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A Simple Way to Tell a Simple Polytope from its Graph
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Let P be a simple d-dimensional polytope and let G(P) be the graph of P. Thus, G (P) is an

abstract graph defined on the set of vertices V(P) of P. Two vertices v and u in V(P) are adjacent in

G(P) if [v.u] is a 1-dimensional face of P, Perles [P] conjectured and Blind and Mani [BM] recently
proved that G (P) determines the enlire combinatorial structure of . Here is a simple proof of this result,
Let/ denote the number of non-empty faces of P,

We consider the class of acyclic orientations (l.e., edge orientations with no oriented cycles) of
G (P). We will not distinguish between an acyclic orientation O of G (P) and the partial order induced
by O onV(P).(x <y y iff there is an O -directed path from x t0 y.) Nots that if O is an acyclic orienta-
tion of G (P) then the restriction of G (P) to any non-empty subset A of V(P) has a sink (= clement with
out-degree zero) with respect to O . /

An acyclic orientation O of G (P) is good if for every non-cmpty face F of P, G (F) wy
one sink. Otherwise, O is bad. The existence of good acyclic orientations of G (P) is well-known. Good
acyclic orientations are obtained, ¢.g., by orienting the edges according 1o the value of a linear functional
on R* that is 1-1 on V(P); see [B, Sec. 15]. Our first goal is to distinguish intrinsically between good and

bad orientations of G (P). |,

Let O be an acyclic orientation of G (P). Let h,obethcnumba of vertices of G (P) with in-degree
k in O .Define S w5 e
¢ -
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If x is a vertex of G (P) of in-degree k w.r.t. O then x is a sink in 2* faces of P. (Every i edges

incident to x determine an i-face F of P which includes them.) Since each face has at least one sink we

obtain that
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To distinguish between good and bad orientations from the knowledge of G (P) only, compute / 0
for every acyclic orientation O . The good acyelic orieniations of G (P) are those having the minimal
value of f o |

Now we will show how to identify the faces of P. The criterion is very simple: An induced con-
necied k-regular subgraph H of G is the graph of some I;-facc of P if and only if its vertices are initial
w.r.L some good acyclic orientation O of G (P). Indeed, if F is a face of P, it is well known that V(F)is
an initial set with respect to some good acyclic orientation: just consider a linear functional with respect to
which the vertices of £ lic below all other vertices. (Sce [B, Scc. 18].) On the other hand, let /7 be a con-
nected k -regular subgraph of G (P) and let O be a good acyclic orientation with respect to which V (H)
is an initial set. Let x be a sink of #/ with respect 1o O. There are k edges containing x in H, all oriented

towards x. Therefore x is a sink in a k-face F that contains these & edges. Since the orientation O is
good, x is the unique sink of £, and therefore all vertices of F are < x, with respect to O . But V()
includes the set of all vertices that are $ x with respect to O . (Remember: V(#) is an initial set with
respect to O .) Thus, V(F)c V(H). Since both H and G (F) are k- regular and connected, V(F) = V(H)

and G (F) = H . This completes the proof.

Remarks:
1.  We do not have a practical way to distinguish between good and bad oricntations. The algorithm
suggested by the proof above is exponential in 1V (P)!. We do not know of an efficient way even

for computing the face numbers of P from G (P).

2. It was observed already by Perles that the 2-skeleton of P determines P up to combinatorial isomor-
phism. His observation is based on the following fact: Let x and y be adjacent vertices in G(P)and
lct F be the facet of P containing x but not y. Let z be a vertex adjacent to x,z #y. It is casy to

identify the unique vertex w which is adjacent to z and does not belong to F. Let M be the (unique)
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2-face of P contalning x, y and 2. Then w is the vertex adjacent to s in M, different from x. This
gives a quick way to identify the facets of P, hente the entire combinatorial structure of P, from the
2-skeleton of P. Perles also observed that all induced 3-gons, 4-gons and S-gons in G(P)

correspond 10 2-faces of P,

3.  Perles [P] proved that simplicial d -polytop;s are determined by their [d/2]-skeleton. (Dancis (D]
extended this result to a large class of simplicial manifolds.) Perles also proved that simple
polytlopes are determined by the incidence relations between their 1-faces and 2-faces. The proof
described above can be extended to show that the combinatorial structure of a simple d -polytope is
determined by the incidence reiations between its ¢ -faces and (i +1)-faces, whenever { < [d/2). It is
also possible to show that (d—k )-simple polytopes are dclcnﬁined by their i-skelcton. (P is(d=k)-
simple if every (k~1)-face is included in exactly d~-k +1 facets.) Delails will appear elsewhere,
(Note that general d -polytopes are determined by their (d~2)-skeleton, and this is best possible even

for quasi-simplicial polytopes, [G, Ch. 12].)

4.  Perles asked whether every connected (d-1)-regular subgraph of G (P) which does not separate

G (P) is the graph of a facet of P. This is still unknown.

5. lam thankful to Micha A. Perles and Zeev Smilanski for helpful comments.
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