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1. - N
Petract. We start with a theorem of Perles on the k-skeleton, Skelx(P) (faces of dimension
73] of d-polytopes P with d +b vertices for large d. The theorem says that for fixed b and d,
s gufficiently Jarge, then Skely(P) is the k-skeleton of a pyramid over a (d — 1)-dimensional
ope. Therefore the number of combinatorially distinct k-skeleta of d-polytopes with d + &
&wv%mv!vnﬁomgoﬁw-amn—go. Next Ia%eA%BEvﬁoﬁeﬁmolamue
dimension) by related but deep invariants of P, the: g-numbers. For a d-polytope P there
/2] invariants g1(P).92(P), ws 9d/2)(P) which are of great importance in the combinatorial
of polytopes. We study polytopes for which gy is small and move to related and slightly
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paper, we will discuss several ‘combinatorial problems concerning the combi-
rial structure of polytopes. For a'd-polytope P, the number of k-faces is dencted
. (P).- The vector (fo(P), fi(P),--- fa_1(P)) is called the f-vector of P. The
definitions will apply to more general combinatorial objects considered below.
E- k-th skeleton Skely(P) of a d-polytope P is the set of all faces of P of dimension
R Skely(P) is called the graph of P and is denoted by G(P). v

A simple basic fact is that for every d-dimensional polytope P .

fo(P)2d+1. . . 1)

ity holds if and only if P is a simplex. An important part ‘of convex poly-
gbe theory is the study of polytopes with “few vertices”, namely polytopes with a
ided difference between the number of vertices and the dimension. The following
WEstem of Perles is part of the theory of polytopes with “few vertices” and it will

central role in this paper.

gheorem 1.1 Am.von.r.wn. 1970) Let f(d, k,b) be the aumber of combinatorial types
3 @M«»&n_a of d-polytopes with d + b+ 1 vertices. Then for fized b and k, f(d, k,b)
Ebounded. - . ,
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A prool ol reries’ theorein 18 given i dection 2. (‘L'he proot relies on only sectijg
1.4 from the Introduction.) The proof given here is somewhat different from Per]ed
original proof. It relies, like the original proof, on the important concept of missi;]
faces. The proof here uses the famous sunflower (Delta-system) theorem of Erg
and Rado. . ¥

A construction which increases by one both the dimension and the numbes§
vertices is the forming of a pyramid over a polytope. Perles theorem asserts
for fixed b and d, if d is sufficiently large, then Skel;(P) is the k-skeleton
pyramid over a (d — 1)-dimensional polytope. In contrast, note that the nun
of combinatorial types of d-polytopes with d + 3 vertices is bounded below b
exponential function of d, see [22]. L

Another theorem which is basic to the discussion in the second part of this p
is the lower bound theorem which was conjectured by Briickrier in 1909 an
vno<o._v<w2.=o$o§m=~3o. . .,

proof 1 (geometric-algebraic) : Lls 10ilows al ouce :.C_: e Jacy thab wlie

F rtices of a d-dimensional polytope affinely span a d-dimensional space.

F' " proof 2 (combinatorial) By induction: Let P be a d-polytope and let F be a

% cet of P. By the induction hypothesis F has at least d .<o_.s8u. There must be a

Eortex in P not in F; therefore, P has at least d+ 1 <.o_....nao..

i The combinatorial proof has the advantage that it wvv_.ma.no much more gen-

= I combinatorial objects (ranked relatively-complemented —waznﬁv.. The geometric

f. of show that gy(P) is the dimension of the space of affine relations among the
ices of P, and suggests a study polytopes with small value .On a v.w. looking on

& space of affine relations among vertices.. This is the starting point of a very

seful theory of “Gale diagrams” see [22] Ch. 6. - -

a: Both proofs show that equality holds if and onlyif Pisa n_m..v_nn.

k The combinatorial proof easily extends to prove the inequality

H

i

d+1\ .
‘Theorem 1.2 For every simplicial d-polytope P, . a[r)(P) =: fr(P) ~ A.. + uv >0 3)

£1(P) 2 dro(P) - Am ' wv. |

Equality is obtained by stacked polytopes, namely polytopes built by :
simplices along facets. - . 5 o
For a d-polytope P, there are [d/2] invariants g,(P), 92(P), \.., gjasa){ P)-w
are of great importance in the combinatorial theory of polytopes. g1(P) is j
difference between the number of vertices of P and d + 1. For simplicial po
ga(P) is the difference between the left hand side and the right hand side ofj}
_lower bound-relation {2):— ; g
In analogy with the theory of polytopes with “few vertices”, we discussin Sé
3.and 4 the combinatorial properties of polytopes with a bounded value Mn s
some fixed k. The nonnegativity of g:(P) is in general a deep fact (and for k>
is not even known for general polytopes which cannot be realized by vertices il
rational coordinates.) And we try to use the methods originally applied to Vwm»w
nonnegativity of gx(P) to study those polytopes for which gx(P) is small.
Section 3 deals with simplicial polytopes and Section 4 deals with gen:
topes. In both cases the case k = 2 is substantially simpler than the gener
We will use in this discussion the notion of stresses and thé connection be
stresses and the g;’s as developed in Carl Lee’s paper [34]. Our discussion in
4 is strongly related to the first section in Margaret Bayer’s paper [§] and &
some topics in Richard Stanley’s paper [42]. S
The paper is written in a somewhat ununiform style. The discussion in Sec
2 is self-contained and elementary. In Sections 3-4 while technically the ps
still mostly self-contained, some prior familiarity with the notions of A-vectors
lower bound theorem, the g-theorem and the algebraic tools which play a role
their study would be very useful. There are many problems and conjectures whi
are quoted and stated throughout the paper.

Indeed, given a d-polytope P and a facet F of P, every ?..I 5..?8 Gof Fis
® luded in an r-face Hg of P such that Hg itself is not contained in F. It follows
Bt He N F = G, and therefore G — Hg is a one-to-one map from .?.l 1)-faces .on

*to r-faces of P-which are not contained in F. Thus, by pu.EA_:Ms“E rxvo.»_uon_u.
.E.ow:ownaqﬂ_vx.muhnwon.m-nounwmuommbm..gmw,.:apa... Annu?nmh.omo:u

ch are not contained in F.

ne of the interesting facts about the combinatorial theory of convex wo—«...eow.on
at often algebraic arguments are needed. In some cases one mﬁ&m .JwE»on
ure of algebraic and combinatorial arguments. We will see this in various vrﬂom
“ aper. . . . o S
£ wnw.ﬂ. Relation 3 also has an algebraic interpretation. Each r-face of P
® termines an r-dimensional flat in R and thus, also a vector in the exterior (r;+1)-
ver of R4+1. The vectors corresponding to all r-faces linearly span this exterior
er.

i

' “POLYTOPES, SIMPLICIAL COMPLEXES, SIMPLICIAL Z»z,:.dmbm,, POLYHEDRAL
¥ COMPLEXES AND RANKED ATOMIC LATTICES ~ o
set of faces of a polytope P, denoted by L(P) is a ranked atomic —wnm\oo. L(P)
ed the face lattice of P. (A lattice L is ranked if for every element z € L n.=
nal chains of elements which are smaller than z have the same size. This size
led the rank of . An atom is an element of rank 1, and L is atomic if every
-irreducible element is an atom.) For example, the face lattice of a mev_en. isa
plean lattice. We say that P and Q are combinatorially isomorphic if there is an
er preserving bijection between P and Q. In most parts of this paper, we will
distinguish between combinatorially isomorphic polytopes and we i& also, by
Ibuse of notation, not distinguish between a polytope P and its face _ﬁe.am.hA.mv.
L o,nww that Q is dual to P and write @ = P*, if there is an order reversing v_._onawou
#tween L(P) and L(Q). Every polytope has a dual given by the polar construction
[22] Ch. 3). : o
A meet-semilattice is a poset with the meet operation. Every fipite meet-semilattice

1.2. A START
Theorem 1.3 Every d-dimensional polytope has at least d + 1 vertices.
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in U. An empty face of K is an induced polyhedral subcomplex of K which is
meomorphic to a polyhedral sphere. An empty 2-dimensional face is called an
K mpty polygon.

% For the proof of Perles’ theorem, we need only the much simpler concept of empty
& ramid. An empty pyramid of K is an induced subcomplex of K which consists of

1] the proper faces of a pyramid over a face of K.

becomes a lattice by adding to it a maximal element. A polyhedral complex is
meet-semilattice in which every lower interval is combinatorially isomorphic to a fag

lattice of a polytope. A simplicial complexis a meet-semilattice in which every lows
interval is a Boolean lattice. To every polyhedral complex K, there is an associate
topological space denoted by |K|. -

Intervals in face lattices of polytopes are also face lattices of polytopes. If L(Q

is combinatorially isomorphic to an interval of L(P), we say that Q is a guotient o
P. If F is a face of P, the interval [F, P] in L(P) is the facg lattice of a polyte
denoted by P/F. For every meet-semilattice L, we will use the notation L/F -}
denote the set of all elements of L which are > than F. L/F is called the link of §
in L. Let K be a simplicial complex and let F be a face of K. The atar of F in Ki

. _h-VECTORS, g-VECTORS AND THE g-THEOREM

5t d > 0 be a fixed integer. Given a sequence f = (fo, f1,. - fa—1) of =o==o,m%m<o
Mtegers, put f1 =1 and define A[f] = (ho, b1, ..., ha) bY the R_w...mo.:

denoted by st(F, K), is the simplicial complex spanned by all the faces contain 4 d-k_ 4 gk . o
F. Note that if v is a vertex of K then st(v, K)-is a cone over the link of v in liwrms = .lesnl? -nT - @

Clearly, a link of a face in a polyhedral complex is itself a polyhedral complex
a link of a face in a simplicial complex is a simplicial complex. )
A simplicial polytope P is a convex polytope all whose (proper) faces are s
plices. The set of faces of P is a simplicial complex, denoted by B(P), and it is
called the bosndary complez of P. If P is a simplicial polytope and F is a face of y:
then P/F is also a simplicial polytope. The boundary complex of P/F is the link 68
the face F in the boundary complex of P. A simplicial d-sphereis a simplicial
plex K such that | K| is homeomorphic to the d-dimensional sphere S4. Clearly &
boundary complex of every simplicial d-polytope is a simplicial (d ~ 1)-sphere
the converse is far from being true. However many results on simplicial polyt
extend (or are believed to ‘extend) to arbitrary simplicial spheres. s :
" A ranked atomic lattice L is relatively complemented if every interval'in
atomic. It is sufficient to require that every interval of rank 2 is atomic or, in oth
words, that if z > y are elements in I and z does not cover y, then there are at
‘two elements of L strictly between z and y. (See [11).) Clearly, the face lattice
every polytope is relatively complemented. v -

¢ ¢ = f(K) is the f-vector of a (d - 1)-dimensional simplicial complex K then
= h(K) is called the h-vector of K. For the case where K is the boundary
mplex of a simplicial sphere, the g-vector g(K) = (g0, 91, » g472)) associated with
defined by g; = hi — hi—1. Thus,go= 1,01 = fo—(d+1), 92 = h-dfo+ (Y
Snmulﬁlcb+@?+ﬁ.ﬂ~vEauoou. G
In 1970, P. McMullen [36] proposed a complete characterization of f-vectors of
¥ undary complexes of simplicial d-dimensional polytopes. McMullen’s conjecture
settled in 1980. L. Billera and C. Lee [10] proved the sufficiency part of the
secture and R. Stanley [48] proved the necessity part. Stanley’s proof relies on
algebraic machinery including the hard Lefschetz theorem for toric varieties.
ntly, McMullen (37] found a self-contained proof of the necessity part of the-g-
1. Tt is conjectured that the g-theorem applies to arbitrary simplicial spheres.’

ety

For positive integers n > k > 0, there is a unique. expression of n’of the moa- 5

4

.E, EnL ,a.. . },
.H 4 ~\ ,,m
. .,;ALATHT +A..v ...:
Rwhere a; > ax_1 > ... > @; > i > 0. This given, define - S

_far-1—1 ap-1—1 a..l.uv o 6)
p %?TATH v+A va+.:+A,.L : ©)
eorem 1.5 (g-theorem) For a vector h = (ho, b1, ..., ha) of nonnegative inte-
the following condilions are equivalenl:

'h is the h-vector of some simplicial d-polytope.

h satisfies the following conditions

() hp = byt fork= o,uﬁ..;m

" Pul gp = hg — hi-1.

ﬂo\ go=land g 20, k= M.N:....ﬂmu.

j (c) O (gr41) S gk < 9

I The relations of part ii(a) are the well-known Dehn-Sommerville relations. They
old for arbitrary simplicial spheres and even for arbitrary Eulerian simplicial com-
plexes [33, 42]. Part ii(b) consists of linear inequalities called the generalized lower
bound inequalities proposed by McMullen and Walkup in [35).

1.4. EMPTY FACES - A -
Let Kbea u—nﬁroﬁ_ complex. An empty simplez S of K is a minimal non-face of
that is, S is a subset of the verticesof K, S ¢ K but every proper subset of S is in .k :
Empty simplices are called in {3, 40] missing faces. We want to distinguish betweess
empty faces of various types and therefore we use a slightly different terminology.’3

Lemma 1.4 The sel of empty simplices of a simplicial complez K determine
complez. : -

Proof: A set of vertices of K is a face if and only if it does not contain an empt;
simplex.

Problem 1 Let m;(K) denotes the number of emply simplices of K of size § +
Characterize the vectors (my(K), my(K), ---ma(K)) which arise from simplicial mm.,
polytopes. :

Let K be a polyhedral complex and let U be a subset of its vertices. The induced’
subcomplex of K on U, denoted by K (U], is the set of all faces in K whose vertices §
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Both Stanley’s original proof and McMullen’s new proof of the necessity of th
g-theorem give a (completely &m.anasc proof of the same algebraic statement, .H,_ ¥
algebraic statement can be expresses in terms of the Stanley-Reisner ring [49], or §
a property of certain stresses on simplicial polytopes (and also in terms of algebrai}
shifting [31]). For a thorough explanation the reader is referred to Carl Lee’s papg
in this volume [34]. :

The g-theorem demonstrates the importance of the g-numbers to the combing
torial theory of simplicial polytopes (and spheres). It is natural to ask how co;
natorial properties of P are reflected by its g-numbers.

A far reaching extension of the h-vector (and g-vector) for general vo_weovoa
given by Stanley [45], see [8, 26]. We will discuss this in Séction 4. -

The mo=o§=u conjecture was suggested by Kalai, Kleinschmidt and Lee. If trag
this conjecture gives a sharp form of Theorems 2.7 and 3.8 below. ,

Conjecture 2 For all simplicial d-polytopes with prescribed h-vectorh = (ho, by
hga), the number of i-dimensional 5-&5& simplices is mazimized by the m.zn
polytopes Pgr(h). .

BP(h) is the polytope constructed by Billera and Lee [10] in their proof of t
sufficiency part of the g-theorem. : is pEeo _uoB.Eo that the ooEoan.o applies s
to mononw_ voa.nov%.

».2. THE SIMPLICIAL CASE OF PERLES’ THEOREM

‘: n.:.a&.e: A collection {4;,A3,-- < A} of sets is a sunflower if every element
hich belongs to two or more of the sets ¢o~o=mw to all the sets. In other words, let
= N, A then for every i # j, AiN4; =

ma 2.4 Let P be a simplicial d-polylope, and assume that P coniains b disjoint
pty simplices, then P has at least d + b vertices.

4 nvnoon. Let F be a facet of P. Clearly every empty simplex of P must contain a
ortex not in F, but V(P\V(F) = fo(P) — d = b. (Here «Aﬁv ‘denotes the set of

ertices of F.)

; n 2.5 Let Pbea 2.51..2..,& d-polytope, Aaam assume that P contains a stin-
flower a\ size b of emply u.a.l.nna. then P has & least d + b vertices.

roof: First note that if S is an aEEQ simplexinPandAC S then S\A is an empty
lex in P/A. Now, if P contain a sunflower {41, 4, -- - Ay} of empty Ev—_oon
fhd Ni_,A; = R then Aj\R, A2\R,..., Ai\R are b disjoint empty simplices in

= P/R. Therefore by boBB«. 2.5, ?AQ dimQ > b, and by Lemma 2.1,
V d>b. , ; , ;|

a 2.6 Amnmmu.wb&o sunflower lemma [18]) Let F be a " collection o a.
.&:&. contdins no sunflower &4 size b a.na |F| < m(n,b) = ? 1)n. =_ :

S

~—

2. m.omwaovmu with ».@1 <on»—§ .E& nu»n._@a. nro—wno.u nroonou-

2.1. gozoeozasé _.w.ovma.ﬁm N of By induction on n. Let F be a collection of n-sets s_a.o:a a B:&oio—. of
: ,-and let G be a maximal subcollection of vw:.s..uo disjoint sets. Put A =
Lemma 2.1 For cvery face F of a polytope ﬁ. SQ\E +91(F) € ai(P Then G| < b, 14] < n(b—1) and every set in F contains an element from
particular, 91(F) < g1(P) and 91(P/F) < 1(P)- For each a € A, the’ . family m.?v = {S\{a} : S € F,a €S} is a family of
— 1)-sets without a sunflower of size b. Using the Em.._oso: rv._voevows. ‘we mo.
< n(b—-1)- (b -1)"Yn-1)! = m(n,b).
Let me mention an old and still very interesting conjecture of Mnmma and Rado.
f(n,b) be the maximur size of a nEE_w. of n-sets 5:—9; a sunflower of size b.

jecture 3 Awnmg and wbmcv Fora ﬁn& b f(n,b) < A Q?va E«n-« QAS is ¢
gction of only b.

el 3

Proof: Let k = dimF and note that dim(P/F) = m k—-1. ?Q.\m.v h
pumber of (k + 1)-faces G which contain F. Choose a vertex vg in G which is ng
a vertex of F. Clearly if # and G are two different (k + 1)-faces which contay
F then vg # vg. Therefore fo(P/F) < fo( P) = fo(F). So g1(F)+ g1(P/F
fo(F)—k =1+ fo(P/F)— (d— k) £ fo(P) —d ~ 1= g:(P).

}.emma 2.2 [9] Put v(P) = Maz{fo(P)— .?Am.v ~1:Fisa .?m& of P}. 5.2.
every facet F e\ P, v(P) 2 v(F).

Proof: Let F be a facet of P and let G be a facet of F. G is the intersectid

of F with another facet F/ of P. Thus V(P)\V(F') D V(F)\V(G). _Hronon,;

fo(P) = fo(F') 2 fo(F) ~ fo(G) and the assertion follows.
Note that v(P) = 0 if and only if P is a simplex.

: >ru a corollary to the E::.u we proved in this section we obtain:

eorem 2.7 Let P be a d-polylope with d + b vertices. Then the total number o,
Apty simplices of dimension < k is bounded by a function of b and k.

f Proof of Perles’ theorem, the simplicial case:

f We want to bound the combinatorial types of k-skeleta of simplicial m.vo_ﬁovo.
3 with d+b vertices. The k-skeleton of P is determined by the set of empty simplices
“P of dimension < k. The number of empty simplices of dimension < k is bounded
m(k + 1,b+ 1) = b¥+1 . (k + 1)!. Therefore, the number of all vertices of these
ty faces is bounded by (k + 1) - m(k + 1,5+ 1) and the number of isomorphisn
es of the family of empty simplices is at most Tar; (F+3m(E+1, ¥+1)). This is
Bughly exp((k + 1)*(log(k + 1) + log b —1).

Lemma 2.3 Every d-polytope with d+ b vertices contain a (d — b+ 1)-face :;:ns.
a simplez.

Proof: Choose a sequence P D Fy_1 D Fa_y D --- D Fa_p = G such th§
v(F) = ?Am..v f{Fi—1)—1. IfGisnot a m::v_ox 25: v(G) > 0 and arowano.
by the previous Lemma, v(F;) > 0 for every i > d — b+ 1. Therefore EQ& £
g1(G) +b—1>b. A contradiction.
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The nonnegativity of g2 can be proved by purely combinatorial methods as well
by the rigidity theory of frameworks. Both approaches apply to a very general
ass of simplicial complexes, the class of pseudomanifolds. The rigidity theoretic
finterpretation of gz gives much information on the structure of simplicial polytopes
b and simplicial manifolds) with small values of g2. This is described below in Section
3.3, The proofs of the necessity of the g-theorem (both Stanley’s original proof and
AMcMullen’s recent proof) deduce the theorem from a certain crucial algebraic fact.
EThis gives an interpretation of g; which is closely related to the rigidity theoretic
Enterpretation of g2, see [34, 37, 31], and allows the extension of some of the results
85 simplicial polytopes with small values of gi. L
In Section 3.2 we state a conjecture giving a complete description of g-vectors
of sequences of simplicial polytopes which converge to smooth bodies.” Like the g-
heorem, the conjecture consists of a linear part and a nonlinear part. The linear
of the conjecture may be doable by improving the methods and results described
. In Section 3.3 we describe the main tool we use, the notion of stresses. This

2.3. PERLES THEOREM - THE GENERAL CASE
Lemma 2.8 A d-polytope P with d +b vertices has at most 2b disjoint empty pyr

mids. i . E

A

Proof: It follows from Lemma 2.3 that P must have a (d—b— 1)-face S which

is a simplex. Every empty pyramid (or empty face) must contain vertices outside Si

The lemma follows from the fact that [V(P)\V(S)| = 2b. A

Lemma 2.9 Every collection of more than (b—1) -n" r-faces, each having at mos)

n vertices, contains a sunflower of size b. .

Proof: The proof follows the inductive proof of the sunflower lemma. Let F
a collection of faces of dimension r (or less), each having n.vertices or less without -
sunflower of size b. Let G be a maximal subcollection of pairwise disjoint faces. o
A be the set of vertices of all faces in G. Then |G| < b, |A] < n(b—1) and ‘every sél
in F nouowmsu an element from A. For each a € A the family F(a) = {S/{a} : séa
Fae S} is a family of (r— 1)-faces with at most (n—1)- vertices without a sunflov e s a very quick outline of some facts from Carl Lee’s paper {34). In Section 3.4 we
of size .e.ncmm..w S_sm_sss. hypothesis, we get |[F| < n(b—1)- (b~ 1)~ n"" jtate the lower bound inequalities, and in Section 3.5 we describe the structure of
i ﬂo.m %o K erles nrno,noa ?.wﬂ&n m.m.—. a vo—w.ro.._m—.»— gomplex K ‘.nomno ha Rhe proof that g2 =0 only for stacked polytopes. In Section 3.6 we describe some
kernel of P, er(P), 8. e n_-.m, union of the sets of vertices of all empty p. ial information on polytopes with vanishing gx. In Section 3.7 we extend Perles
% K. ﬂ—oﬁ._v. the omivanc:L type of Ker(K) and the number of <ow$8>w orem to simplicial polytopes with bounded um.snr.,,_wmmmol,u.m we study in more -
%Mo,nn.nﬂ._” %rm. MMWWHM»MM_M ”MMG nwm.u Mu Z»ﬂ.“w. .amro wM. of .wnﬂm_ of K is pre the case k = 2. It turns out that every simpl -wp polytope with a small value
Ker(K). F T i the [THold pyramid i«h hﬂ_gw,uom,ﬁn, Sn which are disjoint fro ovn be ow»wmso.._ by gluing ewmwnron “small” pieces. In Section 3.8 we diverge to
- -Lemma 2.9 implies that the kernel of the k-th skeleton of a d-polytope with d {3 i ,.W-M?..M”..:“—NMMQS of simplicial polytopes 11%&.%@ ,_-Eﬁ._ more information
vertices has at most (25)7~1(b+k))" vertices. Therefore the number of isomorp g ) V ,
n«ﬁﬁ%m.uroﬂonw‘on.&.vo_ﬁovom 1m§m+e<on£8m$vo=nm&v«. s—mb_.
»-&wuoﬁmobw_vo_«&o&n&ooaﬁox&1§G$a1~?+§1<n—i8a. ;w

5

E'0 " g-NUMBERS OF SIMPLICIAL POLYTOPES WHICH CONVERGE TO A SMOOTH BODY
e state two conjectures on the behavior of .e.u._iw.o.l.Om &va&w- polytopes which

erge to a smooth body. The first conjecture falls into our.study of polytopes
th bounded values of gi. It is trivial for k =1 aid follows from the result of
tion 3.8 for £ = 2. The second conjecture calls for a similar study of polytopes
it which g5*> — gey1 is bounded. L T s o

2.4. THE SCOPE OF PERLES’ THEOREM- ;
As easily seen, the proof of Perles theorem for simplicial polytopes given above
plies to arbitrary pure simplicial complexes. The proof of the general case app!
to a large class of ranked atomic lattices. Perles observed that his proof (and
applies to the proof given here) applies to arbitrary ranked atomic relatively con
plemented lattices. He went further to define an even larger class of lattices, th
class of pyramidally perfect lattices, for which his proof applies. For an element 2
an atomic lattice L, J(z) denotes the set of atoms below z. An atom & is pyramidd]
with respect toz € Lifa £ zand J(zVa) = J(z)U{a}. A ranked atomic latti
called pyramidally perfect if, whenever a is pyramidal w.r.t. x, it is also pyrami
w.r.t. every y, where y < z, '

jecture 4 ([24]) Let k and d be positive inlegers, d>2k. Let Py bea uaneaanm
-polytopes whick converge to a smooth body K. Then

lim gx(P,) — oo. (7

. n-—00

Jonjecture 5 Let P, be a sequence of d-polytopes which converge to a smooth body
K. Then for k < [4/2},
4 lim (g4(Pa) — 8 (g£41(Pn))) — o0 ®)

n-=+00

I If Conjectures 4 and 5 are true then they give a complete description of sequences

. g-vectors which come from a sequence of simplicial polytopes converging to a
oth body K. (Note: the description is independent from K¥)

“If P, is a sequence of polytopes which converges to a convex body K, and Qn is

- Buy sequence of polytopes, then one can glue a projective copy of Qn to one facet

1 This part of the proof is taken from [40] without changes : b P, and the resulting sequence of polytopes will also converges to K.

3. Simplicial polytopes with small value of gx 4_
3.1. OVERVIEW 1q
In this section we discuss simplicial polytopes with a small value of gi. The situation
is simpler for g2 and more involved for higher k’s. 1

i
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Here, Aff(F) is the affine span of the face F. Let S¢ denote the space of k-stresses
K.
i Let Ax(K ) be the space of all assignment of weights wg to the k-faces G of K.
Bjow consider the map T, which assigns to every w € Ap(K) weights on (k —1)-
sces F as follows: the weight of a (k — 1)-face F is ¥ {we(v(F,G)—vr) :GD F}
sidered as a vector in the quotient space RIJ/Af(F). (The weights are vectors of
b nensions d — k + 1.) The space of k-stresses is precisely the kernel of Ty;. There is
complementary notion of k-rigidity, (or skeletal k-rigidity) which is of importance
. Roughly speaking, K is k-rigid if the image of T; is “as large as possible”.
at we will need is that if K is k-rigid and K’ is obtained from K by adding just
se k-face then K’ has a non-zero k-stress. .
Al these concepts become classic for k = 1. L-rigidity is called infinitesimal
Peidity. 1-stress is the classical notion of a stress of a framework. O-stresses are just
se relations among the vertices, and O-rigid just means that the vertices of X
_&< %E w&. . i ) i
The following basic fact connecting stresses with the g-vector, follows from the
R¢0 known proofs of the necessity part of the g-theorem. (In Stanley’s proof, it is
ved only for rational polytopes.) : ; O
Sorem 3.1 Let P be a simplicial d-polytope and let k < [(d+1)/2). Then %%qu..h
EmSE(P). . R
Bhis.is-equivalent to the fact that Skeli(P) is krigd., - i
EAn important fact about stresses is that they behave nicely under “forming a
». Let K be a simplicial k-dimensional complex and consider a generic embed-
of K in R4. Consider also a generic embedding of a cone over K in R¥t1. ‘Then
.embedding of X is k-stress free iff the embedding of the cone is k-stress free. See
i.(This, is related to the fact that the operation of “forming a cone” commutes
algebraic shifting.) - S arpe
nark: Stresses can be regarded as analogs for Gale transforms which are one
most useful tools in the study of polytopes with few vertices. However, the
jon of the basic property of Gale transform is not yet known: ER RO

If G4 is the set of g-vectors of simplicial d-polytopes, and By(r) is the set
vectors (ay, . . ., afy/a)) such that |a;| < r for every i, then, if Conjectures 4 and 5 arg
true, a sequence of g-vectors {g"} is the sequence of g-vectors of simplicial polytopeég
converging to a smooth convex body K if and only if, for every r, there is N, sucil
that g + By(r) C Ga for every n > N;.

Remarks: 1. Conneclions between metrics on the sphere and combinalo
tnvariants , :

It is possible to formulate similar-questions in a purely combinatorial wa;
sequences of simplicial spheres (and even simplicial manifolds). Every triangulatio 3
of the sphere induces a metric and it is possible to consider limits of such metrics (s
(21]) as the number of vertices tends to infinity. It is natural to study Conjectu
4 and 5 in this more general context, and more generally to study the following ' A

Problem 6 Given ¢ melric on the (d— 1)-sphere and sequence of simplicial sphereg
whose induced metrics converges to this metric, find relations between the g-numbery
‘(and other combinatorial propertics) of the simplicial spheres in the sequence a4
the geometric properties of the limiting metric. i ,

'2. Separation .‘gmal.wm.n‘wwﬁav.v“ .

L . "
"Let K be a pure (d - 1)-dimensional simplicial complex. The dual graph of K]
denoted by G*(K) is defined as follows: the vertices of G* (K) are the facets ((d—1}
nobno of K and two vertices F' and G are adjacent if FNG isa (d— nzm.uaﬁmma{
L face. If K is the boundary ‘complex of a simplicial polytope P then G*(K) is j
a the graph of the dual polytope P*. - g
_ “Let f(r) be a function of the integer number r and coisider the class Py of
all simplicial polytopes P (or even simplicial spheres) with the following propert;
: whenever r vertices are deleted from G(P;) then the remaining graph has a co
i nected component having all, except at most F(r), vertices. It is plausible (and th :
i would imply Conjecture 4) that for every function f(r) and for all polytopes in Py
 the value of gx(P) (k < 1d/2]) is bounded. See [31] for some results on separatiof
properties of graphs of special types of simple polytops. o

PR
d.a

ture 7 ([24]) Let P, and Py be two simplicial d-polylopes and let p'bea
ection from V(P) o V(Q) such that ¢ is a combinatorial isomorphism from
t(P) to Skelx(Q) and, moreover, the map induced by ¢ gives an isomorphism
een the space of k-stresses of P and the space of k-stresses of Q. Then ¢ induces
w binatorial isomorphism between P and Q.

3.3. STRESSES : .
This is a very quick outline of some important ingredients of Carl Lee’s paper [34]3
See also the papers of Tay, White and Whiteley [50] on skeletal rigidity. The readet}
should also consult Lee’s paper for the relations between stresses and the Stanley$
Reisner’s ring, and [31] for the connection with algebraic shifting.

Let K be a simplicial complex embedded into R3. (By “embedded” we mean onl
that the vertices are embedded in such a way that the vertices of faces are affinely
independent.) A k-strese (which is an abbreviation here for an affine k-stress since
we will not consider linear stresses) is defined as follows. For every (k — 1)-face F ]
choose a point up € F. If G is a k-face containing a (k — 1)-face F, let eﬁﬂg
denote the vertex of G not in F. A k-stress is an assignment of weights wg to the’
k-faces G of K such that for every (k — 1)-face F, 1

,,,, other words, is the k-skeleton plus the vector space of k-stresses determine

Biquely the combinatorial type of simplicial polytopes?

ENote that for k = [d/2], the space of stresses is trivial, but indeed an important
Beorem of Perles asserts that for two simplicial d-polytopes, every cuwbinatorial
dmorphism between Skeljg/2)(P) and Skelya/2)(Q) can be extended to a combina-
isomorphism between P and Q. Also, as we shall see later, if for k < [d/2], the
e of k-stresses of a simplicial d-polytope is trivial (that is, gk(P) = 0) then P
E P8 no missing faces of dimension greater than k and smaller than d — k, and again,
je k-skeleta determine the combinatorial structure of the polytope.

3 {we(«(F,G) - ur) : G D F} € Af(F). (9)]
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3.4. g2 AND THE LOWER BOUND INEQUALITIES

A simplicial d-polytope is stacked if it can be obtained by gluing d-simplices along]
facets. Every stacked polytope with n vertices is obtained from a stacked pol
with n — 1 vertices by adding a vertex, beyond exactly one lacet. -P 18 stacked if
only if it can be triangulated without introducing faces of dimension smaller tha
d — 1. The boundary complex of a stacked polytope is called a stacked sphere.

It is easy to see that the f-vector of a stacked d-polytope is determined by
the number of vertices. Let ¢x(n,d) denote the number of k-faces of a stacked d¥
polytope with n vertices. Thus, ¢x(n,d) = @a - nﬂvw. for 1 <k<d-2 an
$a-1(n,d)=(d—Dn—(d+1)}{d-2).’ . ~

‘The lower bound inequalities assert that for every simplicial d-polytope. P with
vertices, fr(P) > ér(n, d). The case k =1 of this inequality is just the nonnegativityj
of g2. There is an inductive way to deduce the lower bound inequalities from the
nonnegativity of g2, see [5, 35, 25]. However, this inductive argument does not apply
to certain generalization of the lower bound inequalities; such as, those for centrallyf}
symmetric polytopes and for general polytopes. Thus, it may be useful to find
direct interpretation of gar] = fi(P) ~ ¢i(n,d) as the dimension of some vec
space. . =

AT . N RN < :
3.5. SIMPLICIAL POLYTOPE WITH VANISHING g3 N ;
Theorem 3.2 For d > 4, the following conditions are equivalent: (1) P is stack
(2) P/{v} is stacked for every vertez v {(8) P has no empty simplices of dimensio
r,forl<r<d-1. S : R B -

Py . _

The proof of this theorem is given in [25]. -It applies to arbitrary simpli
(d — 1)-manifolds which are simply connected. For non-simply connected manifol
M, conditions 2 and 3 remain valid and are equivalent to the fact that M is obtain:
from the boundary of stacked polytope by additional operations of “handle forming”
via identifying the vertices of two disjoint facets and deleting the facet.

Theorem 3.3 For d > 4, the following are equivalent: (1) P is stacked (2) P ka f]
no emply faces (of any kind) of dimension r, for 1 <r < d—1 (3) P has no emply
simplices of dimension r, for 1 < r < d— 1, and no emply polygons.

The crucial point behind this theorem is the situation for a simplicial 3-polytope
A simplicial 3-polytope is stacked iff it has no missing polygons other than trian:3
gles. While the two theorems above are purely combinatorial, rigidity arguments;
are needed to prove the following .

1

Theorem 3.4 Ford > 3, if g2 = 0 then
(1) P has no empty faces of dimension r, 1 < r < d —1, (8) g2(P/v) = 0 forg
every verlez v, and (8) P has no emply polygons.

1t follows from the theorems quoted above that if g2(P) = 0 then P is a stacked?
polytope. This result applies to arbitrary simplicial manifolds (and pseudomani-{
folds).

'y

bf size k + 1,
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3 Remark: There is an interesting issue which is related to the preceding theorems.

onsider a simplicial manifold K and assume that all links of vertices K/v (which
simplicial spheres) have certain combinatorial properties. What does this imply
out the topology of K? If all links are stacked spheres then for dimension > 3,
is implies severe restrictions on the topology of K, in particular, if K is simply
anected then K is a sphere (the 3-dimensional case is open).

6. SIMPLICIAL POLYTOPES WITH VANISHING g;

1-stacked) vo-ﬁovm: whi

-8t o.‘.vow opes are themselves

k fuite mysterious. Parts of the discussion concerning the vanishing of g; extend to

er k's but other parts are still not known (but perhaps doable).

roposition 3.5 Ford > 2k + 3, the following are equivalent: (1) P is k-stacked
2) Plv is k-stacked for every vertez v.

roposition 3.6 Ford > 2k + 1, if gi(P) = 0 then (1) P has no 2:3 .a..air.nn«
f dimension r, k < r < d—k,"and (2) g1(P/v) = 0 for every vertez v. .

" Proof: (1) Assume that S is an empty k-simplex. Now, the vertex figure Plvis
t-rigid and therefore st(v, P) (a cone over it) is k-rigid. R S\v is a (k — 1)-face
% P which is not in (v, P). Therefore st(v, P) U R has a non-zero stress and since
v, P)UR C P, P has a nongero k-stress, and gi(P) > 0. If S is an empty simplex
choose V C S, [V| = i:and a vertex v € V. Apply the same argumen
$\<gﬂow\ﬁw\/ﬁewy o S TN - :
. Part (2) follows at once from the cone property for k-stresses. In fact,

uma 3.7 g1(P/o) < 9a(P). _. |
Proof: gi(P/v) is the dimension of the space of k-stresses of P/v w.r.t to em-
ding in R%-! and, therefore, g;(P/v) is the dimension of the space of k-stresses
(v, P) w.r.t. embedding in R4. :

‘Part (2) of Proposition 3.6 also follows from the identity

3" a(P/v) = (d - k+ 1)ge(P) + (k + ge41(P),

*

e

d the nonnegativity of gr+1(P).

ecture 8 For d > 2k, the following are equivalent: (1) P is k-stacked (2) P
no emply faces (of any kind) of dimension 1, for k <r < d—k. Ford > 2k,
e two conditions are equivalent to (3) g1(P) = 0.

f* Remark: The k-skeleton of every d-polytope contains a subdivision of the k-
eleton of a d-simplex. For simplicial polytopes, the nonvanishing of g, also seems
Rlated to the existence of a subdivision of the k-skeleton of a (d+1)-simplex. Indeed,
he nonvanishing of g; for a simplicial polytope P is equivalent to the fact that the
graph of P contains a refinement of Ks [25). For k > 2, the results of Stanley [47]
relevant.

€]
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”.a pon-zero stress 8, in st(u, K). Moreover, s, has nonzero weight on some edge
f containing u. Since U is an independent set of vertices, this edge is not included
< the star of any other vertex of U. Therefore, all the stresses {s, : u € U } are
Hinearly independent. A contradiction. .
£ 1t follows that for some u € U, st(u,P) does not contain a non-zero stress.
brherefore either P/{u} is a simplex and thus an empty (d ~ 1)-simplex or P/{u} is
siacked, and contains an empty (d — 2)-simplex R which is not an empty simplex in
In this case, RU {u} is an empty (d — 1)-simplex in P. The proof for d =4 is
re involved and we will not include it here. S
Remarks: 1. It is quite possible that u(d,b) is actually independent from d,
d it would be interesting to determine its best possible value. I do not know of
nples of prime simplicial polytopes with ¢; <g2—-1... ... - -
9. The proof of Theorem 3.10 applies in much more general contexts. The proof
s described above applies for simplicial spheres and even for simplicial manifolds.
iovery simply connected prime simplicial manifold can written as a connected sum
2§ prime (simply connected) simplicial manifolds. For arbitrary manifolds, one has
Eo-add another operation - that of “handle forming” via-an identification of two
e S . o . , Ry Facets. Every simplicial manifold with small value of g7 can be obtained from small
Corollary 3.9 There ezists a function uy(r,b) with the following property: if K Bprime” pieces by the operations of connected sum and handle forming. (Each
the k-th skeleton of a simplicial d-polytope P with gi(P) < b (note: g can be dle increases the value of g by (“}!).) It follows that for every b, there are only
from the k-skeleton) then there are only ug(r,b) possibilities for the.r-skeletow, of itely many d-manifolds which have a triangulation K such that gz(K) < b.
R : R o . Even more generally, Theorem 3.10 applies to all pseudomagifolds such that
e link of every face of codimension > 1 is connected and-the-link of every link of
nsion > 2 is simply connected. - Cel e :

3.7. ANALOG OF PERLES’ THEOREM FOR SIMPLICIAL POLYTOPES WITH SMALL
VALUE OF g; ]

Theorem 3.8 For positive integers k > 1,r > k and b > 0, there is a functio
bi(r,b) with the following property: if P is a simplicial d-polytope with gi(P) <3
then P has at most bp(r,b) empty r-simplices.

Proof (sketch) )
By the sunflower theorem, it is enough to prove that there is no sunflower of ogvm .
r-simplices of size b + 1. We have seen that an empty r-simplex, d — k& > r >~
is responsible for a k-stress, so it is enough to show that in case of a sunflow
i {51,52,.-.,5141}, we get a contribution of at least b + 1 to the space of stresse
g Let R be the intersection of the S;'s. If {R] > r — k then the situation is very easy:
= choose V C R such that V| = r — k and a vertex v € V. Let K = P/(V\{v}
- K /v is k-rigid in dimension d — [V] aid therefore, st(v, K) is k-rigid in dimens;
E d — |V| + 1, and adding to it the b+ 1 k-faces S${\V,S2\V ..., S5i31\V creates
k-stress space of dimension at least b + 1. The case where |R| is smaller is sligh
more complicated and we omit the details. LR

Note that the number of 1-skeleta of stacked d-polytopes with n vertices is-e¥3
ponentialin'n.. . ¢ : : \ o

It séems that Theorem 3.8 applies for general empty faces and not only for emp
simplices. What ‘we need to do is, given an empty face in dimension r; k<
d — k, find a nonzero k-stress such that for disjoint empty faces, one gets linearly
independent k-stresses. It looks as if an appropriate Meyer-Vietoris type stat:
for k-stresses is needed. Proving this may be helpful also in verifying Conjecture

DIVERSION: FINER INVARIANTS )

A n order ideal of monomials I is a collection of monomials in variables (say) z1,23,...
Bich that 1 € I and if m € I and m divides m then m’ € I. We will denote by fi(I),
» number of monomials of I of degree k, and call the vector (fo(I), f1(D), - -.), the
-vector of I. (Note: the indices here are shifted by 1.) An order ideal of Ewmoﬁmwr
8. shifted if for every-monomial m in S, if z; has positive degree in m and i < j then
s...am._mN. ) R
b A sequence of integers (mg, my, .. .) is an M-vectorif mg = 1and 0 < O (my41) <
bws for every k > 1. An old theorem of Macaulay asserts that M-vectors are precisely
the possible f-vectors of an order ideal of monomials. Every M-vector can be realized
fasually in many ways) as the f-vector of a shifted order ideal of monomials.
i For a simplicial d-polytope (and probably for every simplicial (d— 1)-sphere),
he vector (1,41, .- ..nﬁ_v is an M - vector. The proof of the necessity part of the
~theorem actually associates to every simplicial polytope P, a shifted order ideal of
Jhonomials S(P) such that g;(K) is the number of monomials of degree i in S. (See
[31).) S(P) can be regarded as a delicate invariant of P. It is conjectured that the
fame algebraic construction applies to arbitrary simplicial spheres.
Conversely, for every shifted order ideal of monomial S, there ista construction of
A simplicial sphere K (S), see [28]. It is conceivable but not known that S(X(S)) = S.
It would be interesting to study the structural properties of P as a function of
S(P), in a manner similar to the approach of this paper. Here is a far-reaching

3.8. SIMPLICIAL POLYTOPES WITH SMALL VALUE OF g; o
A simplicial polytope P is prime if it does not contain an empty (d — 1)-simpl
| If P is not prime then P can be obtained by gluing together along facets of primg
simplicial polytopes. We write P = P\#Py# - - - #P; for the description of P as the
, union of prime simplicial polytopes. It is easy to see that g2(P)= Y ga(F:). The
following theorem shows that if g3(P) is small then P is obtained by gluing togetheg
many small pieces. (Clearly most of these pieces must be simplices.)

Theorem 3.10 There is a function u(d,b) such that if P is a prime simplicial
polytope and g2(P) < b then g1(P) < u(d,b).

Proof: (sketch) For d > 4, we know that the number of empty simplices of P
of dimension r, 1 < r < d —1, is at most X = X(d,b). The number of edges off
P is bounded by a linear function of the number of vertices. Therefore (by Turdn'g
theorem) if the number of vertices is large then G(P) contains an independent sef
U, of vertices, of size > X. For u € U, if P/{u} (= the link of u in P) is not stacked]
and also if P/{u} contains a empty d — 2 simplex which is not a face of P, we g¢
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extensions of Conjectures 4 and 2. s k. - Define by induction two polynomials

Let M(d) denote the set of all monomials of degree < [d/2] on the countable o d o 14/2)
of variables z;,23,...,%n,.. . A he(z) = Muruamnw.ulav = M grzdk,
k=0 k=0

Conjecture 9 Let P, be a sequence of simplicial &-v&ieuo«‘.&:.av converges to §

smooth body K. Then US(P,) = M(d). ) ¢h that: (a) g& = hs — ?h.lr (b) if P is the empty polytope or a 0-polytope P

‘Oﬁﬁuwnhmv"ﬂ-gﬁ

d
he(z) =3 (=~ 1+ _{or(z) : 2 € Pr}-

k=0

Conjecture 10 For simplicial spheres K with S(K) = S, the vector of emply si 3
plices is mazimized for the complez K(S). : S

Remarks: 1. It has been known for quite a long time that-there are simpli
(and polyhedral) spheres that cannot be realized as the boundary complex of &
plicial polytope. In high dimensions, there is a striking gap between the number of
combinatorial types of simplicial polytopes and the number of combinatorial typ
of simplicial spheres. See [20, 28]. However, most of the results mentioned h
for simplicial polytopes are either known or conjectured to be known for simplic
spheres. While face numbers are probably too weak to distinguish simplicial po
topes from arbitrary triangulations of spheres, it is possible that the finer invari
S(K) will contain sonie useful parameters for this problem.. ,

9. It is interesting'to ‘note that neither the g-vectors nor the finer invariaig
S(P) can distinguish between different neighborly polytopes. Indéed P is neighborig
iff S(P) is the ideal of all monomials of degree < d/2in n—d variables.
combinatoiial structure of neighborly polyfopes (even in dimension 4) is a rich topi
and it seems that completely different invariants are needed for their study.

. ..E,Eu 91(P) = fo(P)—d—1and

P = 1P+ o) -3 F e o) = kP + (¢

_v,.

he higher ¢ uE:-KIa for mouﬂ.m polytopes are quite B«d«m&o&a. and at present,
fieir nonnegativity is known only for polytopes with rational S.wna_ooa. Goresky wm._
[acPherson (unpublished) developed a concrete way to describe o(P) 8 certain
omology groups based directly on the geometry of the polytope. This aoaonaoa
cription (which they proved only for rational polytopes, ) may m&m@ some _mmrn on.
r geometric meaning. McMullen’s recent new proof of the .uogwm_@ part of the
theorem also gives some hope for an elementary Feo_.vnn.nmeoa of the n.b.:-,uronu
general polytopes, and a new proof for their nonnegativity. z_nz_.aob ] v—.oo». -
contains a relatively easy reduction from simple polytopes to rational simple
opes, and there is hope that this part, at least, can be extended to .moﬂn—.w—

~

4. General Polytopes

4.1. OVERVIEW . .

In this section we consider general polytopes. In this case even the definition
gx(P) is quite subtle. We describe the definition in Section 4.2. More details
be found in Bayer’s paper [8]. Section 4.3 is devoted to gz(P). We describe
rigidity theoretic meaning of ga(P), and describe some facts on the remarkable clasy
of polytopes with vanishing g;. The nonnegativity of the gi’s implies many lines
inequalities for flag numbers of polytopes. The possibility to use the large amo!
of complicated data given by such inequalities to prove basic, and easy to state
properties of polytopes, is discussed in Section 4.4. We describe there results off
Meisinger, who developed the automatic polytope theorem prover FLAGTOOL. : . . al
Section 4.5, we make some conjectures about additional linear inequalities for fl ytopes, the flag numbers are determined by n.wo n@oo numbers, but for gener
numbers of polytopes. In Section 4.6, we discuss special classes of polytopes, and i lytopes, flag numbers seem to be the ..oounmoas =m<p=~==b. A remakable theorem
Section 4.7, we ask how to generalize the notions of - and g-numbers. % o Bayer and Billers asserts that the affine dimension of the space .m. nw g ;,E,.—;iroﬂ
: : olytopesis ca—1, where cq is the d-th Fibonacci ::1?2..

opes. - :

?”—3‘ [45] conjectured that the g-vector is an M-vector for every vo_.Kn..owa.».:,
even known that gi(P) = 0 implies that gr+1(P)=0. memu_ox m._mo.-a&au.e&
extreme combinatorial generality for the g-numbers as defined in this section:
ly, for regular cell decomposition of (homology) spheres whose faces form a
ce.

or a d-polytope P and a subset S = {iy,.... s} C {0, L...,d— 1}, the flag
ber fs(P) is the number of chains Fy C Fp C --- C m.». of faces om P m:.or
dimF; = i;. (The same definition applies to ranked lattices.) For simplicial

4.2. g» FOR GENERAL POLYTOPES AND FLAG NUMBERS

Intersection homology theory has led to deep and mysterious extensions of g-numbers

from simplicial polytopes to general polytopes. ke
The definition (which can be found also in (8, 42]) is as follows. For a polytope

P, denote by Py the set of k-faces of P.

nw g2 FOR GENERAL POLYTOPES AND ELEMENTARY POLYTOPES

it P be a d-polytope. A framework based on P is a graph, embedded in R4, which
obtained by triagulating all the 2-faces of P by polygons. Let fi be the number
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[conjecture 11 The inequality g2 2 0 holds for arbitrary abstract polytopes L.
? quality holds only for face lattices of polytopes. Moreover, every elementary poly-

Bope can be realized with rational coordinates.
It is conjectured that elementary polytopes have many of the pleasant properties
bs 3-polytopes. Here is one question in this direction.

onjecture 12 The graph of every elementary d-polylope is d+ 1 colorable. More-
ver, every graph obiained by triangulating (with no new vertices) the 2-faces of an
lementary d-polytope is (d+ 1)-colorable.

at the main theorems of this section e

of edges in such a framework. ga(P) = H(P)—dfo(P)+ 441} Whit j

by a clever inductive argument m«ﬁﬁ:@—i?w— S_M Moww &AﬂanAivmavoqu_WwwwMMH A

>~mxw=m~o<.v that every such framework is infinitesimally rigid (1-rigid). This impli \

.93 g2(P) is the dimension of the space of stresses of a framework based on m.v d

therefore, g2(P) is nonnegative for every d-polytope. =9
A polytope P is elementary if g2(P) = 0.

Theorem 4.1 Let P be a d-pol: . Th . ;
#(P/F) polytope. en g2(P) > ga(F) + 91(F)g1(P/F) ;

Proof: (Rough sketch) Let F be a k-face of P. Choose a vertex in ;
G containing F, which is not in F. On all these vertices, form u.oMM.vM—wM qu.w.
edges oo:owmo:m to ‘edges of a framework of P/F. Put G = Q-J. Consider no
.Q. * F, the join of Q and H (the graph HUG: the union all edges between a ve ‘.“
” H and a vertex in .Q..v as a framework in R. It is possible to move from G(P!
o a framework containing G + H by successively applying the following operation’,
move from a framework A to a framework A’, by adding an edge 1 and deleting ]
edge ez when AU A’ contains a minimal stress containing both ¢ and-€3. E

. We also conjecture th xtend to higher gi's.

. »o&aannnm 13 ([26]) (1) :(P)=0 if and only if g(P*) =0

" (8) For every face F,qe(P)2 Theo n..@.vnw....ﬁu\wv.

. DIVERSION: QUOTIENTS, FACES AND MEISINGER'S FLAGTOOL

fThe reader may have noticed that the inequalities gx > 0 for general polytopes

- rather complicated, and it may be asked to what extent are these relations
even if they will be proved comple

tely) relevant to basic combinatorial properties
bt polytopes. As described in Bayer’s paper (8]

, (see also [26)), & few basic linear
equalities for flag numbers of polytope imply, by convolutions, a large number
{ other inequalities. Giinter Meisinger developed a computerized system called
LAGTOOL whose aim i8 to try to prove automatically theorems on polytopes
g the large amount of (known and conjectured) inequalities for;face numbers.
Mhe following three conjectures were Alﬁoam others) some targets for mr>Q.HOOﬁ.
ajecture 14 (Perles) For cvery integer k > 0, there ezists f(k) so that every
polytope, d 2> f(k), hasa k-dimensional quotient which is a simplez. -
o-cannﬁnm 15 For every integer k >0, there ezist ..i,«aoa n(k) and d(k) so that
Béry d-polylope, d > d(k), kas a k-dimensional face with al most n(k) vertices.
It can j conjectured that n(k) can be chosen to be 2¢ and that the following
onger conjecture holds. i
njecture 16 ([30]) For every integer k > 0, there ezists d(k) so that every d-
polytope, d > d(k), has a k-dimensional face which is cither a simples or is combi-
&e-...aze isomorphic to a cube.

<

Theorem 4.2 If g2(P) =0 then g2(P*) = 0.

J mﬂdﬂm ?w.wﬂmvv wwonww d-polytope for d < 3 is a_oBonnnnw.dq_oe 4> 4. 73
d = 4, it is easy verify that g2(P) =g P, Fe 2 3 >4. F
induction using the following: Sa ) ..SA ) ,mw.. d > 4, the ..H.vo,o_.os follows b

.Hroo?yauum.e-. 4.3 Fora m.w.&ﬁww« w.& W 4, the .?:2.:.:9« onditionsare equivalent:
) or every proper face I o, P, (1) g2(F)=0, (2, PIFY =0 .
F is a simplez or P/ F is a simplex. ) (¢) 92(P/F) =0 and (3) either

(®) g2(P) =0.

1 n.u H — t u A_ . _. _ - A o . . i
m, e V .v 1imphes A“v Y H,anﬂnﬁ.ﬁ.u.. “v ugra Acv M.OH rational
On.ﬁﬂm .E terms OM ﬂﬂm H:B@Oavu )

33 {92(F) : F € P} +2)_{9:(F) - 01(P/F) : F € P} 10

+) _{92(P/v):vE P} =(d— 1)g2(P)+3
g3(P). :
These conjectures are valid for k = 2. It follows easily from Euler’s .,.rno—.ouberwo
polytope in 3-space has a triangular face or its dual has such a face. It also

%ﬂ. very nwcum*._ m_mwounww of the proof for general polytopes: follow the second proof .L

eorem 9.3 in . ; i :

orem 93 in 5 . . lows from Euler’s theorem that every polytope in 3-space has a face with at most
\m Bahﬂahsﬁaeﬁe\o—uﬂ ngwo&—gannohmﬁnwo—-wa b <,onnm§. and in TSH. itis ~v~0<o& that every &nmvoﬂv.nova‘ d2>5, has a face with

(a) every interval of length two has four elemenis, and ‘et four vertices
The hope (which was fulfilled) was that FLAGTOOL will automatically prove
—2:63

vawn mrmm.o—“wimbm connectivity property holds: for every two elements = and y of :
ran n ere i 4 k-
’ is a sequence of elements of rank k, = Z1,%2,.. ., 2+ = ¥ m._n_-m pme of these conjectures in low dimensions and moreover, (this was not fulfil
,, lved in a proof for arbitrary dimension.

»rw.nﬂﬂwanmm.ow am“m-vunﬂ NI : E_E z<zV, .».on every i. . i Bt will give some insight into what is invo
_vﬁo%83?:&3:95o_omlv._s&:m@mwmmvoomw_nwmon.m i FLAGTOOL proved automatically the following partial results and supported
x::.uaonrooo&ane:—.mmwvoﬁﬁvao:miwav. other results).

simplicial and polyhedral manifolds and pseudomanifolds.
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nequalities do not contribute anything new. They
£ llow from the nonnegativity of the g-numbers. Moreover, similar to the case for
e lower bound inequalities, they also follow from the nonnegativity of the gi's,
‘< r, for the polytope and its quotients. .

I Remark: In order to get the ay(r, i) explicitly, first expand f, in terms of the
s, by the defining relations. Next, use the relations h; > hy fori,d—k>i2k,
tnd h; = hgi for i > d— k. This gives an inequality fr2 Mu.mno.mw?. )h;. Finally,
" and the hy's back in terms of the f{s to obtain fr 2 TF pon(r,i)fi-1.

£ We will consider now general polytopes: .

i Definition: Let P be an arbitrary d-polytope, and let h(P) = (ho, b1, ..., Ba)
...__marénn».o_. of P. Define the fake f-vector of P by T fi-1(P)=z - 1)4-* =
= ,’wH -k ) .

. Explicitly, one gets o

. - F > -.v r+..1 ; )
2 | Ja: m..MuwA.. gi

ote that the «fake number of edges” fi, is the number of edges

E ed on P (denoted before by 7 (P))-
' Now define a truncated version of the fake face number:

MLB_ .Iu WM.U A”.v&li .

§i=0 r=0

Theorem 4.4 (Meisin 39)) 1. i

Theorem & ~.mA§ enl..aam.mn [39]) 1. Every rational d-polytope, d > 9, has a 3-facd In the simplicial case, these i
2. Every d-polylope, d > 9, has a S-dimensional quotient which is a u....:Ens. )
3. Every &-M&u,?%n. d > 7, has a triangle as the quotient of I-face in a *.\anay

p 4. Every T-polytope has a 3-face with al most 17 vertices or ils dual has such

ace. ' - 4
5. Every 5-polylope has a 3-quotient with at most 8 vertices, and every T-polyto ;

has a §-quotient with al most 16 vertices.

ki

4.5. FAKE f-VECTORS AND MORE LINEAR INEQUALITIES

Every linear combination of face ‘numbers which is nonnegative for all simpli
polytopes is a linear combination with nonnegative nOaE&MﬂG of go, 92 uE.v g A
' In ﬁ&. the author conjectured that the nonnegativity of g1, .. : 2 9td/2) m.?o. by .%oﬂ\
5 lutions (see [8]), all linear inequalities among flag numbers of vo_v.oovﬂ..zaﬁs. inges
ﬁu& showed that this is false and, in fact, if we write g,[r](P) = f-(P) — A,._+J thel
while g1[r] is nonnegative for every d-polytope, this inequality does not follow frop
the uouuom».ws%ow of the aw So the problem of finding all linear inequalities for fla .
numbers of polytopés is wide open. We give in thi i 5 abod}
new inequalities of this type. ’ ¢ fhi% goction soime cArlectet wwo_
We suspect that the lower bound inequalities; which mOm simpliciz )
consequences of the nonnegativity of gs, correspond to E&oﬁoﬂ“oﬂwwwuﬂﬂ—mmﬂs 7 .
mann.nw_.vo_ﬁovﬁ..ﬂio,%&n now what seems to be the right “analogs” of o—-o e
bound inequalities for general polytopes, and present a mmno.—.n_ no&oo».ﬁm,n. ‘whicl
corresponds to the generalized lower bound inequalities. e B

in a framework

Let g1(P) = Y {9:(F) : F € P:}. Thus g§(P) = f,(P): Recall that és

. = . at
the number of k-faces of stacked d-polytopes oinr n <m§mwbp, Here is nbtn?r. _&
of «rw _o.imn. bound inequalities for general polytopes. There is some hope th
onu..ng rigidity type argument may be useful for a proof. C

e )
FACRS MUQ%...&.@. ) G a
i=0 S
for linear inequalities of flag numbers of
ytopes, was suggested by Stanley. Let P be an Eulerian poset of rank n. The
index [42] of P associates for every word w, in noncommuting variables ¢ and

ber of ¢’s plus twice the number of d’s is n,.a certain linear

isuch that the num
Sombination of flag numbers of P denoted by ®p(w). Stanley conjectured that for
es, the value of this linear

which are face-lattices of (n— 1)-dimensional polytop
Fombination of flag numbers is minimized precisely when P is a Boolean algebra
that is, the face lattice of a simplex). .

.m.m. CENTRALLY SYMMETRIC POLYTOPES, CUBICAL POLYTOPES, KUPITOPES AND
OTHER CLASSES OF POLYTOPES

» is of interest to study the combinatorial structure of polytopes in special classes
of polytopes. We decribe here a few such classes.

The class of polytopes, which were studied the most, are the class of centrally

symmetric poiyiopes. Thei¢ are known lower bound theorems for simplicial

centrally symmetric polytopes [46]. But the proofs are non elementary and
do not extend to more general structures. For general centrally symmetric
polytopes, there are some partial results [19]. But even the simple question, are
there always at least 3¢ proper faces, is open [29]. For more information, see

).

J : Remark: Another class of conjectures,

Conjecture 17 Let P be a d-polyle a, and : vl
Then for k< d—1, pe (and more generally an abstract polytope

£(P)+ g4 (P) + 2H1(P) 2 du(n, d),’

and fork=d-1,

fa1(PY + 9§71 (P) > a-1(n, d). ~
Equality holds if and only if P is an clementary polytope.

Note avwm the case k = 1 is just the nonnegativity of g2(P).

We describe now a more general conjecture. Let P be a simplicial polytope wi
Skﬁvw 0. ?w-. the class of all such polytopes, all face numbers are determin
by .\en.ﬁ Jy.+es Ju—1(P). Define ax(r,i) such ihai, for simplicial d-polylopes withs
vanishing g, we have fr =k g ar(r,9)fi-1. (ar(r, i) is determined uniquely.) F
arbitrary simplicial d-polytopes P, one gets the inequalities :

k
fr 2 ) an(r i fier

=0
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Kupitopes are polytopes with no triangular 2-faces. Kupitz studied this clag
of polytopes and conjectured that the number of r-faces is at least the num
of r-faces of the cube. It was quite a while before Blind and Blind [16] provef
Kupitz’ conjecture. It seem plausible that in analogy with inequality ga(P) >
for general polytopes,

Conjecture 19 For every d-kupitope P,

 A+12){fe(F)-4:FeP)2 a+ /2o~ 21,
In particular, for every cubical d-polytope,
H2(d+1)/2fo—- 200

Some variants of rigidity theory may be helpful here. 'This is part of a genera
concept of h-numbers for cubical polytopes and kupitopes introduced by A
[2].

Polytopes without r-faces which are simplices. This may be useful for the study
of Conjectures 15 and 16.
A class M of polytopes which are of interest is the class of voﬂﬁovoa momu..
by system of linear Emn:n.rs,o? each of which has the form z; < az;+b. In thé
context of linear programniing, these classes were studied by Zom:ao [38] a
others. But it seems that, their combinatorial ue:_nr:.o was not studied. Face
of polytopes in M are w_uo inM. .. ¢
Balanced d-polytopes of type (ky, F. ...y ky) are 9515& vo_ﬁovoa whose
.tices can be colored with ¢ colors such that each facet contains exactly k; verti
of colors i. Of vwnsn:_a—. interest are balanced polytopes of type (1,1,.
which are called completely balariced. Duals of completely balanced polyt
are precisely the simple polytopes with 2-chromatic graphs, or in other wor:
v—.oommo_v. the simple polytopes all whose 2-faces have even sides. For an e
sion of h-vector theory to this setting, see {43). 3
Charney: and Davis considered simplicial complexes s.:.v no empty m_Ev_.noa
dimension greater than 1, and called them flag complexes. They made exciti
conjectures concerning face numbers of flag polytopes and spheres. (see [17])4
Another class of polytopes which are of interest are polytopes with the v—.ovo X
that every k-face has at most Ck facets. -

(3]

4.7. h-VECTORS FOR MORE ‘EXOTIC STRUCTURES

As we have seen, h-vectors and g-vectors play a crucial role in the study of polytopes
and related combinatorial structures. It was suggested that these concepts can bg
extended to much more general classes of combinatorial objects. The extension fron
simplicial polytopes to general polytopes is instructive. What is needed is to
extra terms measuring the amount by which the faces are not simplices.

One direction would be to define h-vectors for arbitrary simplicial manifolds an:
even vS:monnﬂo—% For manifolds, one can expect that the “correcting termss
will be in terms of the Betti numbers. (See [25].) For pseudomanifolds, we can]
expect some terms of Betti numbers of links of faces.

Another direction proposed by Bjorner [12] is to give a definition of arbitrary
regular cell decomposition of spheres. The definition and properties of h-vectors

general polytopes are expected to apply

hose faces form a lattice.
attice property, one expects some correction terms for the non lattice property, but

far no one has been able to come up with a reasonable mom.:m—on even »...un hy.
fEich h-vectors should include as special cases, the Kazhdan-Lusztig polynomials.
>.<onao~n play, in the combinatorial theory of structures considered here, a role

! _%mv. since in some special cases,
» function of some variety.) In simple cases,
he basic properties is hard. In more general cases,
s#ht definition. :

“topes, spheres and Eulerian partially ordered sets,

Billera, L. J. and
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to regular cell decomposition of spheres

For regular cell decomposition of spheres without the

£ to the role of zeta functions in number theory. (This is not a totally artificial
the generating function of the h numbers is a
the definition is obvious but proving
the main challenge is to find the
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