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Summary. For an arbitrary triangulated (d — 1)}-manifold without boundary
d+1
2
proved that y(C)20. We use the rigidity theory of frameworks and, in
particular, results related to Cauchy’s rigidity theorem for polytopes, to give
another proof for this result. We prove that for d >4, if (C)=0 then C is a
triangulated sphere and is isomorphic to the boundary complex of a stack-
ed polytope. Other results: (a) We prove a lower bound, conjectured by
Bjorner, for the number of k-faces of a triangulated (d — 1)-manifold with
specified numbers of interior vertices and boundary vertices. (b If Cis a
simply connected triangulated d-manifold, d >4, and y(lk(r, C))=0 for every
vertex v of C, then (C)=0. (Ik(v, C) is the link of v in C.) (c) Let C be a
triangulated d-manifold, d>3. Then skel,(4,,,) can be embedded in
skel ((C)iff y(C)>0. (4, is the d-dimensional simplex.) (d) If P is a 2-sim-

i
plicial d-polytope then f,(P)=df,(P)— A&M

C with f, vertices and f, edges, define XDH\_Ia\o+A v Barnette

v. Related problems concern-

ing pseudomanifolds, manifolds with boundary and polyhedral manifolds
are discussed.

1. The lower bound theorem
Barnette’s lower bound theorem (LBT) ([9. 10]) asserts that if P is a simplicial

d-polytope with n vertices, then f,(P). the number of k-dimensional faces of P.
satisfies the inequality S(P)Z @, (n,d), where

{ 1+
_ANV:\‘AN.f v\,, for 1€k<d -2
@ ndy=1 \k k+1 (1.1
T:*I_vziﬁ‘)::;twv for k=d—1.

Barnette's theorem settled an old conjecture in the theory of convex poly-
topes. (See [31, pp. 183-188] for the history of this conjecture.)
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The main purpose of this paper is to show the connection between the
lower bound theorem and the rigidity theory of frameworks. The basic idea is
quite simple. Let P be a simplicial d-polytope, d =3, with n vertices. The
inequality f,(P)=¢,(n,d) follows from the fact that P is rigid. This means that
every small perturbation of the vertices of P, which does not change the length
of the edges of P, is induced by an affine rigid motion of R? The crucial result
is Cauchy’s rigidity theorem ([22]) which gives the rigidity of simplicial 3-
polytopes. The result for higher dimensions follows by a simple inductive
argument. (See [66, 60, p. 119]). We use rigidity theory to prove several
extensions of the lower bound theorem and to study the cases of equality.

Barnette's inequality f,(P)2 ¢, (n,d) is sharp, and equality holds for cvery
I <k<d if P belongs to the family of stacked polytopes defined as follows: A
d-simplex is stacked, and each simplicial d-polytope obtained from a stacked d-
polytope with one fewer vertex by adding a pyramid over some facet is
stacked. Alternatively, a simplicial d-polytope P is stacked if P is the union of
simplices §,,5,,..., 5, such that each (d—2)-face of any of these simplices is a
face of P.

Let P be a simplicial d-polytope. The set Z(P) of proper faces of P forms a
triangulation of the boundary of P. Thus, #(P) can be regarded as an abstract
triangulation of $4~*, the (d — 1)-dimensional sphere. #(P) is called the bound-
ary complex of P, [31, Sect.3.2]. Define a stacked (d—1)-sphere to be a
triangulated (d — 1)-sphere which is isomorphic to the boundary complex of a
stacked d-polytope.

A few years before Barnette proved the LBT, Walkup ([63]) settled the
cases d<5. Walkup considered arbitrary triangulated (d—1)-manifolds and
proved the case d =4 of the following theorem.

Theorem 1.1. Let C be triangulated (d — 1)-manifold, d =4, with n vertices, then:

(D) fllO)Z2@in,d) for 1 Sksd—1,
(1) If /,(C)=@,(n,d) for some k, | <k <d, then C is a stacked (d — 1)-sphere.

Note that the situation for =3 is quite simple. A triangulated 2-manifold
C with n vertices has 3n—33(C) edges and 2n—2y(C) triangles, where ¥(C) is
the Euler characteristics of C. For every 2-manifold M, y(M)<2 and x(M)
=2iff M is a 2-sphere. Thus, f(C)=¢,(n,3) for i=1 or i=2iffC is a tri-
angulated 2-sphere.

Our first purpose is to prove Theorem 1.1 for every d =4. Major portions of
this result have been proved before by other methods: Part (i) and the special
case k=d—1 of part (i) were proved by Barnette (see [10, p. 354], [11]). Part
(ii) for the special case of simplicial d-polytopes was proved by Billera and Lee
in [15]. Their proof relies on the (necessity part of the) “g-theorem™ - the
complete characterization of f-vectors of simplicial polytopes, which was con-
jectured by McMullen ([47. 48]), and was proved by Stanley (necessity, [557)
and Billera and Lee (sufficiency, [15})). However, it was not known before that
Sl Cy=g(n.d) occurs only if C is a triangulated sphere. (this was conjectured
by Walkup [63. p. 77]). Nor was it known whether cquality may holds for
non-polytopal spheres.
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A well-known and easy reduction due to McMullen, Perles and Walkup
(see Sect. 5) reduces Theorem 1.1 to the case k=1.

We recall some definitions on rigidity of graph embeddings (frameworks).
(Sce [5, 51, 28, 26, 33]). Given a graph G=(V,E), a d-embedding of G is a map
¥: V-IR% A d-embedding ¢ is rigid if any small perturbation ¢ of ¢ which
keeps the distances fixed between the images of adjacent vertices in G, keeps
the distances fixed between every pair of vertices of G (and thus extends to an
isometry of R%. A graph G is generically d-rigid if “almost all” embeddings of
G into R are rigid. Such a graph having n vertices must have at least dn
— Amrw. _V edges. (Detailed definitions are given in Sect. 3.)

?osacai \:Dweassnaxlﬁw_

manifolds C, d =24, with n vertices, follows from

v for a triangulated (Jd—1)-

Theorem 1.2. The graph (1-skeleton) of every triungulated (d —1)-manifold, { 2 4,
is generically d-rigid.

The proof is given in Scct. 6. Using some basic results on rigidity we reduce
Theorem 1.2 to the generic 3-rigidity of graphs of triangulated 2-spheres which
was proved by Gluck [28] (see Sect. 4). (Compare Gromov [67, Ch. 2.4.10].)
d+1

2 )
(The same definition applies to simplicial d-polytopes.) For dz4, 7(C) is. by
Theorem 1.2, the dimension of the space of stresses of a generic d-embedding of
the graph of C.

In Sect. 7 we study those triangulated manifolds C for which 7(C)=0. We
prove that if y(C)=0 then y(lk(v, C))=0 for every vertex v of C. (Ik(z, C} is the
link of v in C, sce Sect. 2.} Using this result, we reduce Theorem 1.1 (i) to the
known case k=d — 1. A direct proof of Theorem 1.1 (i) is given in Sect. 9.

In Sect. 8 we determine the class of triangulated d-manifolds C, d 24, which
satisfy the condition: Ik(v, C) is a stacked (d — 1)-sphere for every vertex v of C.
This condition implies a severe restriction on C, and, in particular. if C is
simply-connected, then C itself must be a stacked d-sphere. We also derive a
uscful combinatorial characterization of stacked spheres among all triangulated
mantfolds.

Klee proved in [42] that the inequality f, (C)Ze,_,{n.d) holds for an
arbitrary (d — 1)-pseudomanifold C. Other cases of Theorem 1.1 are still open
for this general setting. In Sect. 10 we show how the assertion of Theorem 1.1
for arbitrary (d — 1)-pseudomanifold reduces to the old standing conjecture:

For a triangulated (d— I)-manifold C define ,\.AQH\LQIEZ\A

Conjecture G [28, 25]. The graph of every triangulated 2-manifold is generically
3-rigid.

In Sect. Il we prove a sharp lower bound, conjectured by Bjorner [17]. for
the number of k-faces of a triangulated manifold with boundary. when the
numbers of interior vertices and boundary vertices are specified.

Theorem 1.3. Let C be a triungulated (d — V)-manifold d=3 with
boundarv. If C has n, vertices in the interior and n, veviices on the bo
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F Oy Z @ (n;,n,, d), where

d—1 d d
L, — <k < -
Oy d)= A k YiSs Ai_v» for 1<k=d-2

n,+(d—-1)n,—(d—-1)

(1.2)
for k=d—1.

Equality occurs only for a special type of triangulated balls. Theorem 1.3 for
the special case when C is the dual of an unbounded simple polyhedra was
proved (using the “g-theorem™,) by Billera and Lee [16].

In Sect. 12 we discuss an extension of the LBT to arbitrary polytopes and
polyhedral manifolds. For a polyhedral complex C, let f3(C) denotes the
number of 2-faces of C which are k-gons. The following theorem, which
was conjectured in [35, p. 67}, extends the lower bound theorem to arbitrary
d-polytopes.

Theorem 1.4. If P is a d-polytope with n vertices then

N d+1
fiP)+ Y ;LEEWQTA * v (1.3)

k23 2

The analogous statement for arbitrary polyhedral (d — 1)-manifolds (even poly-
hedral (d — 1)-spheres.) is still open.

Theorem 1.4 follows from a recent theorem of Whiteley ({66], Sect.4) on
infinitesimal rigidity of certain embedded graphs associated with d-polytopes.
(See Sect.4.) Previously, it was proved for rational d-polytopes (namely,
d-polytopes whose vertices have rational coordinates,) using some deep results
from algebraic geometry ([58, Ch. 4, 46, 591). In the second part of this paper
([38]) we study the class of d-polytopes which satisfy (1.3) as an equality.

Griinbaum proved ([31, p.200],) that the graph of every d-polytope con-
tains a refinement of the complete graph on d+1 vertices. Barnette extended
this result ([11]) to arbitrary polyhedral (d — I)-manifolds. In Sect. 13 we prove

Theorem LS. The graph of a triangulated (d—1)-manifold C, d=4, contains a
refinement of the complete graph on d+2 vertices iff C is not a stacked (d—1)-
sphere.

In Sect. 14 we present a few open problems which were raised during this
rescarch. In particular, we briefly consider the LBT in the context of McMul-
len-Walkup “generalized lower bound conjecture™ and discuss related prob-
lems on f-vectors of triangulated manifolds.

The basic reference (and source of inspiration) for convex polytope theory
is Grilnbaum’s book [31]. We try to follow the definitions and notations of
[31]. Other books on the subject arc [48] and [21].

I would like to thank Richard Stanley for many valuable discussions on -
vectors of polytopes, and for introducing to me the recent exotic applications
of algebraic geometry. I am thankful to Margaret Baycr, Louis Billera, Anders
BjSroer. Robert Connelly. Henri Crapo, Micha Perles, and Walter Whiteley for
helpful discussions during the various stages of this work. 1 would like to
thank Lou Billera also for the warm hospitality during my visit at Cornell in
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summer 1984. Being familiar to some of Perles’ unpublished work was, as
usual, a great advantage. This research was supported by the Weizmann
postdoctoral fellowship. My work at Cornell was supported in part by NSF
grant DMS 8403225,

2. Preliminaries

We shall use the following definitions and notation on simplicial complexes:
Let C be a finite abstract simplicial complex on the vertex set V. Thus, C is a
collection of subsets of V (called the faces of C,)) and if TeC and S< 7T then
SeC. For SeC the dimension of S is dimS=1|§|-1. f:(C) denotes the number
of k-dimensional faces (briefly k-faces) of C. The frvector of C is the vector
J(CO) =, £,(C),f(C),...). The k-th dimensional skeleton of C, skel (C) is de-

fined b
Y skel, (C)={SeC:dimS £ k}.

V(C) denotes the set of vertices (0-faces) of C. (Thus, V(C)< V) 1-faces of C are
called edges and skel,(C) is called the graph of C and is denoted by G(C).
For a face SeC the link of S in C, 1k(S, C), is defined by:

Ik(S, C)={T\S: TeC, T >S}.

(Ik(S, C) is also called the quotient complex of C by S.) Let V be a set of
vertices and A4 be a family of subsets of V. A denotes the simplicial complex
spanned by A. (le, A={ScV:S<T for some TeA}.) For a face SeC, the star
of Sin C is defined by st(S, C)={TeC: T>S}. The antistar of S in C is defined
by ast(S, C)={TeC: T nS=0)}.

Let € and D be simplicial complexes with V=V(C), U=V(D) and V' ~ U
=@. C* D, the join of C and D is dcfined by:

C*D={TeVuU:TnVeC, TnUeD).

Note that st(S, C)=S5*1k(S, C).

A simplicial complex C is pure if all its maximal faces have the same size.
Maximal faces of a pure simplicial complex are called fucers. Two facets S. T
of a pure simplicial complex are adjacent if they intersect in a maximal proper
face of each. A pure simplicial complex C is strongly connected if for every two
faccts S and T of C, there is a sequence of facets §=5,.5,,....8,=T such that
S;and S, | are adjacent, 0<i<m.

A d-pseudomanifold is a strongly connected d-dimensional simphcial com-
plex. such that every (d—1)-face is contained in exactly two facets. A -
pseudomanifold with boundary is a strongly connected d-dimensional simplicial
complex, such that every (d — I)-face is contained in at most two facets. For a
d-pseudomanifold with boundary C, the boundary of C. ¢C. is the (d— 1)-
dimenstonal pure simplicial complex whose facets are those (d — 1)-faces of €
which are included in a unique facet of C.

Let € be a pure simpheial complex and let F be a facet of C. The siellar
subdivision  of  C at  the facet F is  defined by ClF]
=(CF)U{ROlu): R F R+ F}) Here, u is 4 new vertex.
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C is a triangulated manifold if |C| is a manifold. (JC) is the topological space
associated with C. See, [53, Ch. 3]). It is usually more convenient to consider
the larger class of homology manifolds. A pure d-dimensional complex C is a
homology manifold if for every ¢+ SeC, |S|=k, the link of S in C has the same
homology groups as a (d—k)-dimensional sphere. A homology d-manifold
which has the same homology groups as a d-sphere is called a homology d-
sphere.

3. Rigidity of frameworks

Let G=<(V,E) be a graph with vertex set V=1V(G) and edge set E=E(G). A d-
embedding of G into R? is a map ¢: VR A framework % is a pair &
=(G, @) where G=(V,E) is a graph and ¢ is a d-embedding of G.

Two d-embeddings ¢ and ¥ of a graph G are isometric if for every two
vertices a,beV, d(p(a), p(b))=d(Y(a), Y (b)). (d(x,y) denotes the Euclidian dis-
tance between x and y.) Equivalently, ¢ and y are isometric if there is an affine
rigid motion T of R such that ¢=T(y). Two d-embeddings ¢ and ¢ of a
graph G are G-isometric if for every two adjacent vertices a,beV, d(g(a), (b))
=d(Y(a), ¥ (b)). (The vertices a and b are called adjacent if {a,b}eE(G).)

For two d-embeddings ¢ and y of G define their distance d(p,y)

=maxd(pla), y(a)).

acl

Definition 3.1. A d-embedding @ of a graph G is rigid if there is an £¢>0 such
that cvery embedding ¢ of G which is G-isomctric to ¢ and satisfics d{g, ¥} <e

Is isometric to @. ¢ is flexible if it is not rigid.

Definition 3.2. A graph G is generically d-rigid if the set of rigid d-embeddings
of G 1s an open dense set in the set of all embeddings. (The set of all
embeddings is a topological vector space of dimension |V|x d.)

Remarks. (1) We will freely use these definitions for an arbitrary simplicial (or
more general) complex C and they will apply to the graph of C. (2) When we
consider rigidity of d-polytopes or embedded manifolds this will be (unless
stated otherwise) w.r.t. the given embedding.

A systematic study of rigidity of frameworks may be found in [3, 6, 28, 51].
We shall need the following basic facts:

0. If H=(V,E") i1s generically d-rigid and G=(V.E) wherc ESE' then G is
generically d-rigid (obvious).

L I0 G s not generteally d-rigid then the st of rigid d-cmbeddings of G has
empty nterior. (In this case G is generically d-flexible)

2 1f G is a generically d-rigid graph with » vertices and ¢ edges then e 2dn

)

3o Let G={F(G), E(G))> be a graph and let 1 be a vertex not in V(G). Define
G*luf=CVUE S where P =11{(G)w ) and E'=FEG)o{{u v} reV{G)). G*lu)
15 called a cone over G.
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Cone Lemma (Whiteley, [65]). G is generically d-rigid iff G* {u} is generically (d
+ 1)-rigid.

4. Replacement Lemma. Let G=(V,E) be a graph and let U be a subset of
V. If the restriction of G to U is generically d-rigid and G UK(U) is generically
d-rigid then G is generically d-rigid. (K(U) denotes the complete graph on U.)
(The proof is easy.)

Given a fixed set V of vertices, the set of edges of minimal (w.r.t. inclusion)

generically d-rigid graphs on V, is the set of bases of a matroid #% of rank sz

(3 (o (13 ez |

Definition 3.3. A graph G=(V,E) is (generically) d-acyclic' if the set of its
edges is independent in 7.

For the reader who is not familiar with matroid theory terminology (a
good reference is Welsh [64]), here is an equivalent definition: Let ¢ be a d-
embedding of a graph G. An edge {a,b}, not in E(G) depends on G (w.r.t. @), if
for every embedding  which is G-isometric and close enough to ¢,
d((a), Y (b)) =d(p(a), @(b)). G is d-acyclic if for a generic d-embedding of G no
edge E of G depends on G'= < V(G), E(G)\E).

An important variant of rigidity is the notion of infinitesimal rigidity. The
definition given below follows Connelly [26]. For the geometric motivation
behind- the definition and a full treatment of the relations between the different
notions of this section see [26] and [51].

Let ¢ be a d-embedding of a graph G. An infinitesimal flex of ¢ is a d-
embedding ¥ of G such that for every two adjacent vertices a and b of G. (o{u)
—o(b)-(Y(@)—y(b)=0. (Here, - is the usual scalar product.) An infinitesimal
flex ¥ of ¢ is trivial of for every two vertices a, b of G, (¢(a)—@(b))-(Y(a)~ (b))
=0. A d-cmbecdding ¢ of G is infinitesimally rigid if cvery infinitesimal flex
of ¢ is trivial.

Infinitesimally rigid frameworks are rigid, and the generic behavior w.r.t.
rigidity and infinitesimal rigidity coincide. If a graph G is infinitesimally rigid
w.rt. one d-embedding then it is generically d-rigid. (In particular.
E@izavel- ("3

Given a d-cmbedding ¢ of a graph G, a stress of G wrt. ¢ is a function
w: E(G) — R such that for every vertex eV

M twi{e, up)(@(v)—@lu): {v,ute E(G)) =0.

For a graph G=<{V.E), a,(G) will denote the rank of G in 4% Aler-
natively, ¢, (G) is the number of edges of a maximal d-acyclic subgraph of G.
(ANl maximal d-acyclic subgraphs of G have the same number of edges.) Define
b G)=E{G)| = a,(G). b (G} is the dimension of the space of stresses of G w.r.t.
a generic d-embedding. In particular, G is d-acyclic if a generie d-embedding of
G has no non-zero stress.

t

This definivion is slightly different from the definition in |
matroid

7] which rehies on oa difterent
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4. Theorems of Cauchy, Steinitz, Alexandrov, Gluck and Whiteley

We make an essential use oam the following theorem of Gluck [28].
Theorem G. A triangulated 2-sphere is generically 2-rigid.

Let us give a quick survey of Gluck’s proof. Theorem G follows from the
fundamental theorems of Cauchy and Steinitz. Cauchy’s rigidity theorem ([22])
asserts that if P and Q are two convex 3-polytopes and ¢: V(P)—V(Q) is a
combinatorial isomorphism, which induces an isometry between every face of
P and its image in Q, then P and Q are isometric. Steinitz’s theorem (see [61,
31, p. 235, 14]) asserts that every polyhedral 2-sphere is combinatorially isom-
orphic to the boundary complex of a 3-polytope.

Cauchy’s theorem implies that every simplicial 3-polytope P is rigid. Since
the set of embeddings of P which actually realize P as a convex polytope is an
open subset of the set of all embeddings, the graph of P is generically 3-rigid.
By Steinitz’s theorem every triangulated 2-sphere is isomorphic to the bound-
ary complex of a simplicial 3-polytope and is therefore generically 3-rigid.

A d-polytopal framework is an embedded graph obtained from the graph of
a d-polytope P by triangulating the 2-faces of P in an arbitrary way.

Alexandrov ([1]) extended Cauchy’s arguments and proved that every 3-
polytopal framework is infinitesimally rigid. (Note that Alexandrov’s theorem
combined with Steinitz’s theorem give an even more direct proof of Theorem
G. This is the variant in [28].)

Whiteley ([66]) have recently found a significant generalization of
Alexandrov’s theorem to higher dimensions

Theorem W. A d-polytopal framework, d =3, is infinitesimally rigid.

The basic connection between rigidity and the LBT can be seen at this point.
Note that in a d-polytopal framework #(P), based on a d-polytope P, there are
(k — 3) additional edges for each k-gonal 2-face. Thus, & (P) has exactly f,(C)
+ Y (k—=3)f3(C) edges. Theorem 1.4 follows from Theorem W and the basic
k=3
LoET d+1
inequality mW&:IA )
d-embedded graph with n vertices. In particular, this gives the essential case k
=1 of the lower bound inequalities for simplicial polytopes.

v for the number ¢ of edges of an infinitesimally rigid

Remark. Gluck’s proof of the generic 3-rigidity of triangulated 2-spheres
unusual. Convexity is not involved in the assertion of the theorem but is very
much present in the proof. Steinitz’s theorem is a sort of a low dimensional
miracle, and Cauchy’s theorem gives a much stronger rigidity property than
needed. Recently, Tay and Whiteley ([621) found a direct proof for Gluck’s
theorem which does not depend on Cauchy’s or Steinitz's theorems. Graver’s
approach ([307) may also supply a direct proof for Gluck’s theorem.

5. The MPW-reduction

The result of this section were found (independently) by McMullen, Perles and
Walkup (see [10. 49]). Recall that ¢, (n,d) i1s the number of k-faces in a stacked
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d-polytope with n vertices and is given by formula (1.1). For a pure (d—!)-
dimensional simplicial complex C with n vertices define .kn.vn\,;gle::k:.

d+1
Thus, for d=3, XQH;QI%.TA ) v and for d=2, y(C)= f,(C)—n. Define
also
(€)= L (C)— @(n, d),
and

P(C)=) {y(Ik(S, C): S C,|S|=k}.

Thus, 7,(C)=7y°(C)=y(C).
Proposition 5.1. Let C be a (d — 1)-dimensional simplicial complex, and let k. d be
integers, | £k =d—1. There are positive constants wik,d), 0<i<k—1, such that

k-1

(€)= M w,(k,d)7'(C). (5.1)

i=0
Proof. First note that
(k+ 1) fLC)= M Se— Ik (x, €). (5.2)

i=1

d
Put ¢, (n,d)=a,(dyn+b,(d). (Thus, QL&IA v for 1=k<d—2 and a,_,(d)=d
—1.) Easy calculation gives

2 Ainﬁtvv; (d—1)+nb,_ (d=1)=(k+1) @, (n.d) (5.3)

N k— 1" k-1

Let C be a pure (d - l)-dimensional simplicial complex, d=3, with n rvertices
vy,...,0,. Assume that the degree of v, in G(C) is n; (ie., fy(ik(v;, C))=n,). Note
z . d+1
that ) n,=2f,(C)=2 A&zl A 5 v+ﬁgv. Therefore
i=0

Y o nd—)=a,_(d—1)Y ni+nb,_ (d—1)

1=1 i=1
d+1
HST_EI:NA&:IA 2 VV.TNQT_ (d=1HHC)+nb,_(d—1).
=k+ Do nd)+2a,_ (d—1)y(O). (5.4)

From (5.2) and (5.4) we get

(1+k) 7 (O)=2a,_ (d=D(O)+ Y 7o (k(r;, O)).

i=1

N
=0

Repeated applications of formula (3.5) give (5.1). The value of w (A d) 13

, Lok U
ik d) = ?:;lf Ad—i—1Nik+1) ANV 0gigh-2.

T‘;i; i=k—1
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Corollary (the MPW-reduction). Let d=2 be an integer. Let C be a (d-—1)-
dimensional simplicial complex with n vertices, such that y(Ik(S, O))=0 for every
SeC, |S|<k. Then (i) f,(C)Z ¢ (n.d). (i) If f,(C)=(n,d) then y(C)=0.

Remark. Note that if C is a (d — 1)-pseudomanifold then 3¢~ 2(C)=0.

6. The lower bound inequalities for triangulated manifolds

For d =3 define a class %, of (d— 1)-pseudomanifolds inductively as follows: €,
is the class of triangulated 2-spheres. For d=4, a (d— 1)-pseudomanifold C
belongs to %, if for every vertex v of C, lk(v,C)e%,_,. Note that every
homology 2-sphere is a triangulated 2-sphere. Therefore for d 24, %, includes
all homology (d—1)-manifolds (and, in particular, all triangulated (d—1)-
manifolds). %, is exactly the class of homology 3-manifolds.

Theorem 6.1. If Ce%¥, then C is generically d-rigid.

Lemma 6.2. Let C be a strongly connected d-dimensional simplicial complex.
Then C is generically d-rigid.

Proof. (Compare [36].) If every two vertices of C are adjacent then C is clearly
generically d-rigid. Otherwise, since C is strongly connected, there are two non-
adjacent vertices u, v of C, and two adjacent d-faces S and T, such that ueS
and veT. Let C be the simplicial complex obtained from C by adding to C all

d-faces of SUT. The affect of the operation C— C on G(C) is just adding one
new edge {u,v}. The graph induced by G(C) on the vertices of SUT is a
complete graph on d+2 vertices minus an edge (“{*“w,0”}"). This graph is
clearly generically d-rigid and by the Replacement Lemma (Sect.3) if C is
generically d-rigid so is C. Repeated application of this operation will ter-
minate with a complex C whose graph is complete. C is clearly generically d-
rigid.

Proof of Theorem6.1. By induction on d. For d=3, &, is the class of tri-
angulated 2-spheres which are generically 3-rigid by Gluck’s theorem, we
assume the truth of the theorem for d —1 and prove it for d. Let Ce%,. For a
vertex veC, the neighborhood N(v) of v is defined by N(v)={v} U {ueV(C):
{u.v}e C}. For a vertex veC, Ik(r, C)e%,_, and by the induction hypothesis
k(v. ) 15 generically (d—1)rigid. By the cone lemma (Sect.3), si(zr, C)
={r}*lk(v. C) is generically d-rigid. Let K (N(v)) denote the complete d-dimen-
sional complex on N({v). By the replacement lemma (Sect. 3), C is generically d-
rigid iff CUK(N(v) is generically d-rigid. Repeated application of this argu-
ment shows that C is generically d-rigid iff C=(J{K (N(v)): ve V(C)} is generi-
cally d-rigid. But C easily scen to be a strongly connccted d-dimensional
complex. hence generically d-rigid.

Theorem 6.1 and the MPW reduction give:

Theorem 6.2. If Ce't, und C hus n vertices then f{C)Z @, (n.d) for all d2kz 1.

Remarks. 1. The inductive argument in the proof of Theorem 6.1 scems 1o be
quite old. It is hinted in [60, foornote p. 119] and perhaps goes back to the
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works of Alexandrov and Pogorelov. Whiteley’s proof of Theorem W uses
similar (but more delicate) inductive argument.

2. Theorem 6.1 strengthened the fact that the graph of a triangulated (d
— 1)-manifold is d-connected. Barnette [11] proved that the graph of every
polyhedral (d — 1)-manifold is d-connected, thus extending a result of Balinski
[7] which asserts that the graph of every d-polytope is d-connected.

Let G be a graph with n vertices and e edges, n=d. Recall that b,(G) is the
dimension of the space of stresses of G w.r.t. a generic d-embedding. b,(G)=e

d+1
|&=+A 5

implies that for Ce%,, y(C) is the dimension of the space of stresses of a
generic d-embedding of G(C).

Theorem 6.1 implics also an upper bound for the number of edges of
subgraphs of graphs of triangulated manifolds.

Theorem 6.3. Let Ce%, and let H be a subgraph of G(C). Then f,(H)<df (H)

e

Proof. Let H be a subgraph of G(C). (We may assume that H has at least d

d+1
vertices.) Denote imvu\;mvlaxoixfrA M
OmmEo:FAEVMFA@X_,:QQOR,

v and equality holds iff G is generically d-rigid. Theorem 6.1 thus

V. Note that if H is a subgraph

O =b(G(C) 2b,(H) 2 y(H).

We conclude this section by showing that the proof of Theorem 6.1 applies
in a slightly more general situation. (We use this fact in Sects. 9 and 11.) Let C
be a strongly connected (d — 1)-dimensional simplicial complex and let T be a
tree in G(C). 1t is easy to see that |J{K,(N(v)): v a vertex of T} is a strongly
connected d-dimensional simplicial complex. Therefore, the proof of Theorem
6.1 gives.

Proposition 6.4, Let C be a strongly connected (d—1)-dimensional simpliciual
complex. Let T be a tree in G(C) which satisfy: (i) Every vertex u of C is
adjacent to some vertex of T, (i1) lk(v, C) is generically (d —1)-rigid for every
vertex v of T. Then C is generically d-rigid.

7. The extremal cases in the lower bound theorem

Recall that a stacked (d — 1)-sphere 1s a triangulated (d — 1)-sphere which 1s
isomorphic to the boundary complex of a stacked d-polytope. As easily seen. €
is & stacked (d — I)-sphere iff C can be obtained from the boundary complex of
ad-simplex by repeated applications of stellar subdivisions of facets.

Theorem 7.1. Let d.k be fixed integers d>3. d>k=1. Let C be u simplicial
complex in %, with n vertices and @, in.dy k-fuces. Then C is a stacked (d—1)-
sphere.
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Proof. The MPW reduction shows that for Ce%,, if fo(C)=n and f,(C)
=g, (n,d) for some 1<k<d, then f,(C)=¢,(nd), ie, y(C)=0. Define: €
={Ce%,:7(C)=0}. By Theorem 6.1 every Ce%, is generically d-rigid. There-
fore, for Ce%,, Ce%} iff C is d-acyclic. (See Sect. 3.)

Lemma7.2. If Ce%;, d=4, then for every vertex veC, lk(v, C)e%)_,.

Proof. Assume to the contrary that Ce%), v is a vertex of C, and
lk(v, C)¢%,_,. Thus, lk(v, C) is not (d—1)-acyclic and from the Cone Lemma
(Sect. 3) it follows that st(v, C)=v*lk(v, C) is not d-acyclic. Since C>st(v, C), C
is not d-acyclic as well. A contradiction.

Proof of Theorem 7.1 (end ). The case d=4 of Theorem 7.1 was proved already
by Walkup ([63, Th. 1]). (Barnette’s result mentioned below also covers this
case.) Assume now that for d=5, if Ce®) , then C is a stacked (d— 1)-sphere.
Let Ce%,, d=5. Recall that &ADHM?A:AQ, Q)): SeC, |S|=k}. (See Sect. 5)
Lemma 7.2 implies that for every SeC, y(Ik(S, C))=0. Therefore, for every k=1,
7#*(€)=0. By Proposition 5.1, f,_,(C)=¢,_,(n,d). By Lemma 7.2 for every
vertex veC, lk(v, C)e%,_,. By the induction hypothesis lk(v, C) is a stacked
sphere, and therefore C is a triangulated (d — 1)-manifold. Barnette proved ([9,
[1]) that if a triangulated (d—1)-manifold C with n vertices satisfies f,_,(C)
=@,_,(n,d) then C is a stacked (d— 1)-sphere. This completes the proof of
Theorem 7.1.

A direct proof of Theorem 7.1 is given in Sect. 9. We use there a character-
ization of stacked spheres which is proved in the next section.

The proof of Lemma 7.2 gives more:

Theorem 7.3. Let C be a generically d-rigid pure {d — 1)-dimensional simplicial
complex. Then for every vertex v of C, y(lk(v, C)) <y(C).

Proof. Define G, =G(Ik(v, ), G,=G(st(r, O) (=G, *{v}). Let H be a maximal
{d — l)-acyclic subgraph of G,. By the cone Lemma, H*{v} is a maximum d-
acyclic subgraph of G,. Therefore

Pk, Y by 1(G)=h(G,) b (G(C)=7(C).

«

8. Triangulated manifolds with stacked links

In this section we study triangulated manifolds C such that lk(r,C) s a
stacked sphere for every vertex ¢ of €. For manifolds of dimensions greater
than 3 this condition implies a severe topological restriction. We also derive a
characterization of stacked spheres among pseudomanifolds i %, which is used
in the next sections.

Consider the following two operations on triangulated manifolds. Let ¢
and D be pure simplicial complexes with disjoint sets of vertices, S be a facet
of C and T be a facet of D. Let y be a bijection between V(S) and V(T). The
connected sum C#,D of ¢ and D is the simplicial complex obtained by
identifying the vertices of S with the vertices of T by ¢ and deleting the facet S
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(=T). Connected sums of two triangulated manifolds is a triangulated man-
ifold. Note that if E=C4#,D then for veS,lk(v,E) 1s a connected sum of
Ik (v, C) and 1k (y(v), D). All other links are unchanged.

Let C be a pure (d—1)-dimensional simplicial complex, S and T be two
disjoint facets of C, and ¥ be a bijection from V(S) to V(T). Assume further that
no vertex of S is adjacent to a vertex of T and that no vertex in C is adjacent
to both a vertex v in S and to its image (v) in T. Let C¥ be the simplicial
complex obtained from C by identifying the vertices of S to the vertices of T
via Y and deleting the facet S(=T). We say that C¥ is obtained by forming a
handle over C. Note that lk(v, C*)=Ik(v, C) unless veS (=T), and then lk(r, C¥)
=1k(v, C)# 1k (Y (v), C).

Note also that

P(C i, D)=y(C)+ (D), (8.1)
d+1

Wy
2C Tﬁoi ;

v (d=dim C—1). (8.2

Walkup defined the class #“(k) of (d — 1)-dimensional simplicial complexes
as follows: #°4(0) is the class of stacked (d — 1)-spheres. Ces#?(k) if C=D" for
some De#?(k—1). Define #9=]{s#*k): k=0}. Note that a connected sum
of two complexes in #“ is in #“. In fact, s#? is exactly the class of simplicial
complexes obtained from boundary complexes of d-simplices by successively
applying the operations C#,D and C¥. For d24, if Ce#?(k) then rank H,(C)

d+1

=k and iQH»A M
and C¥, it follows that if Cex#”, then lk(v,C) is a stacked (d —2)-sphere for
every vertex v of C.

The notion of a missing face (see [3],) will play an important role from
now on.

V. From the description of links of vertices of C#,D

Definition 8.1. Let C be a simplicial complex on the vertex set V. A subset S of |’
is a missing fuce of C, if S¢ C but for every proper subset R of S, ReC. A k-
missing face is a missing face with k+1 vertices.

Theorem 8.2. Let C be a (d—1)-pseudomanifold, dz4. If for every rvertex
veC,lk(v, Cye #~1(0) and C has no (d —2)-missing fuces, then Ce #*.

Lemma 8.3, Let P be a stucked d-polytope. (1) P has no k-missing faces for
l<k<d—1.(i) If Pis not a d-simplex then P has a missing (d — 1)-face.

Proof. Let P and Q be two simplicial d-polytopes such that @ is obtained from
P by adding a pyramid over a facet T of P. (The boundary complex of Q is
obtained from the boundary complex of P by a stellar subdivision of T It is
casy to see that every missing face of P is & missing face of Q and. i addition,
Q has one new (d— l)-missing face T and f,(P)—d new I-missing faces of the
form {u, ¢} where v is the new vertex of Q and ¢ T Lemma &3 follows by
induction from the definition of stacked polytopes.

Proof of Theorem 8.2, Let ve C and let S be u (d—2)-missing face n k(v Cu.
(Unless € is a simplex there is a vertex ¢ in C whose degree is more than
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and therefore lk(r, C) has a (d — 2)-missing face.) Since C has no (d —2)-missing
faces, S must be a face of C and therefore T=Su {v} is a (d— 1)-missing face of
C. Cut C along 8T and patch with two (d —1)-simplices. (As was shown by
Walkup, [63, Lemma 4.2], this operation can always be performed.) The
resulting complex is a (possibly not connected) triangulated (d — 1)-manifold C.
If C is connected then C is obtained from C by forming a handle. If C is not
connected it has two connected components and C is their connected sum.
Theorem 8.2 follows by double induction on y(C) and f,(C).

Corollary 84. Let C be a (d—l)-pseudomanifold, d=5. If for every vertex veC,
Ik(v, C) is a stacked (d —2)-sphere, then Ce#".

Proof. 1t is enough to show that C does not have (d —2)-missing faces. Indeed,
if Sis a (d—2)-missing face of C and v is a vertex of S then S\{v} is a (d —3)-
missing face of lk(v, C). This is impossible by Lemma 8.2(i) since lk{v, C) 1s a
stacked (d —2)-sphere and (d —3)> 1.

Remark 8.5. Perles proved (see [4]) that if P is a neighborly 4-polytope then
every link of a vertex of P is stacked. Thus, the class of triangulated 3-
manifolds with stacked 2-spheres as the only links of vertices, is much larger
than #* Having only stacked spheres as links impose a severe topological
restriction on d-manifolds for d>=4. Problem: Which 3-manifolds admit a
triangulation with only stacked 2-spheres as links of vertices? (Compare [23].)

We derive now from Theorem 8.2 a useful characterization of stacked
spheres. Recall that a cycle M in a graph G is chordless if M is an induced
subgraph of G. (Thus, M is a subgraph of G with a set of vertices V(M)
={v,,...,v,}, m=3 and edges {v,.v,},...,{Up_(+Un}s {U>t;} and the only
edges of G with endpoints in V(M) are edges of M.) A graph is chordal if it
does not contain a chordless m-cycles for m=4.

Theorem 8.5. Let Ce%6,, d=3. The following are equivalent :

(1) C is a stacked (d — 1)-sphere,
(i1} G(C) is chordal and C has no k-missing faces for | <k <d-—1.

Proof. (1) —(ii). Let C be a stacked (d —1)-sphere, d=3. By Lemma 8.2, C has
no k-missing faces for | <k<d-—1. It is left to show that G(C) is chordal. Let P
and @ be two simplicial d-polytopes such that Q is obtained from P by adding
a pyramid over a facet T of P. G(Q) is obtained from G(P) by adding a new
vertex u and connecting it to all vertices of T From this description it is clear
that if G(P) is chordal then so is G(Q). Therefore, graphs of stacked (d—1)-
spheres are chordal.

(1) —(i). The proof will proceed by mduction on d. For d=3 we have to
prove that every triangulated 2-sphere C with a chordal graph, is a stacked 2-
sphere. Assume to the contrary, that C is a countercxample with a minimal
number of vertices. If C has a 2-missing face then C is the connected sum of
two smaller triangulated 2-spheres ¢, and C,. G(C,) and G((C,) are chordal
and by the minimality of C. €, and C, arc stacked and therefore so is C.
Thus, C does not have a 2-missing face. Let v be a vertex of degree 4 or S in
C. (Such a vertex always exists unless € is the boundary of a 3-simplex.) If ¢

Rigidity and the lower bound Theorem 1 139

has 4 neighbors they form a 4-cycle (with the edges of Ik(v, C)) and this 4-cycle
must have a diagonal. Since C has no 2-missing faces C is a stacked 2-sphere
with 5 vertices. If v has 5 neighbors then by the same argument C is a stacked
2-sphere with 6 vertices. A contradiction.

Let d=4, and assume that the implication (ii)— (i) holds for every 4’ <d.
Let C be a member of 4, with a chordal graph and no k-missing faces for
| <k<d—1. First we show that C is simply-connected. Otherwise, let M be a
minimal cycle in G(C) which is not null-homotopic in C. M must be chordless
and if M is a triangle it must be a 2-missing face. Let v be a vertex of C. If S is
a k-missing face of lk(v, C), 1 <k<d—2 then either § itself or SuU{t} is a
missing face of C. This is impossible by the assumption on C. If M is a
chordless cycle in lk(v, C) then since C has no 2-missing faces, M is chordless
in C as well. Thus, by the induction hypothesis, lk(v, C) is a stacked (d —2)-
sphere for every vertex v of C. Since C does not have {d — 2)-missing faces and
is simply-connected, by Theorem 8.2, C is a stacked (d — 1)-sphere.

Both conditions of Theorem 8.5(ii) are necessary. The graph of every 2-
neighborly d-polytope is chordal. The d-cross polytope has k-missing faces only
for k=1. The implication (ii)—(i) does not hold for arbitrary (d—1I)-
pseudomanifolds as shown by the 3-neighborly 3-pseudomanifolds of Alishuler

(2.

9. Direct proof of Theorem 7.1

Lemma9.1. If Ce%?, S is a missing face of C then either dimS=1 or dimS=d
—1.

Proof. The lemma says nothing for d=3. Let Ce%y, d=4. Let us first show
that C has no 2-missing faces. Assume to the contrary that T is a 2-missing
face of C. Let v be a vertex of T and let E=T"{v}. E is an edge of C, the
vertices of E are adjacent to v and are therefore vertices of st(v, C). But E itself
does not belong to lk(v, C)(Ew{v}¢ C), and therefore E does not belong to
st(v, C). Since st(v,C) is generically d-rigid, E depends on st(v,C) wrt. a
generic d-embedding. However, E¢st(v, C) and therefore st(v, CyUE is not d-
acyclic. Since st(v, C)UE < C, C is not d-acyclic. A contradiction.

If T is a k-missing face of C, 2<k<d—1 then for every subset S of T of size
k—2, T\S is a 2-missing face of Ik(S, C). By Lemma 7.2, 1k(S, Om&%LL. But
d—k+2=4 and therefore Ik(S, C) does not have a 2-missing face. A con-
tradiction.

Lemma 9.2. If Ce%) then G(C) is chordal.

Proof. Assume to the contrary that Ce%) and M is a chordless m-gon in C.
mz4. Let E={v,,v,} be an edge in M. Let U be the set of vertices of M which
are not in E, and let H be the induced subgraph of M on U. (H is a path.) Let
W be the set of vertices of ¢ which are adjacent to some vertex of U, Clearly
vy, 0, W Define a simplicial complex D on W by D={J{st(u, C}:uel’}. Since
M is chordless E¢D. By Proposition 6.4, D is generally d-rigid. But the vertices of
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E belongs to D, therefore D UE is not d-acyclic and since DUE< C. C is not d-
acyclic. A contradiction.

Direct proof of Theorem 7.1 (end). Let Ce%,, by Lemmas 9.1 and 9.2, C has
no k-missing faces for 1<k<d—1 and no chordless m-gons for m=4. By
Theorem 8.5, C is a stacked (d — 1)-sphere.

Remark. Most of the work is needed just for the case d=4. If one assumes the
assertion of Theorem 7.1 for d=4, then the general case follows easily by
induction, from Lemma 7.2 and Theorem 8.2.

Corollary 8.4 and Theorem 7.1 imply:

Theorem 9.3. If C is a simply-connected triangulated (d — 1)-manifold, d =5, and
for every vertex ve C, y(lk(v, C))=0 then y(C)=

Second proof of Theorem 9.3 (hint ). In order to show that y(C)=0 it is enough
to prove that for every edge EeC, a generic d-embedding p of C\E has a non-
trivial infinitesimal flex v. (See Sect. 3). Let E={v,,v,} be an edge of C. Since
lk(r,, C) is acyclic, st(v,, C)\E has a non-trivial infinitesimal flex. Choose such
a flex v,. We will extend this infinitesimal flex to an infinitesimal flex of C\E.
Let r=d(vy(r,), vo(v,))

Let {w,u} be an edge in C, and let ¢ be an infinitesimal flex of st(w, C)\E.
Consider the restriction of ¢ to D, =st({u,w}, C)\E and extend it to an infini-
tesimal flex & of D, =st(u, C)\E. This can always be done (here we use the fact
that 4= 5). The an:wgo: is unique unless v,,v,€D,, but either v, or v, are not
in D,. In this case extend ¢ under the condition that d(&(v,), chle

>©E< this operation to extend v, to stars of all the vertices in C. It can be
shown that if an infinitesimal flex is defined on st(v, C) using this procedure via
a path [ from v, to v, then it depends only on the homotopy class of the path L
Therefore, if C is simply-connected one gets a well-defined non-trivial infinites-
imal flex on C\E.

Third proof of Theorem 9.3 for boundary complexes of simplicial polytopes. Let

/ aa am
— £(C) = (d - 1) f,(C) + ANVEQTA w V AHEDLJAQ,%&@?5:
mmommwﬁoormowﬁrmﬂ

Y {rdk(e. O ve V(O =30(C)+(d = 1) p(C). 9.1

It is plausible that 6(C)=0 holds for every simply-connected triangulated
(d - 1)-manifold C, d=S5. This is known only when d =35 and when d>5 and Cis
the boundary complex of a d-polytope. Clearly if 6{C)=0 and the left hand
side of Eg. (9.1) is equal to zero then: (C)=3(C)=0.

For a triangulated 4-manifold C. the Dchn-Sommerville equations assert
that 3(C)=10(z(C)~2) where y(C) is the Euler characteristic of C. In particu-
lar. if C is simply-connected then 3(C)=10h,20 where b, =rank H,(C()=0 is
the second Betti-number of C.

The inequality (P)=0 for a simplicial d-polytope P, d =5, is a J.UGQE case
of the “generalized lower bound inequalities™ [49, 557 (sce Sect. 14). (In fact,
the “g-theorem™ in its full strength implies that if (P)=0 then 3(P}=0. This
implics also. by (9.1). Lemma 7.2 for polytopes.)

Rigwity and the lower bound hicorem i L
10. The lower bound conjecture for pseudomanifolds

The lower bound conjecture for pseudomanifolds. (a) If C is a (d—1)-
pseudomanifold with n vertices, then f(C)Z¢,(n,d) for 1£k<d—-1. (b) If
equality holds for some k, d>k> 1, then C is a stacked sphere.

The case k=d—1 of part (a) of this conjecture was proved by Klee [42].
The remaining cases are still open.

Definition 10.1. A (d - 1)-pseudomanifold is normal if every face Seskel,_;C has
a connected link.

Note that the class €, of (d —!)-pseudomanifolds defined in Sect. 6 is the
class of normal (d— 1)-pseudomanifolds whose singular part has codimension
greater than 2. (If Ce%, and S is a face of C of size d—3, then IKk(S.C) is a
triangulated 2-sphere.)

The class of normal pseudomanifolds is closed under taking links of faces.
Therefore, the LBT for normal pseudomanifolds reduces by the MPW-re-
duction to the case k=1. As in the proof of Theorem 6.1 the generic d-rigidity
of normal (d — 1)-pseudomanifolds follows from the generic 3-rigidity of normal
2-pseudomanifolds, which are just triangulated 2-manifolds. Part (a) of the
LBC for normal pseudomanifolds would thus follow from the following old
standing conjecture:

Conjecture G [28, 251. The graph of every triangulated 2-manifold is generically
3-rigid 2.

Remark. Connelly gave in [24] an example of a flexible embedding of a
triangulated 2-sphere, and thus refuted the old conjecture (going back to
Euler,) that every triangulated 2-manifold embedded in R3 is rigid.

Conjecture G would also imply part (b) of the LBC for normal pscudo-
manifolds as follows: It is enough to show it for normal 3-pseudomanifolds and
then to proceed as in Sect. 7. Conjecture G implies that a 3-pseudomantfold C
is generically 4-rigid. Thus if y(C)=0 then C must be 4-acyclic, and every link
of a vertex of C must be 3-acyclic hence a triangulated 2-sphere.

In order to reduce the LBC for arbitrary pseudomanifolds to the normal
case, and also to extend Theorem 1.1 to arbitrary pseudomanifolds with
singular set of codimension greater than two, we need the following normaliza-
tion process [ 57, p. 83] (compare [29, p. 151, 17}

Let C be a (d—1)-pseudomanifold. Choose a non-empty face S of C 3
smallest possible dimension k., k<d —2 with a non-connected link. ~ Pull apart™
C at S to get a new complex Ny(C) as follows: Create a copy F, of F for cach
component K, of Ik(F, C) so that the link of F in the new complex Ng(C) s N,
Repeated applications of this operation will terminate with a normal (i — -
pscudomanifold N(C).

Direct computation gives:

(O =@ d) > L NJON = n.d)) - for every | <h<d. {101}

ons of the toras

Whiteley and Graver have recently proved (independently) that a
are generically 2-rigid. Connelly proved (private communication) that every triangulated 2-mun-
ilold admits a generically 3-ngid sabdivision
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It is likely but unknown that if N(C) is generically d-rigid so is C.

Remarks 1. Altshuler constructed in [2] 3-pseudomanifolds such that none of
their 2-dimensional links are spheres.

2. Note that the lower bound inequalitics need not hold for a strongly
connected (d — I)-dimensional complex, in which every (d—2)-face is included
m at least two facets. A counterexample is two tetrahedra identified along an
edge.

11. Manifolds with boundary

In this section we prove a lower bound, conjectured by Bjorner [17], for the
number of k-faces of a triangulated (d — 1)-manifold with boundary as a func-
tion of the numbers of interior vertices and boundary vertices. The problem
was originated in the study of polytope pairs, see [40, 41, 17, 16]. We first need
a few definitions.

A d-tree ([34]) is defined inductively as follows: A complete simplicial
complex on d+1 vertices is a d-tree. If C is a d-tree on the vertex set ¥V,
ugV(C), and S is any (d~ 1)-face of C, then the simplicial complex obtained
from C by adding u to the vertex set V and adding the new facet SU{u}, is a
-tree. A simple d-tree ([63]) is a d-tree in which every (d —1)-face is included in
at most two facets. (L.e, it is a pseudomanifold with boundary.) A simple d-tree
is actually a triangulated d-ball. In fact, given a stacked d-polytope P, d=3, P
can be divided uniquely into d-simplices Sy.-»8,,, such that every (d - 2)-face
of any of these simplices is a face of P. The sets of vertices of these simplices
form the set of facets of a simple d-tree. This gives a 1—1 correspondence
between simple d-trees and stacked d-polytopes, d = 3.

A d-tree on n-vertices has Y (n,d)y= AMV n— AMH “v k k-faces ([34]). A simple
result of Beineke and Pippert [19] and Bjorner [17], asserts that every strongly
-onnected d-dimensional simplicial complex C with n vertices has at least
bi(n.d) k-faces. This bound applies, in particular, to (d — [)-pseudomanifolds
~ith boundary. Beineke and Pippert showed that cquality holds only for k-
recs. (The earliest result of this type was proved by Klee [40].)

Define a stacked (d—1)-ball to be a triangulated (d — 1)-ball C which is
btained from a simple (d — |)-tree by repcated stellar subdivisions of facets.
quivalently, C is a stacked (d—- 1)-ball if C is the antistar of a vertex of a
tacked (d —1)-sphere.

Let € be a stacked (d~ 1)-ball with n vertices. n, of them on the houndary
md n, m the interior. {n, is always at least d.) Thus, C is obtained from a
imple (d ~1)-tree with n, vertices by n, applications of stellar subdivisions of
acets. Let @R n,.d) be the number of k-faces of C. As casily seen this
umber depends only on n.n, and d, and is given by formula (1.2):

heorem L1 Let C he a rriangulated (d D-manifold. d =4, with non-empty
oundary 1t C has n, vertices in the interior and m, vertices in the boundary then
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(i) £(O)=2 @b (n;, n,,d), for every k, | Sk<d—1.
(i) If f(C)=¢b{n;,n,,d) for some k, | <k<d—1 then C is a stacked (d —1)-
ball.

Proof. Let u be a vertex not in C and D=Cul{u}*cC). D is a (d—1)-
pscudomanifold (without boundary).

Claim 11.2. D is generically d-rigid.

Proof. Note that for every vertex veD, different from u, lk(r, C) is a homology
(d —2)-sphere, and is generically (d — 1)-rigid by Theorem m;mﬂroo% any tree
T in G(D) which contains all vertices of D except u. The conditions of Proposi-
tion 6.4 hold and therefore C is generically d-rigid.

Proof of Theorem 11.1 (continued). Put n= f,(D) AH:_;..::r C. Wmom.: that for
kz1, y (D)= f(D)—¢p,(nd), (Sect. 5.) Put 7,(D)=0. A simple inspection shows

that FO) =@, ny, d)=7,(D)—7, _,(k(u, D)). (11.1)

Proposition 11.3. Let D be a generically d-rigid {(d —1)-pseudomanifold. Then for
every vertex v of D, y,(D)zy,_,(Ik(v,D)). If equality holds then ;(D)=0.

Proof. Recall that /(D)= {y(Ik(S, D)): SeD,|S|=i}. Proposition 5.1 asserts that
k-1 )
7(D)= Y w;(k,d)y'(D). The coefficients w;(k,d) are given by formula (5.6).
i=0 .
We need the following two inequalities:

7 (D)z 7~ 'k (x, D) +7'(Ik (¢, D). (11.2)
wik,dy+w, (kd)>wlk—1.d—1) forevery 1Si<k—1. (11.3)

To prove (11.2) divide the set of (i — I)-faces of D into three parts. (a) Hvoma
faces S which contain the vertex v, (b) Those faces S which do not contain r
but Su{v}eD and (c) the remaining (i 1)-faces of D. Note that the sum of
7(Ik(S, C) over faces in the first family is exactly 7"~ '(Ik(c, C). If S belongs to
the second family and T=Swu{v} then by Theorem 7.3, ;(Ik(S, D))= (Ik(T. b.‘.
But Ik(T, D)=Ik(S,Ik(r, D)), and therefore the sum of Ik(S. C) over all faces in
the second family is at least y{lk(v, D)).

To prove (11.3) use formula (5.6) and note that always a,(d)>a, (d—1)

k k k-1
and 1/(k+1) A\.Lv+_§+ 1 Cu_ K A\,Lv.v
By Proposition 4.1, (11.2) and (11.3).

ot ko

adDY=Y wik.d) Dy zw otk dy ke, DY+ Y ko di K DY =k e Dy
=0 1=1
ko2 k

Z N wthody oy, (kody ke, Dy = Y otk o Ld - DKk Dy
)

/
( i= )

[\

t

1l

This gives the required inequality. Since {(11.2) is « strict inequality if (D)
=+, k(. D) then (D)=0.

AN
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Back to the proof of Theorem11.1. By Claim 11.2, D is generically d-rigid.
Formula (11.1) and Proposition 11.3 give part (i) and show that in case of
equality y(D)=0. In order to prove part (ii) we need

Claim 11.4. If 7(D)=0 then D is a stacked (d — 1)-sphere.

Proof. Let E=Ilk(u, D). If E is not connected, apply the normalization pro-
cedure described in Sect. 10 to the vertex u. The proof of Claim 11.2 apply for
the resulting complex D and by formula (10.1), y(D)>7(D)=0. A contradiction.
If E is connected then for d=5, De%, and by Theorem 7.1, D is a stacked (d
— 1)-sphere. For d=4, lk(u,D) may be any triangulated 2-manifold. However,
since 7(D)=0, G(D) is 4-acyclic and lk(u, D) must be 3-acyclic. Therefore,
Ik(u, D) is a triangulated 2-sphere, De%, and by Theorem 7.1, D is a stacked 3-
sphere.

Proof of Theorem 11.1(ii) (end ). By Claim 11.4, D is a stacked (d — 1)-sphere,
hence C is a stacked (d — 1)-ball.

Remurk 11.5. Bjorner conjectured in [17] that Theorem 11.1(i) holds for every
{d — t)-pseudomanifold with boundary. Bjorner proved the case d=3 of this
conjecture, and showed that the conjecture imply the lower bound inequalities
for pseudomanifolds without boundary. It can be shown that the assertion of
Theorem 11.1 for arbitrary pseudomanifolds with boundary would also follow
from the generic 3-rigidity of all triangulated 2-manifolds (Conjecture G). Our
proof can be applied to all normal (d — 1)-pseudomanifolds with boundary with
singular part of codimension 3 or more.

12. A lower bound conjecture for polyhedral manifolds

For a polyhedral complex C, f3(C) is the number of 2-faces of C which are k-
gons. For a polyhedral (d — 1)-dimensional complex € define:

&+_V (2.1)

HOY=f(P)+ ) ;Lzﬁil:lA ,

kz3

For a d-polytope P, with boundary complex #(P). y(P) stands for y(#(P)).
Conjecture 12.1. If P is a polyhedral {d — 1)-manifold ithen (C)=0.

Perhaps the ultimate generality for conjecture 12.1 (and a convenient con-
text to study this conjecture,) 1s for “graph manifolds™ which are defined in
{117} (See also [12])

As we already mentioned in Sect. 5, Whiteley’s theorem implies the truth of
Conjecture 12.1 for boundary complexes of d-polvtopes (Theorem 1.4). Pre-
viously. it was proved for rational polytopes as a consequence of some deep
results i algebraic-geometry. In fact, for such a polytope P, y(P) is the
dimension of the second primitive intersection homology group ([297) of the
toric varicty associated with P. (Sce [46], [58, Ch. 4]. [59].) However, as was
shown by Perles [31. pp. 92-95], there are polytopes which are not com-
binatorially equivalent to rational polytopes.

.

Rigidity and the lower bound Theorem 1 145

One difficulty in dealing with Conjecture 12.1 is the fact that the generic d-
rigidity of d-polytopal frameworks is not a local property as in the simplicial
case (for d=4). In the case of a simplicial d-polytope, d 24, (or a triangulated
(d —1)-manifold,) the graph induced on a neighborhood of any vertex is already
generically d-rigid. This is not the case for d-polytopal frameworks. As an
example, let P be a pyramid over the octahedron Q, and consider the neigh-
borhood of any vertex of Q.

For a d-polytopal framework # based on a d-polytope P it is only for the
(highly non-generic) embeddings which realize P as a convex polytope that it is
possible to prove “local” infinitesimal rigidity at any vertex [66, p. 456]. This
in turn, implies the infinitesimal rigidity and hence the generic rigidity of Z.
We do not know how to find such a pleasant embedding for arbitrary polyhe-
dral (d — 1)-manifolds (or even polyhedral (d — 1)-spheres).

We mention now two corollarics of Theorem 1.4. A polyhedral complex P
is k-simplicial if every j-face S of P, j<k is a simplex. Theorem 1.4 and the
MPW-reduction imply:

Theorem 12.2. Let P be a k-simplicial d-polytope with n vertices then
filP)Z@;(n,d) for L sisk.
Let us check now what does Theorem 1.4 says for simple polytopes. If P is

d A
a simple polytope with n vertices then .\_AEH% and Y kf5=f(P)(d—1). The
inequality y(P)=0 reduces in this case to: -

n+_v

Fo(P)—(d—2)f,(P)< A :

A posteriori this follows, of course, from Billera, Lee and Stanley’s complete
characterization of f-vectors of simplicial polytopes.

A d-polytope P is elementary if 7(P)=0. In [38] we study the function ;(P)
for polytopes and especially the class of elementary polytopes. We prove there
that quoticnts and faces of elementary polytopes are elementary and that for
every face S of an elementary polytope P either S or Ik(S, P) is a simplex. We
prove also that the class of elementary polytopes is self-dual. The starting point
for the proof is the fairly simple identity: For a 4-polytope P, APy =-(P*). It
would be interesting to find a natural isomorphism between the spaces of
stresses of the polytopal frameworks based on a 4-polytope P and its dual P*.

13. Topological subgraphs of triangulated manifolds

In this section we diverge from lower bound theorems. We prove using some
of our previous results a property of graphs of traingulated manifolds of a
different nature,

A graph H is embeddable in a graph G 1f G contains some subgraph
homeomorphic to H. Griinbaum proved ([31. p. 2007} that K, ;. the complete
graph on d+1 vertices, is embeddable in the graph of every d-polytope.
Barnette proved in [117 that K, , is cmbeddable in the graph of every
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polyhedral (d — 1}-manifold. (These results are immediate in the simplicial case.)
For a graph G with no vertices of degree 2, TG stands for any graph ho-
meomorphic to G.

Theorem 13.1. Let d 24 be a fixed integer. K, , is embeddable in the graph of
a triangulated (d — 1)-manifold C iff C is not a stacked (d — 1)-sphere.

Proof. 1t is well-known and easy that if C is isomorphic to a stacked d-
polytope then K, , is not embeddable in G(C). In fact, G(C) does not contain
K,,, even as a minor.

Let K; denotes a K, minus an edge. The two vertices of a TK; (d>4) of
degree d —2 are called special.

Lemma 13.2. Every two non-adjacent vertices of a simplicial 3-polytope serve as
special vertices of a TKS; every two non-adjacent vertices of a stacked d-

polytope (d > 3) serve as the special vertices of some TKy, ,.

Proof. The first part follows from the 3-connectivity of C, the second part can
easily be checked directly.

Proof of Theorem13.1 (end). Let C be a triangulated (d— 1)-manifold, and
assume that C does not contain a TK,,,. We can assume that C has no
vertices of degree d (otherwise we delete them successively). We apply in-
duction on d. Let v be a vertex of C and v, w be a pair of non-adjacent vertices
in lk(z, €). By Lemma 13.2, (and the induction hypothesis if d>4,) u and w are
the two special vertices of some TK, , in lk(v, C). Therefore u and w are not
adjacent in C nor they are connected in a path that avoids st(v, C). This
directly implies that C has no 2-missing faces and no chordiess m-gons for
m=4. For d>4 the induction hypothesis implies that C does not contain
missing k-faces for 2<k<d—1 as well. By Theorem 8.5, C is isomorphic to a
stacked sphere.

Remarks. (1) For triangulated 2-manifolds the situation is this. K, is not
embeddable in any triangulated 2-sphere (stacked or not) by (the easy part of)
Kuratowski’s Theorem. It is plausible but unknown that Ky is embeddable in
every triangulated 2-manifold which is not a sphere. This will follow from an
oldstanding conjecture of Dirac [27] which asserts that K, is embeddable in
cvery graph with n vertices and more than 3n—6 edges. Assuming the the
truth of Dirac’s conjecture it can be shown that Theorem 13.1 holds for
arbitrary (d — 1)-pseudomanifolds. (While our proof applies only for pseudo-
manifolds 1n €,.)

(2) Grunbaum proved (|31, p. 200}) that for every d-polytope P, skel,(4,) is
cmbeddable in skel,{P). Problem: For which simplicial d-polytopes is
skel(4,.,) embeddable in skel,(P)? By van Kampen-Flores theorem ({31, Ch.
I1]) this may never oceur if i2[d+1.2] 1.

14. Concluding remarks and open problems

FhE (A and the topology of M. For a manifold M. (of dimension at feast 2)
define (AN=min{(C): C s a tiangulation of M} For cvery manifold
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M, which admits some finite triangulation, (M) is a non-negative integer, and
we have proved that y(M)=0 only if M is a sphere. If M is two dimensional
7(M)=3(2 —x(M)), where y(M) is the Euler characteristics of M.

Walkup proved [63] that (i). For a 3-manifold M which is not a sphere.
y(M)2z 10, and y(M)=10 iff M is S'xS? or the corresponding non-orientable
“handle”. (He also showed that the only triangulations C of these manifolds
which satisfy p(C)=10 are in #*(1)) (ii) For all other 3-manifolds M,
y(M)z17 and y(M)=17 only when M is the three dimensional projective
space.

In [39] wc show that for every fixed non-negative integers d,c¢,d 22, there
are only finitely many d-manifolds M for which y(M)<c.

We would like to understand how the topology of M affects the invariant
7(M). Let b,(M) denotes the i-th (reduced) Betti number of M. (Thus, b,(M)
=rank H,(M,Z).)

Conjecture 14.1. For a (d—1)-manifold M, d 24, y(M)=b (M) A )

«I._v

d+1
2
ity?) Walkup proved ([63]) that for every 4-manifold M, (and even every
4-pseudomanifolds in 4.} y(M)=2L(2-7(M)) and equality holds iff
Cew's (M)
e (1-437).
The problem of finding y(M) for a (d— 1)-manifold M resembles the well-
known problem of finding «(M) the minimal number of vertices in a tri-

If Ceat'*(k) then ian:DA v (Are these the only cases of equal-

3

. ) . 1—1
angulation of M (see [50]). Let i, d be fixed integers, d =3, 0<i< ﬁ Q It
; 2
can be shown quite easily that a{M)= C(i,d)b(M)i+1, where C(i,d) is a positive

constant depending on i and d (compare [18]). We conjecture that similarly
1

(for i>0,) y(M)=D(i,d)b,(M)i, where D(i,d) is another positive constant de-
pending on i and d.

We would like to know the exact values of +(S' xS'x §!). +(S2x §?) and
7(CP?). Kithnel's 3-neighborly complex projective plane with 9 vertices ([43.
447) shows that y(CP?*) <6.

14.2. The generalized lower bound conjecture

Let d be a fixed integer., d2 1. For a vector of non-ncgative integers |
=0 o Sodieedyo Oof =1 define h{f =(h,.h,.....h,) where

y — vrl 1y Aa!\.ﬂ;l.v i

(=0 !

If 7 is the f-vector of a simplicial d-polytope or a (J-- 1)-dimensi
complex C, h{ /] is called the h-vector of C. h-vectors of simplicial polytopes
were introduced by MceMullen and Walkup [49]. This concept plays a crucial
part mn the combmatorial theory of simplicial polytopes and in several other
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areas of combinatorics ([48, 54, 55]). (The original notation was g for h; and
gé* Y for hy,, —h,)

A simplicial d-polytope P is k-stacked if P can be triangulated without
introducing new j-faces for j<d—k—1. A triangulated (d — 1)-sphere C is k-
stacked if it is the boundary of a triangulated d-ball B with the same (d—k—1)-
skeleton.

McMullen and Walkup suggested in [49] the following far reaching gener-
alization of the lower bound conjecture.

The generalized lower bound conjecture. (i) (The generalized lower bound in-
equalities.) If P is a simplicial d-polytope and OM»MRQI_ then h,, ,(P)
—h(P)20. (i) If h,, ,(P)—h,(P)=0 then P is a k-stacked polytope.

The generalized lower bound inequalities were proved by Stanley [55] as
part of his proof of the necessity part of the “g-theorem”. Part (11) is still open.

Note that y(P)=h,(P)—h,(P). The Dehn-Sommerville equations (see [48,
56]) assert that h,=h,_,, 0<i<d. In particular, if d=2k+1 then he,—h,=0
for every simplicial d-polytope.

It is widely believed that the assertions of the GLBC and the “g-theorem”
are true for arbitrary triangulated spheres. (See [32, 56].) In part (ii), “a k-
stacked polytope” should be replaced by “a k-stacked sphere”3.

For a triangulated (d — 1)-manifold C define

; & k—1 )
AO=h(O)= (i) T (~1/b,(C).

Schenzel proved ([52], see also [57, pp. 84-85]) that every triangulated (d — I)-
manifold with boundary C satisfies £,(C)2>0, for every k=0.

Conjecture 14.2. Let C be a triangulated (d — 1)-manifold (without boundary).
d - . d

3]t o-R©z (1 no

Note that Conjecture 14.1 is a special case of conjecture 14.2. The Dehn-
Sommerville equations assert that /,(C)=0 and A,(C)=£,_.(C), 1<i<d.

Many of the results of this paper have obvious analogs in the context of the
zeneralized lower bound inequalities. Proving them seems hard. Only the third
oroof of Theorem 9.3 and the proof hinted there for Lemma 7.2 extend directly.

Then for every k, OM»Mﬁ

14.3. Flexible weuk embeddings. Let C be a pure simplicial complex. An
embedding of the vertices of C into IRY is a weak embedding of C if the images
of the vertices of every facet of C are affinely independent. If C is the
coundary complex of a stacked d-polytope then every weak embedding of €
mto R? is rigid. Bricard constructed in 1897 ([20]) a flexible weak embedding
of the octahedron into R3,

'he conjectured equality cases for spheres do not mmply the conjecture for polytopes. One

: Conge r
-wisequencee from the GLBC would be that jor 1<k« ﬁk _ -1 every d-polytope whose boundary

q
d
)

omplex is A-stacked (as a sphere) is a k-stacked polytope. We doubt if this is truc for k2
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Conjecture 14.3. Every non-stacked 3-polytope have a flexible weak embedding.

14.4. Rigidity of spaces and separations properties. All topological spaces men-
tioned here admit finite triangulations. A topological space X is d-rigid if every
triangulation of X is generically d-rigid. A simple sufficient condition for d-
rigidity follows from the generic d-rigidity of strongly connected d-dimensional
simplicial complexes.

Theorem 14.4. Let X be a topological space. If for every Y <X which separates
X,dimY =d—1 then X is d-rigid.

Conjecture 14.5. Let d23. Let X be a topological space. If for every Yc<X
which separates X, H,_,(Y)%0 then X is d-rigid.

14.5. Rigidity of tight manifolds. A triangulated 2-manifold M enbedded in R3
is tight (see [45, 8]) if M A H is connected for every half space H of R>. (This
property is known as Banchoff's two piece property and is weaker then tight-
ness in more general contexts) M is strictly tight if it is tight and no two
adjacent facets of M are in the same plane (in particular if the vertices of C are
in general position).

Strictly tight embeddings of a triangulated 2-sphere C are just realizations
of C as the boundary of simplicial polytopes. All these embeddings are rigid by
Cauchy’s theorem. Connelly proved in [26] that all tight embeddings of a 2-
sphere, i.c., embeddings as convex surfaces, are rigid.

Conjecture 14.6. A tight embedding of a triangulated 2-manifold in R3 is rigid.

Conjecture 14.6 implies that triangulated 2-manifolds which admits strictly
tight embeddings are generically 3-rigid. Yet, it is hard to suggest this approach
for proving Conjecture G (Sect. 10) for orientable 2-manifolds. It is not even
known whether every orientable triangulated 2-manifold can be geometrically
embedded in R (Sce [32, 13]).
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Oblatum 26-VI-1985 & 3-1X-1985 & 3-111-1986

Note added in proof

The busic refation between the BT and ngidity is ebserved independenthy by M. Gromoy in [67.
Ch. 24.10]. Morcover, Gromoy presents a purly combinatorial “substitute™ for rigidinn. Using
Gromov's “rigidity™ concept combined with the results of Sections T-11 it is possible 1o proye

Pheorems Lt and {101 for arbitrury pscudomanifolds




