of a triangulated 2-sphere C are just realizations
of C as the boundary of simplicial polytopes. All these embeddings are rigid by
Cauchy’s theorem. Connelly proved in [26] that all tight embeddings of a 2-
sphere, i.e., embeddings as convex surfaces, are rigid.

Conjecture 14.6. A tight embedding of a triangulated 2-manifold in R? is rigid.

Conjecture 14.6 implies that triangulated 2-manifolds which admits strictly
tight embeddings are generically 3-rigid. Yet, it is hard to suggest this approach
for proving Conjecture G (Sect. 10) for orientable 2-manifolds. It is not even
known whether every orientable triangulated 2-manifold can be geometrically
embedded in R3 (See [32, 13]).
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Oblatum 26-VI-1985 & 3-1X-1985 & 3-111-1986

Nete added in proof

e basic relation between the LBT and rigidity is observed independently by M. Gromov in [67
(4% N#_.S.. .Z.c.“mﬁ.,dr Gromov presents a purly combinatorial “substitute™ for rigidity :ﬁ_:w.
Gromov's “rigidity” concept combined with the results of Sections 7-11. it is possibic 10 q,oﬁ.
Theorems 1.1 and [1.1 for arbitrary pseudomanifolds. , ’




