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The paper presents an algorithm for solving Integer Programming problems whose running
time depends on the number n of variables as n%"™_ This is done by reducing an n variable
problem to (2 n)5'/2 problems in n — ; varigbles for some | greater than zero chosen by the
algorithm. The factor of O(»%/ %) “per variable” improves the best previously known factor
which is exponential in ». Minkowski’s Convex Body theorem and other results from
Geometry of Numbers play a crucial role in the algorithm. Several related algorithms for

Jattice problems are presented. The complexity of these problems with respect to polynomial-
time reducibilities is studijed.

agorithm that for any polytope P in #" of nonzero volume either finds an integer

point (point with all integer coordinates) in P or finds an integer vector v so that the
maximum value of the linear functional (v, x) and the minimum value of (v, x) over
 the polytope P differ by less than ¢ where ¢ is a constant independent of ». Every
integer point must lie on a hyperplane of the form (v, x) = z for some integer z, and
there are at most ¢ + 1 such hyperplanes intersecting P. It obviously suffices to
determine for each such hyperplane H, whether H N p contains an integer point.
Lenstra uses this to show that an n variable problem can be reduced to ¢ +1

iswered affirmatively in this paper.
The paper presents an algorithm which either finds an integer point in the given

polytope P in gpn or finds for some i, 1 < ; < #, an n —~ | dimensional subspace ¥
| with the following property: the number of translates of ¥ containing integer points
‘ hat intersect P is at most (21)*'/2. Each such translate leads to a 7 - i dimensional
Poblem. So, it can be shown that there is a factor of O(n/?) per variable in the
Unning time. The algorithm for finding the subspace V uses at most O(n"s) arithmetic
S where s is the length of description of the polytope. The dependence on »
" the complete integer programming algorithm is shown to be O(n°").
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Several concepts and results from Geometry of Numbers are used, the most Crucia]

of them being Minkowski’s convex body theorem. This elegant classical theorem tumng

out to be crucial in reducing the factor per variable to a polynomial. §1 contains 5 brief
introduction to Geometry of Numbers to make the paper self-contained.

The integer programming algorithm will be presented after two other algorithry.
one for finding the shortest (in Euclidean length) nonzero integer linear combinatiop of
a given set of vectors and the other for finding the integer linear combination of a se
of vectors that is closest (in Euclidean distance) to another given vector. These are
called the Shortest Vector Problem (SVP) and the Closest Vector Problem (CVP)
respectively. The algorithms for both problems take O(n”s) arithmetic operations op »
dimensional problems where s is the length of the input. The algorithm for the SVP i
needed as a subroutine in the integer programming whereas the algorithm for the Cyp
is not directly needed, but has ideas that will be useful in integer programming. The
integer programming algorithm extends to mixed integer programs too.

It is well known that Integer Programming is NP-hard. It has been shown recently
that CVP is NP-hard. At present, it is not known whether SVP is NP-hard or admits a
polynomial time algorithm (or both!). The last section of the paper provides another,
more natural proof that CVP is NP-hard. Further, it relates the complexity of the SVP
to an approximate version of the CVP. It is hoped that this is a beginning towards
proving the NP-hardness of the SVP which remains an important open problem.

Operations Researchers are usually interested in solving the Integer Programming
Optimality problem—i.e., the problem of maximizing a linear function over the set of
integer solutions (solutions with all integer coordinates) to a system of linear inequali-
ties. This question can be reduced by elementary means to the Integer Programming
feasibility question which is the problem of determining whether there is an integer
point inside a given poyhedron. This paper deals only with the feasibility question and
this will be called the Integer Programming Problem. Computationally it can be stated
as: Given m X n and m X 1 matrices 4 and b respectively of integers, find whether
there exists an n X 1 vector x of integers satisfying the m inequalities Ax < b. The
case of n =1 can be trivially solved in polynomial time. For the case of n=12,
Hirschberg and Wong (1976), Kannan (1980) and Scarf (1981) gave polynomial time
algorithms. '

Central to H. W. Lenstra’s algorithm for general n is an algorithm for finding a
«reduced basis” of a “lattice” (both terms to be explained later). Lenstra’s (1979)
original basis reduction algorithm takes polynomial-time only when the number of
dimensions is fixed. After his result, Lovasz devised a basis reduction algorithm which
runs in polynomial time even when n the number of dimensions varies. This algorithm
combined with an earlier result of A. K. Lenstra’s (1981) that reduced factoring 2
polynomial to finding a short vector in a lattice yields a polynomial time algorithm for
factoring polynomials over the rationals. All these ideas were first published in an
important paper of Lenstra, Lenstra and Lovasz (1983). This paper is referred 10
henceforth as the LLL paper. Here, the following result from the LLL paper is used:
Given a set of vectors by, b,, ..., b,, we can find in polynomial time a nonzero ipiege!
linear combination of them whose length is at most 27/? times the length of any
(other) nonzero integer linear combination. §2 of this paper gives an algorithm for
finding a better reduced basis of a lattice than the one Lovasz’s algorithm finds, but n
time bounded by a polynomial only for fixed n. The reduced basis solves the SVP an
is used in other algorithms of the paper.

A preliminary version of this paper appeared as Kannan (1983). Since then, Helfrich
(1985) has made some improvements in the running time of some of the algorithms:
Schnorr (1984) uses the algorithm presented here for solving the SVP to obtat
polynomial time algorithms for finding better approximations to the shortest vector
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than the LLL paper. Lagarias, Lenstra and Schnorr (1986) prove some properties of
the successive minima of lattices for the concept of «reduced basis” used in this paper.
They have traced the concept back to Korkhine and Zolotoreff (1873). Hastad (1985)
has observed using their results that for any polytope P of positive volume in &7, if P
does not contain an integer point, then there exists an integer vector v SO that the
maximum and minimum of (v, x) over P differ by at most O(n/*). But there is no
finite algorithm known that finds this vector. Babai (1985) is an interesting related
development to some of the algorithmic questions discussed in this paper.

Notation. " is Euclidean n-space. g is the set of n-vectors with integer
components. (a, b) is the dot product of the two vectors a, b. |al=laly = the
Euclidean length of the vector d.

L{by, byy--->» b,) = the lattice generated by the vectors by, by oo b, (i.e., the set of
all integer linear combinations of these vectors). For any lattice L, A,(L) denotes the
length of the shortest nonzero vector in L.

For any set of vectors by, by, ..., b,y WE reserve the notation b,(j) for the real
qumbers defined in (1.5) and b(i, j) for the vectors defined in (1.5)".

Suppose L(b;. bys-- -, b)) is a lattice. Then for j = 1,2,...,n, Lj(bl, by,...> by)
will denote the projection of L(by, byy--->by) orthogonal to the vector space spanned
by by, by by By convention we take the space spanned by the empty set to be
the singleton {0} and hence the orthogonal complement of it is the whole space. Thus,

Ly(by byoo-s b)) = L(by, byy.--5 by) Clearly L;(by, by, - - b,) depends on the basis
by, bys- s b, of the lattice we choose.

The programs in this paper will be written in “pidgin” ALGOL. The language is
close enough to English that the reader should have no problem with it. T adopt the
convention that the statement “Return X means Stop execution and output X.

1. Basic definitions and facts about lattices. A lattice L in &" is the set of all
integer linear combinations of a set of linearly independent vectors in #". The
independent vectors are called a basis of the lattice.

1f b, b,y,.... b, are independent vectors in #™, m > n, the basis matrix of the
lattice L(b,, byv---»ba) 18 the n X m matrix B with by, by, .- by 88 its n rows. Now
suppose U is any n X n unimodular matrix (integer matrix with determinant +1).
Clearly, the inverse of U exists and has integer entries. Then for any y in #™, yisin
L(by, by,..., b, iff 3x & an y=xBe3x'€Z" x’(UB) = y (because U, U!
have integer entries) <)y € the lattice generated by the rows of UB. Thus making a
unimodular transformation of the basis leaves the lattice unchanged. Indeed the

converse is also true.

LemMma 1.1.  Suppose B and B’ are n. X.m and k X m matrices each with independent
rows and suppose the rows of B and B’ generate the same lattice. Then k equals n and
there is a unimodular matrix U such that UB = B".

~ The dimension of a lattice is the number of basis vectors that generate it. If a lattice
is full dimensional, i.e., it 1s 2 lattice in 2" of dimension n and 1s generated by the
tows of an n X n matrix B, the determinant of the lattice is defined 10 be the absolute
Viﬂ“e of the determinant of B (by the lemma above it is an invariant of the lattice).
Geometrically, it is the volume of the parallelepiped spanned by by, by, by, ..., b, We
3130‘have to deal with lattices which are not full dimensional. Thus suppose by, by -5 by
Zre independent vectors in @™, m > n. Then the determinant of L(by, bys---s b,) is
beﬁ“ed to be the n volume of the n-dimensional parallelepiped spanned by

by, .., b,. To make this definition computationally more explicit as well for other
Purposes, we introduce the familiar Gram-Schmidt orthogonalization Process for
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finding b}, bF,..., b} where,
b} =5, and ‘(1.2)
b¥X,=0b,1— Z piH’jbj* fori=1,...,n—1, where (1'3)
j=1

= (b, bF)/(bF, b¥) forl<l<k<n.

(14)

We see that if b,,..., b, have rational coordinates, so do the b* and they can be
computed in polynomial time from by, b, ..., b,. Letting u, = b* /|b*|, there exist reg]
numbers b;(j) such that

b, = }j:b,-(f')u,-- (1.5)

In fact, from (1.3), we see that b,(j) = p, /b for 1 <j <i < n, b(i) = |bF|forall
i and b,(j) =0 for 1 <i<j < n. So with rational inputs, b,(j)* is always rational
(even though b,(j) may not be). This observation will be useful because I will have
occasion to compare |b,( j)| with other real numbers. The definition of b,(j) in (1.5)
will be used repeatedly and so it is part of the notation. I will also use occasionally the
vectors b(i, j) defined by (1.5)’ below:

b(i, j) = Y, b(k)u, forl<j<i<n. (1.5)
k=j

In many parts of the paper, it will be extremely useful to think of by, b,,..., b, as
being represented in a coordinate system with uy, u,, ..., u, as the axes vectors. In this
coordinate system, the matrix with the basis vectors as its rows is lower triangular and
has the b,(j) of (1.5) as its entries. Reminder: b,(i) is the length of b*.

b(1) 0 0 - - : : .0
b,(1) b(2) 0 - - : : .0

(i) 0

bia(i) b (i+1)
0
b(1) b2 - - - : - - b(n)

The lower triangular representation of the basis matrix. 1 caution that these entries
may be irrational and cannot be exactly computed in general. So, in the algorithm?I
do not change the coordinate system, but conceptually it is easier to think of the basis
matrix being written in this form.

The determinant of L(by, b,, ..., b,) denoted d(L(by, b,,..., b,)) is defined to be
the absolute value of the determinant of the lower triangular »n X n matrix whose
entries are b,( /). Clearly, this equals the product of the lengths of the b*, i = 1,2,.... *

We are often interested in “projecting” and “lifting” vectors. Projecting a vector b
onto the hyperplane through the origin with v as the normal yields the vector
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h— (b, v)/(v,v))v. The projection of b in the direction of v is the vector
(b, v) /(v, v))v. To project perpendicular to a subspace we find an orthogonal basis of
ihe subspace and project perpendicular to each basis vector successively—this is the
Gram-Schmidt procedure described in (1.2) and (1.3). To project into a subspace
means to project perpendicular to its orthogonal complement. The projection of a set is
the set of projections of its elements. Suppose v is a nonzero element of a lattice L and
[ is the projection of L perpendicular to v. If W is any vector in the L, we may “lift”
it to a vector in L as follows: it is easy to see that there is a unique vector w in L such
that w projects into W and (w, v) € (—(v, v)/2,(v,v)/2]. To see this note that we
may take any vector u which projects into W and add a suitable integer multiple of v
into u to get a u’ whose projection in the direction of v has length at most |v]/2 which
is exactly what the dot product condition above stipulates. Indeed, let r =
i(u, v)/(v, V)] where [x] stands for the integer nearest to the real pumber x. Let
¢ =y — ro. Then [(u’, v)] < (1/2)(v,v). The process described here will be called

u =
lifting W to w.
We need two facts from basic Geometry of Numbers.

PROPOSITION 1.6.  Suppose v is a nonzero element of the lattice L, such that Av does
not belong to the lattice for any X in (0, 1). Then there is a basis of the lattice containing v.
(Such a vector v is called primitive.)

PROPOSITION 1.7. The following “algorithm” yields a basis by, by, . ..

lattice L.

, b, of the

Procedure. Input lattice L of dimension n.
by =10
dofori=1ltonbyl:
Pick any nonzero v such that (v, bj) =0for j=0,1,...,i — 1 N
Find the smallest positive real A such that Av is in the lattice L obtained by
projecting L into the orthogonal complement of the span of {by,..., b;_,}.
Find w in L such that w projects into Av in L.
=W
end
return (by,..., b,). =

> n

Of course the method presented here is not quite an algorithm—we do not know
how the input is specified etc. I will later describe a more rigorous version of this

algorithm called SELECT-BASIS in §2.

THEOREM 1.8 (Minkowski). If S is any convex seét in R" which is symmetric about
the origin (x € S = —x € §) and has volume greater than 2", then S contains a

honzero point of Z'".

PrOOF. Define S$/2 = {x: x € #", 2x € S}. Clearly, S/2 has volume greater
than 1. Consider the convex bodies v+ §/2 = {x: xERX", x=v+ s for some
5 € §/2) as v ranges over 2 ". There is one such body for each point of 2" and their
volumes are strictly greater than 1. Therefore, two of them must intersect. (I leave it to
the reader to make this intuitive argument into a rigorous one.) Suppose v + S/2 and
4 + S /2 intersect, then so do S/2 and (u — v) + S/2. Let y be in their intersection.
Then y and y — u + v both belong to S/2. So, 2y, 2(y — u + v) both belong to S.
The symmetry of S implies that —2 y belongs to it, the convexity then implies that the
average of —2y and 2(y — u + v) which is v ~ u belongs to S. Of course, v — u is 1n
2" proving the theorem. ®
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I will generally only use the following direct consequence of Minkowski’s theorep,

Tueorem 1.9. If L is an n-dimensional lattice with determinant d(L), there i a
nonzero element v of L with |v} < Vn (d(L)/".

Proor. Let L =2Z7"B = {x: x = yB for some y € 2"}, B an n X n matrix with
a basis of L as its rows. Consider the solid sphere T with the origin as center and
radius vn (d(L))"/". T has volume 7"/%/T'(n/2 + 1)R™ where R is its radius. So the
volume of T is greater than 2"d(L). T is convex and symmetric about the origin,
Hence so is 7TB™! = {x: 3y € T st. x =yB~'}. TB™! has volume greater tha,
2"d(L) - det(B™') = 2". Thus there is a y in 2" — (0} N TB™\. v = yB is then 4
nonzero element of T N L. Clearly v is short enough to prove the theorem. m

REMARK 1.10. The factor Vn in the theorem can be improved by reckoning the
volume of the n-sphere more accurately. In fact, more sophisticated upper bounds o
A;(L)/(d(L))"/" are known. This is of course the ratio theorem, 1.9 is bounding from
above. The supremum value of the square of this ratio over all n-dimensional lattices i
called Hermite’s constant and the best known asymptotic upper bound on it is
n(1 + o(1))/ew due to Blichfeldt (1929). See also Lekkerkerker (1969, §38).

The general references on the subject of Geometry of Numbers are Cassels (1959)
and Lekkerkerker (1969). An expository survey of lattice algorithms can be found in
Kannan (1987).

2. The algorithm for finding the shortest vector. In this section, I describe an
algorithm to find a shortest nonzero® vector in a lattice L given by a basis b, by, .. b,
This algorithm actually finds a “reduced basis” of the lattice of which the first vector
will be the shortest vector in the lattice (the definition of a reduced basis used in this
paper is found in 2.6). Here is how the algorithm works: Using polynomially (in »

alone) recursive calls to lower dimensional subroutines, the algorithm finds a basis

a,, a,, ..., a, for the lattice L which satisfies the following properties:
Forj=2,3,...,n, a,(j)= Al(Lj(al, a,,..., a,,)),2 (2.1)
2
la;] < ﬁlazl, (22)
la;(1)] < lay)/2. (23)

Intuitively, these conditions can be understood by appealing to the representation of
the basis ay, a,,...,a,, as a lower triangular matrix. In such a representation,
condition (2.1) says that for j = 2,3,..., n, the jth diagonal entry is the length of the
shortest vector in the lattice generated by the rows of the (n —j + 1) X (n —j + 1)
matrix consisting of the last n — j + 1 rows and columns of the basis matrix.

Whereas in the reduced basis of LLL (1982), the length of the first vector i
guaranteed to be at most 2"/?d(L)'/", for the basis here, one can prove (2.4) below
using Minkowski’s theorem, conditions (2.1), (2.2) and (2.3) and the fact that d(L) =
la\|d(Ly(ay, a,,...,a,)).

lay < V2nd(L)"". (2:4)

"Henceforth, I will use the phrase “shortest vector” for “shortest nonzero vector” when the meaning 8
clear.

*See notation in the introduction for the definition of L,(ay, ay,...,a,)and A, (alattice).
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In other words, our a, is much a shorter vector than theirs—but of course we will
spend more time finding it. (This inequality will be proved later.)

Having obtained such a basis a;, a,, ..., a,, I show that the shortest vector in the
Jattice must be of the form y = ¥ a;a;, where (a,, a,,...,a,) € T where T is a
subset of 2" of cardinality at most

(2.5)

(2.4) is used to bound the expression (2.5) in terms of n alone. We enumerate all
elements of T, find the corresponding y and take the shortest of these which must then
be the shortest vector in the lattice. We find an entire reduced basis instead of just the
shortest vector to facilitate the recursion. First, here is the definition of reduced basis
with which we will work.

DEFINITION 2.6. A basis vy, v,,...,v, of the lattice L(v,,v,,...,
reduced basis if (2.7) and (2.8) below are satisfied.

(L(vy, 0,00, 0,)), (2.7)

v,) is called a

Forj=1,2,...,n, Uj(j)=A
o ()] <v(j)/2 forizj+122. (2.8)

Note the difference between (2.1) and (2.7) is that (2.7) includes j = 1 also whereas
(2.1) does not. Thus in the lower triangular representation, every diagonal entry is the
length of the shortest vector in the lattice generated by the rows of the square
submatrix of which it is the top left entry. The essential feature of the LLL reduced
basis is that in the lower triangular representation, the jth diagonal entry is the length
of the shortest vector in the 2-dimensional lattice generated by the rows of the
submatrix containing the rows j, j + 1 and columns j, j + 1 of the basis matrix.
Schnorr (1984) generalizes the LLL reduced basis to allow k X k submatrices for any
fixed k. (Schnorr’s algorithm uses the algorithm SHORTEST of this section as a
subroutine to make the k X k matrices reduced in the sense defined here.)

A detailed description of the algorithm SHORTEST is given below followed by a
proof of correctness and bounds on the running time.

Procedure SHORTEST (n; by, b,,..., b,).
Comment. The preceding paragraphs explain what the algorithm accomplishes.
L= L(b,b,,...,b,). The procedure finds a basis of L satisfying (2.7) and (2.8).
LLIfn= 1 then return {b, }.
2. Use the basis reduction algorithm from Lenstra, Lenstra and Lovéasz to make
the basis reduced in their sense.
3. b’ < projection of b, perpendicular to b, for i = 2,3,.
4. b, by,..., b, < SHORTEST(n — 1; b3, b, ..., b}).
5. Fori=2 to n, lift b, to b, in L. (Cf §1. The proof of Theorem 3.9 contains
the mundane details of how the lifting is done.)
Comment. 'We now have a basis of L satisfying conditions (2.1) and (2.3).
6. If |b,] < ¥3|b,|/2 then swap b, and b, and Goto 3; otherwise continue.
Comment. We now satisfy condition (2. 2) also. Caution: |b,|, |b,| may be irra-
tional, but their squares are not. So we use them instead.

“Thus ¢ is a shortest vector in the whole lattice.
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7.1 1b,()] = 1by for some j > 1, then j, < minimum such j, else j, < n 4
8. BASIS « {by, by,..., b 1} ‘
Comment. 1 show later that some nonzero shortest vector of L is in L(B4SsIs),
9. Call ENUMERATE(BASIS) to obtain a shortest nonzero vector v, in
L{BASIS).
Comment. This procedure is explained later.
10. {by, b,...b,} < SELECT-BASIS(n; vy, by, by ... b,).
Comment. Procedure explained later. Tt returns a basis of L containing v, as the
first vector——cf. Proposition 1.6.
11. Execute steps 3, 4 and 5 and return {by, by, ... b, }.
end SHORTEST

Procedure SELECT-BASIS(n; by, by, ..., b, 1)
Comment. by, by, ..., b, are vectors in 2% for some k> n and span an
n-dimensional subspace of #*. The procedure returns a basis aq, a,,...,a, of
L = L(by. by,..., b, ). It first finds a shortest lattice vector in the direction of
b,---call this a,. Then it projects L orthogonal to a; to get a lattice L. Tt works by
recursively finding a basis of L (cf. Proposition 1.7).
1. If n = 0 or b, = 0 then do the obvious.
2. If b, is linearly independent of b,, ...
then a, « b,
else do:
. Find a,, ..., a,, (rationals— these are unique) such that Y7 %
M < least common multiples of the denominators of a,,...

’ bn+l

Lo =
2ab, = by

(98]

» Xppye

4
5. v « GCD(Ma,, May, ..., Ma, ).
6. Let M/y = p/q where p, g are relatively prime integers. a; < (1/¢)b;.
end
7. b, < projection of b, perpendicular to a; fori=23...,n+1,
8. {cy.Cqpenny0,) < SELECT-BASIS(n — 1; 0y, ..., b,01)
9. Lift ¢, to @, in L for i = 2,3,..., n and return {a;, a,, ..., a,}.
end SELECT-BASIS.
PROPOSITION 2.9. The basis a,, a,....,a, returned by the above procedure

SELECT-BASIS is a basis of L = L(by, by, ..., b,,,) assuming that by, by, baia

span an n-dimensional subspace.

PROOF. By Proposition 1.7, it suffices to show that a, is a shortest vector of L in
the direction of b, provided b, is not equal to zero. This is easily seen to be true. ®

PROPOSITION 2.10. The vectors returned by the procedure SHORTEST
(n: by, by, ..., b)) forma basis of L(by, by, ..., b,). :

ProOF. Follows easily by induction on n on the lines of Proposition 1.7. =

PROPOSITION 2.11.  Let j, be as defined in step 7 of SHORTEST. Then a shortest
vector of L(by, by,.... b, 1) is also a shortest vector of L(by, by, ..., b,).

PROOF. Suppose v = L7_;a.b, is a shortest nonzero vector of L(by, byy---s D) and
, a, is nonzero. Then the projection v’ of v into the vector space

one of a4, a, 4
PAMI k b
,b,_,) is nonzero. Therefor¢ y

} = the orthogonal complement of Span (b, by, ...
(2.1), we must have

1012 Ay( L (o bavee b)) = B, (o)

Then clearly, o] = 0] = b, (Jo) > |b1] Thus b, is a shortest vector of L. ®
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PROPOSITION 2.12.  The procedure SHORTEST executes recursive call of step 4 at
most (5/2)n times when started on an n-dimensional lattice.

pProOF. By Lenstra, Lenstra and Lovasz, the execution of their basis reduction
algorithm in step 2 of procedure SHORTEST yields a basis of L with || < 27720, (L). -
Fach execution but the first of the loop steps 3-6 of SHORTEST cuts down |b,| by a
factor of at least V3 /2. Thus each 5 iterations of the loop cuts it down by a factor of at
Jeast 2. We cannot reduce |b,| further once it reaches A;(L). Thus at most 5n/2
executions of the loop suffice. m

Description of procedure ENUMERATE. The crucial reason that we can complete
the recursion 1s that we can enumerate relatively few candidates to determine the
shortest vector. This fact is proved now. Suppose j, — 1 = m in step 7 of procedure
SHORTEST and suppose a shortest vector of L(by, b,,..., b,,)is y = £7 1a,b,. Then
since y must be of length at most |b,|, the projection of y into ¥, , the orthogonal
complement in R” of the span of {b,, b,,..., b,,_,} must be of length at most |b,|. This
projection has length |, b, (m)|, so we must have

| < 164/ B(m)].

More generally, we have the following proposition. The reader might want to use the
lower triangular representation of the basis matrix to understand the proposition.

PrOPOSITION 2.13. With the dbove notation, suppose B;,\, Biis,-.., B, are fixed
integers. Then there is an easily computed number B? such that for all integers

a, @y, ..., ;. and B,
i—1 m o 0 |b1|
1\: ajbj“L:Bibi'*' Z :ijj <|b1|~—’>ﬁi€ Bi :Bi +2lb(-)] .
J=1 j=i+1 i\
ProOOF. For any vector v, I denote by #, the projection of v along the direction of

b* in this proof. Let u = Y7, B;b, and w = X2 a;b, + B;b, + u. Clearly, w = B,b*

+ 1= Bb* + tb¥ (say) where ¢ is some fixed real number (since B;,1, Biizs-- -, B
and hence u are fixed). So we have
N N LY |b4]
Wl < ib)] = W] < 164 ::’I(Bi + t)l < |bil/1bF| = —1 {b¥| = Pis —t+ [bX]
So the proposition follows with
|6
B = —1- |b.*1‘[' "

1

It is clear that we can write a procedure to determine a list T of candidates
(g, 0y, a,) for the shortest vector Xa;b,.

» LEMMA 2.14. At the end of the procedure, IT| is at most 117 (1 + 2|b,|/b,(i)) which
s ar most (18n)"/?. -

PrOOF. The first part follows from the last proposition. For the second part, we
Note that using |b,| > b,(i),

n

[10+ 2/ < 3 TL(b/50))

i=1
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The denominator [17.,b(i) is of course the determinant of the lattic

L(by, b,,..., b,)—call it L, for short in the rest of the proof. Also, let L,
L,(by, by, ..., b,) for this proof. Since b,(2) = A;(L;),

b2(2)m*1 m—1

ary <t

(by Minkowski’s Theorem 1.9). _
Further, |b,] < 2|b,}/ V3 and |b,(1)| < |by|/2 imply that V2b,(2) > |b,]. Hence,
using d(L;) = d(L,)|b,|, we have (cf. (2.4))

|by]™ < (2m)"d(Ly).

Thus the lemma follows by a simple calculation.

PROPOSITION 2.15. The basis by, b,,..., b, returned by SHORTEST satisfies the
conditions (2.7) and (2.8).

PrOOF. Induction on n. n = 1 is obvious. By Proposition 2.11, the shortest vector
of L(BASIS) in step 9 is also the shortest vector of the whole n-dimensional lattice. It
is clear that the vector v, at the end of step 9 is indeed a shortest vector of the lattice.
Using proposition 2.9 and the inductive assumption on step 11, the current lemma
follows. m

This completes the proof of correctness. As for the time bound, I will split it into
two parts: a bound on the number of arithmetic operations—additions, subtractions,
multiplications, divisions and comparisons with operands that are rational numbers,
and a bound on the operand sizes. The number of arithmetic operations will depend on
the dimension n of the problem as well as the length s of the input. However, going
through the procedure SHORTEST step by step, we see that the total number of
arithmetic operations performed while the procedure is not inside a call to LLL basis
reduction algorithm is bounded by a function of n alone—it does not depend on s.
This is seen by an inductive proof using Proposition 2.12. Unfortunately, the same
does not hold for LLL. In the next section (Proposition 3.8), I show that the total
number of arithmetic operations performed by SHORTEST in all the calls to LLL in
n"s. For now, 1 will assume this proposition.

THEOREM 2.16. SHORTEST(n: ...) finds a reduced basis satisfying (2.7) and (2.8)
in O(n"s) arithmetic operations where s is the length of the input.

Note. In common usage, we might call this a O(n"s)-algorithm. This, however,
counts only the number of arithmetic operations, and ignores the size of the operands.
In an algorithm such as this one which manipulates numbers and keeps them all
precisely, it is important to prove bounds on the size of the numbers. I do so in the
next section.

PROOF. Let T(n) be the maximum number of arithmetic operations performed by
SHORTEST(n; ...) while not inside a call to LLL. It is easily seen that all steps of the
algorithm except recursive calls to shortest, the enumeration and calls to LLL cali fora
number of arithmetic operations bounded by a polynomial in n alone. Thus we have
(by Proposition 2.12 and Lemma 2.14),

T(n) < F7(n = 1)+ (18n)q(n).

(g-a polynomial). I will derive the bound T(n) & O(n"). Lim,_ (1 — 1/m)"t = 1/e

d
. gﬂ)(l —1/n
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and 5/2¢ is less than 0.93, so there exists an N, such that for all » > N,, we have
(5/2)(1 — 1/}1)"‘1 < 0.95. Further, let N, be a natural number so that Vn > N,,
18n)"?q(n) < 0.05n". Let N be the maximum of N,, N,. Choose a constant ¢ > 1
ch that T(n) < cn” ¥n < N. Now, I argue by induction on n that T(n) < cn” for all
. For n < N, this is true by definition. So, assume n > N and suppose it is true for
p — 1. Then

T(n)/(en”) < (5/2)(1 = (1/m))""" + (18n)q(n) /(en") < 0.95 + 0.05 = 1.

This completes the inductive proof. The total number of arithmetic operations per-
formed by the algorithm is T(n) + the number of operations performed while execut-
ing calls to LLL. From Proposition 3.8, then the current theorem follows. m

ReMARK 2.17. Here, I considered the shortest vector in the Euclidean (L,) norm.
We can also define the shortest vector according to other norms in the obvious fashion.
To find the L, shortest vector in a lattice, we proceed as follows: We apply
SHORTEST to the basis. Then, analogous to Proposition 2.11, I claim now that if we
choose j, = Min{ j: b;(j) > Vn b (1)}, then a L, shortest vector of L (b, b,, ..., bj,-1)
is also an L, shortest vector of the whole lattice. This is because any vector in
L(by, bys--y b))\ L(by, by, ..., b; _;) must have L, norm at least Vn b, (1) and there-
fore L; norm at least \/'nZ b,(1) which is clearly at least the L, norm of b,. Let
m = j,’— 1. In any candidate, L7_,Ab; for the L, shortest vector, we must have
I\,|b,,(m) < |by]; < ¥nb,y(1). Thus there are at most 1 + 2yn b,(1)/b,,(m) candidates
for A,. Arguing in this vein, the total number of candidates is at most
3'"n"/21_lj’."=1(b1(1)/bj(j)) which is at most (3n)" by Minkowski’s theorem. This will
give an algorithm for finding the L, shortest vector in O(3"n"s) arithmetic operations.
Similar ideas work for the L, or for any other L, norms. van Emde Boas (1981) has
shown that the shortest vector problem for the L, and L_ norms is NP-complete.

3. Size of the numbers involved in the algorithm. We assume that the original
input consists of integers. It is easy to see then that all the numbers produced by the
algorithm are rational numbers. In what follows, I will derive bounds on the size of the
numerators and denominators of all these numbers. The numerator of a rational is of
course bounded in absolute value by its magnitude, so really the bounds will be on the
magnitude and the denominator of each rational.

First, we will observe that even though the algorithm works on various projected
lattices, there is always an implicit “current basis” of the original input n-dimensional
lattice. This is true of step 2 (of SHORTEST) from the Lenstra, Lenstra and Lovasz
algorithm. In step 4, we work on the projected lattice L,(b,, b,, ..., b,), but since there
Is a natural way to “lift” any element of L,(b,, b,, ..., b,) to L(by, b,,..., b,) (in §1),
we can assume that implicitly we have a basis of the whole lattice L(b,, b,,...,b,)
provided we can assume that during step 4, while the algorithm is working on
Ly(by, by,..., b)), it has a basis of L,(b,, b,,..., b,). By induction, we may indeed
assume this and thus there is always an implicit basis of the whole lattice during step 4.
Step 5 explicitly computes this implicit basis. By the definition of lifting, note that the
basis constructed in step 5 satisfies (2.8)—we will refer to any such basis as “proper”.
The LLL algorithm always explicitly maintains a basis of the input lattice. Unfor-
tunately, however this basis is not proper at all times. However, when the LLL
algorithm terminates, the basis will be proper. It is thus easy to see the following.

, ProposiTION 3.1, There is an (implicit) “current basis” of the whole lattice at all
limes during the execution of the algorithm SHORTEST. This basis is proper (satisfies
(2.8)) except possibly in the middle of the execution of the LLL algorithm.
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In what follows 1 talk about certain properties of the “curren

t basis” which, | Wil s an integr?
refer to as b,, by, ..., b,. With this we can associate the quantiti

€s bi(j) as deﬁnedm it} come ] as i

(1.5). quantities a

ProPosITION 32. Max i=10,(i) never increases during the execution of SHORTEST 1 execution (1.

. other quan

PROOF.  We consider the algorithm step by step. The proof is by inductiop on p A 3,

For n =1, the proof is trivial. So assume n > 2. For step 2, the LLL algorithm neVer. - LeM basi
increases the quantity as seen from their proof of their Proposition 1.26. F. - current

OT Step 4, the
inductive hypothesis suffices. In step 6, by(1) strictly decreases, the new

: b5(2) is at mog
the old |b)| and b,(3),..., b,(n) remain the same. For the enumeration and bagj, - PROOF.
selection processes, the proof is a little harder and is dealt with in Pro

position 3.3 Fy, | which impl
step 11 again, we invoke the inductive hypothesis, completing the proof of this (1.4) are al
proposition. m

conSiS ted Of

hypothesis
PROPOSITION 3.3. Steps 9 and 10 of the algorithm SHORTEST(n: i b) do ,Th“tsxflf)‘srig(
not increase max ;b,(i). 15a
. . . . ‘ LEMMA 2
PROOF.  Suppose b,, b,, .. ., b, 1s the basis of the lattice at the beginning of step g,

Let b,(j), 1 <j <i<n be defined as in

ber:
(L.5). Suppose v, 1s found to be shortest [ all naam
nonzero vector of L(b,, b,,...

» b,) by enumeration. Define Uy =0, u, =5

1 Uy = PRrROOF.
by,...su, = b, Let u(j), 1 <j<i<n+1 be defined agamn as in (1.5), ie., by it-—say—a
performing Gram-Schmidt on Uy, Uy, ..., u, . Clearly precisely one of the u;(i)s is by Proposi
zero. Let this be u ,(J)- Let vy, 0,,..., v, be the basis returned by SELECT-BASIS in bounded b
step 10. Again define o,( /) by (1.7). Then, by the way SELECT-BASIS works, it is by (VnB).
clear that ‘ (day, day, -

vectors are

v,(1) < u, (1) for/=2,3,..., j-1. in the LLI

~ that all 1

Also, it is obvious that u(ly< b,_,(1—-1) for /= 2,3,..., -1 Further, v,(/) = ((max|da,|

up(L+ 1) < by(lyforl=j, j+ 1,...,n.

These inequalities together establish the proposition, since obviously v(l) <o (B | ProOPOS

We now define, for any basis by,..., b, of the n-dimensional lattice d; = [ SHORTE
d(L(by, by, ..., b)) ) i PROOF.
It is not difficult to see that d; is the determinant of the i X ; matrix with entries 212, this
(b,,b,) for 1 < j, 1 < i. Since our original basis vectors had integer coordinates, this is performs
also true of any other basis. Thus the d, are all integers. Clearly, vectors e
. ! Propositic

o 12 L O(n*log(:

d,= ]-I;Il (D (4 of operat

, Stirling’s -

The following proposition resembles a similar one in the LLL paper. natural lc
PROPOSITION 3.5. Al numbers produced by the algorithm are rationals of the form | THEOR
P/q, P.qin & where q s one of the d.’s corresponding to the current basis. : hents o,
PROOF.  Let b(, i) be the projection of b, orthogonal to b, . . by, (for j=iz2) SHORT!
(See (1.5)".) Then b(, i) = by — X3748,,.b, where 8, are some real numbers. Taking a ProoOF
dot product with b, (1 < /<7 ~ 1) and noting that (b, b(j, /1)) = 0, we have i actually
| to the p

i-1 : mnside th

(b.b,) = 2 8(be.b) fori=1.2,. -1 { execution

k=1 ! consider

These are (i — 1) independent equations in the (1 — 1) variables 8, with a COefﬁ_' { atbitrary
cient matrix whose determinant is d,_y. Thus d,_,8, are all integers. Hence d_1b(j;1) 4 covered
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is an integral vector. Now, the algorithm SHORTEST keeps these vectors b( j, i) for
some i as it works on projected lattices. In addition, it has to keep some auxiliary
quantities at various times—the p, ;s during LLL, certain other quantities during the
execution of the enumeration and select-basis steps. The proof of the proposition for
other quantities is similar and I omit it. =

LemMMA 3.6.  Except while executing the Lenstra, Lenstra and Lovdsz algorithm, the
current basis contains vectors of length at most (nB)'/? if the original input by,..., b,
consisted of integral vectors each of length at most VB .

PrOOF. By Proposition 3.1, the current basis is always proper in these situations
which implies of course that if we did Gram-Schmidt on the current basis, the py; of
(1.4) are all at most 1/2 in magnitude. Further, the initial b,(i) 1s at most \/1_9& by
hypothesis and so by Proposition 3.2, they are all always bounded by this quantity.
Thus using (1.5), and properness, we observe that the length of b, in the current basis

is at most (|b* 7 + (L/#L'_11b*|?)'/? which is at most (nB)V2. m

LemMa 3.7, In SHORTEST(n; by, ..., b,) during every Zexecuz‘ion of LLL algorithm
all numbers produced are bounded in magnitude by (\/}7 B)™ for some fixed constant c.

ProOF. Whenever the LLL algorithm is called, all the input vectors to
it—say—day, a,, ..., a; have rational components with common denominator d where
by Proposition 3.5, d is one of the d, and hence by (3.4) and by Proposition 3.2, is
bounded by B'. Also, by the previous lemma, the lengths of the vectors are all bounded
by (VnB). Further, it is easily seen that the LLL algorithm behaves identically on input
(day. da,, ..., da;) as it does on input ay, a,, ..., a, except that in the second case all
vectors are divided by d. (da, . .., da,) are integral vectors and thus the bounds proved
in the LLL paper apply to them. For these input, we have (from their Proposition 1.26)
that all numbers produced by their algorithm are bounded in magnitude by
((max|da,));_ )" which is at most (B” "VnB )" < (Yn B)*". m

PROPOSITION 3.8. The total number of arithmetic operations performed by
SHORTEST while executing calls to the LLL algorithm is O(n"log B).

ProoF. First, let us bound the total number of times LLL is called. By Proposition
212, this is at most (5/2)"n!. Using the argument in Lemma 3.7, each call to LLL
performs at most as many arithmetic operations as a call to LLL with integer input
vectors each of length at most B”~'YnB which is at most yn B”. Using their
Proposition 1.26 then, we have that each call to LLL performs at most
O(n*log(yn B")) = O(n*log B + n*log n) arithmetic operations. So the total number
of operations performed by all calls to LLL is (5/2)"n!(n°log B + n*log n). Using
Stirling’s approximation and the fact that 5 /2 is strictly less than e, the base of the
natural logarithm, we see that this is asymptotically O(n"log B). =

TreorEM 3.9, On inpur by, ..., b, which are independent vectors with integer compo-
nents of length at most VB, all numbers produced by the algorithm
SHORTEST(n; b,..., b,) can be represented in O(n*(log n + log B)) bits.

PROOF.  The proof will be based on Lemma 3.6. It is not by induction on n-—1 will
actually consider the execution of the recursive calls in detail. Let us consider any call
to the procedure SHORTEST(i; Uy, Uy,..., u,) (where i is less than n) occurring
nside the main call to SHORTEST(n; ...). For each such call, I will consider the
execution of steps 1 through 3 and steps 5 through 10. (In other words, 1 do not
tonsider the steps invoking the recursive calls since I have in the first place picked any
arbitrary call to the procedure inside of the main program.) Step 1 is trivial, step 2 is
tovered by Lemma 3.7. In step 3 we have to project vectors—u,, us, ..., u, perpendic-
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ular to a vector u; where, of course, these u ; form the basis of some
Arguing as in Lemma 3.6, we see that the u ; are all bounded in length by Vup By
(3.5), their denominators are bounded by B"!. Since projecting perpendicular 0,

vector 1nvolves taking certain dot products and simple arithmetic operations, it i easy

to see that step 3 never involves more than O(n(log n + log B)) bit integers. Step S,
little harder to analyze partly because 1 have not specified exactly how the lifting
done. I will do so presently. Suppose uy, u,, . . ., u; 1s the basis of the lattice in step 3
and suppose u;, j = 2,3,..., i are the projections perpendicular to u; in step 3, ley v
be a matrix with these i — 1 vectors as its i — 1 rows. Further, let u,, u;, ... , U; be the

basis returned in step 4 after the call to SHORTEST(i ~ 1; ...) and let U be the

matrix with these i — 1 vectors as its i — 1 rows. To lift these vectors, we do the
following: We solve a linear system of equations in (i — 1)? variables to find 4
(1 = 1) X (i = 1) matrix T so that U = TU".

Clearly, T so found will have integer entries and the determinant
absolute value. Now let V equal TU where U is the matrix with u,
i — 1 rows. Then the rows of V are nearly what we want. We need
each row of ¥V, the projection of the row into uy 1s at most (1,/2)|uy| in length. This is
done without much difficulty. The solution of the simultaneous equations with 3
coefficient matrix with entries of O(n(log n + log B)) bits does not produce any
numbers larger than O(n%(log n + log B)) bits (Edmonds 1967).

All other steps are easily handled. In fact the only other step in which the size of
numbers exceeds O(n(log n + log B)) bits is in the SELECT-BASIS step when we
have to solve equations with the coefficient matrix entries with O(n log B) bits—in this
case the number of bits still remains O(n’log B). m
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4. Finding the closest vector. In this section, I consider the following closest vector

problem:
(4.1) Given b, b,,..., b, independent vectors in 2" and by in 27 find b in
L(by, by...., b,) such that |b, — b|is as small as possible.

This is called the inhomogeneous problem (corresponding to the homogeneous
problem called the Shortest Vector Problem earlier). The reason for this terminology is
that in the SVP we had to find the closest lattice point to 0, excluding itself whereas
here we have to find the closest lattice point to an arbitrary b,. Note however that here
if b, itself belongs to the lattice, then the answer to be returned 18 by—in other words,
here we do not exclude b, as an answer. We can test in polynomial time whether b, in
fact belongs to the lattice by using the algorithm of von zur Gathen and Sieveking
(1976) or Kannan and Bachem (1979) to solve simultaneous diophantine equations, 50
I assume this is done at the outset and in what follows by does not belong to the lattice.

The CVP algorithm functions as follows: It first uses the procedure SHORTEST to
make the basis b, b,,..., b, reduced—i.c., the basis then satisfies (2.7) and (2.8).
Next, we use an upper bound 3(Z7_(b;(j)?)'? = M (say) on the distance between
any b, and its closest lattice point. (This bound will be proved in Proposition 4.2.)
Because of this I can argue that there are not too many values of («a, az,...,a,.)
integers such that [L7_1a,;b; — by} is within the upper bound. Arguing as in the case of
shortest vector problem, (Lemma 2.14), this gives us a bound of M "/d(L) on the
number of possible n-tuples (ay, a,, ..., a,) to enumerate. Unfortunately, this will not

in general be bounded by a function of n alone. So we have to use another idea: If .

b;(1) is the largest among all the b,(j), then I will show that not too many values of
(a, @, 4,..., a,) are candidates to be tried. The bound on the number of candidates
will be (n + Vn)**="*D._ For each such candidate, we project to a (i — 1) dimensional
problem and solve these recursively. The details are explained after the algorithm. Al
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the outset, we apply SHORTEST to get a basis satisfying (2.7) and (2.8). We do not
need to repeat this in any recursive call.

Procedure CVP(n; by, by, by, ..., B).

Comment. Assumes the basis b, b,,..., b, is reduced in the sense of (2.7) and (2.8).
Finds the point of L(b,, b,,..., b,) closest to b,.

1f n = 1 then return the easily computed closest lattice point.

Find i such that b;(i) = max_;b,(j).
CANDIDATES « @.

For each “possible” A, A, ,,..., A, integers do:

Comment. This is the enumeration step. I will later explain what the word “possible”

here means.

If i = 1 then CANDIDATES < CANDIDATES U{¥}_A b}

else do

ve Ei_Ab,
v CVP(i —1; by — v, by, by, ..., b;_1).
CANDIDATES < CANDIDATES U{v + v’ }.

end
end
Return the element of CANDIDATES that is closest to b,.
end CVP
The following proposition is used to show that the number of “possible”
Ay Aiy1seeos A, is small.

PROPOSITION 4.2. Suppose L = L(b,, b,,..., b,) is a lattice in R*, k > n with
by by, ..., b, independent and suppose b, is any point in R*. Let b, be the projection of
by into the span of {b,, b,,..., b,). Then there exists a point b in L such that

n

)}

j=1

o)

S
Ib = byl < j(

— bl < (Yn /2)b,(i).

ProOF. It is not difficult to see that we can successively choose integers
%,a, ,..., 0o (In that order) such that

Further if i is such that b,(i) = max b;(J), then clearly, |b,

< (b(j)) 2

;(( z‘;"ﬁb/ - Eo)> b(L J))

for all ;. This is so because the choice of a, does not affect the inequalities that were
¢arlier ensured. Since b(1,1), 5(2,2),..., b(n, n) form an orthogonal basis for the

vector space they span, and b, by definition lies in that space, the proposition follows.
u

PrOPOSITION 4.3.  With the notation set up in the last proposition, there exists an
¢asily determined set T < """+ with |T| < (n + Yn)""'* such that if Li_Ab; is
the closest point 10 by in the lattice then (A, A,.q,..., A,) belongs to T.

PrROOF.  Suppose L7 1A;b,= v 1s a closest point in L to b, Then clearly, v

Must be the closest point in L to b, By the last proposition we must have
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v = bol < (Yn /2)b,(i). But o~ byl > (v — by), b(n, n)|/b,(n) = A, (n) -
((by, b(n, n)) /b (n))] = |\, — 11b,(n) for some fixed real number ¢. Thus there are at
most 1 + Vnb,(i)/b (n) candidates for A,. Now, one can show a similar bounq f,,
A Ao1- ., A, using an argument similar to Proposition 2.13. So suppose At
are fixed integers, for some ; > i + 1. Then arguing as in that proposition there are a:
most 1+ Vnb,(i)/b(j) < (1 + vyn )b,(i)/b,(j) possible values of A, such that g,
length of v — b, in the direction of b,(j) remains bounded by (Yn /2)b,(i). Note that ]
have used the fact that b;(i) = b,(j). Thus we have to consider a set T of candidaes
Ao Ao A, where :

n

IT) < H_(l +Vn)b,(i)/b,(j). (4.4)

=

Since the basis was reduced in the sense of (2.7) and (2.8), b,(i) is the length of the
shortest vector in the lattice Li(by, b,,..., b,). Further, the denominator of the
expression in (4.4) is obviously the determinant of the lattice L;(by, by,..., b,). Thus

1

by Minkowski’s theorem, |T| < (1 + Vn)"" i — 4 1)nmie D2 < (n + Yn)-ivy,
.

THEOREM 4.5. The algorithm CVP(n; ...) solves the closest vector problem in
O(n"s) arithmetic operations where s is the length of the input. Further all numbpers

produced by the algorithm are rationals with numerator and denominator expressible in
Oo(n?(s + log n)) bits each.

PROOF. Let T(n) be the number of arithmetic operations performed by
CVP(n; ...). Then, :

T(n) < (n+¥n)" "OT(i = 1) + g(n)

where g(n) is a polynomial. (Note that this does not depend upon s.) Using the fact
that the maximum of (1 =1)/(n+Vn)"D for 1 <i<nis attained at j = n and
that the limit of ((n — 1)/n)""D is 1 /e, we can establish by induction on » that T(n)
15 O(n"). The proof is similar to that of Theorem 2.16 and I omit the details. So, the
number of arithmetic operations performed by CVP(n; .. .)is O(n™) plus the number
performed by SHORTEST. Applying Theorem 2.16, we get the current theorem. The
bound on the number of bits of all numbers is similar to the proof in §3. m

One can also find the L, closest and the L, closest vectors. See Remark 2.17. The
number of candidates will have to be suitably adjusted.

S. Integer programming. Integer programming again is the \following problem:

(5.1) Given m X n and m X 1 matrices 4 and b of integers, determine whether
there is a x in Z" such that Ax < b.

We will do some “preprocessing” on the problem. First, we will modify the problem
so that the set {x: 4x < b} is bounded, i.e., is a polytope. Second, we ensure that 1}1}3
polytope has positive volume by projecting down to some lower dimensional set if
necessary. Then, we will apply an invertible linear transformation to both the polytope
and the lattice simultaneously so that the polytope becomes “well-rounded”. 1 wil
define “well-rounded” more rigorously in (5.2) below. Intuitively, it means that ther¢
are two concentric spheres with the smaller one contained in the polytope and the
larger one containing the polytope so that the ratio of their radii is bounded above b}' 2
function of the dimension alone. Lovasz has devised an ingenious polynomial tume
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algorithm to make the polytope “well-rounded”. This and the rest of the preprocessing
are also part of Lenstra’s algorithm. He gives a complete description of this in his
paper, O I will say nothing more here except to state precisely the problem at the end
of the preprocessing: ,

(5.2) Given independent vectors b,, b,, ..., b, in Z”, an m X n integer matrix A4
and an m X 1 integer matrix b, determine whether there is an x in L(by, by,..., b))
such that Ax < b, where the following additional conditions are satisfied by the input:
3p € #”", r and R reals such that

R/r <2n’7? (5.2a)
B(p,r)c {xe %", Ax < b) C B(p,R) (5.2b)

where (B(g, s) 1s the ball of radius s with g as center).

We proceed as follows: We apply SHORTEST to by,..., b,. Let now |b,(i)| =
max ;|b;(j)| Then there is clearly a point b of L(b,, ..., b,) (by Proposition 4.2) such
that |b — p| < \/;b,-(i)/l We consider two cases: (as in Lenstra)

Case 1. r > \/;b,.(i)/Z. Then the answer to question (5.2) is Yes since the inner
sphere itself contains a lattice point. So we can return Yes and stop the algorithm. It is
easy to see that in this case, we can in fact find the lattice point.

Case 2. r < \/ZIbi(i)l/2 whence R < n?|b,(i)]. In this case, we argue as in the last
section that there are not too many integer values of A » Xyl ---, A, for which there
exist integers A, X,,..., A, | so that L7.1A;b; belongs to B(p, R). We then enu-
merate all these values of A i---» A, and for each, solve a (i — 1) dimensional
problem. So the algorithm is going to be a recursive procedure.

Procedure ILP (n; 4, b).

Comment. See description of problem (5.1) above. 4 is an m X n matrix of integers

and b an m X 1 matrix of integers. The procedure returns Yes or No to the question
(5.1) ,
L. Ensure boundedness of the feasible set in %". Then ensure positive volume. Use
Lovasz’s algorithm which applies a suitable linear transformation on the space and
cnsures conditions (5.2a) and (5.2b). Apply the same linear transformation to the
lattice. So now we have independent vectors by, by,..., b, an m X n matrix 4 and an
M X1 matrix b satisfying the conditions of problem (5.2) and we must solve this
problem. (Of course n, m may not be the same as in the original nput.)

2. {b,b,, ..., b,} < SHORTEST{b,, b,, ..., b,}.

3. Let b,(i) = max’_;b,( j).

4 ifr> \fnlbi(i)l/Z then return Yes

Comment. We may now assume that r < Vnb(i)/2 and R < n*b,(i).

3. for each candidate { A, Aip - A €27 do:

Comment We explain later what the candidates are.

6. by Li_Ab,

Now, a candidate {A, A, ,,.. ., A} € Z77 s fixed. We want to determine
whether there is a point z in L(by, by,...,b; 1) such that z + by satisfies
Ax < b, equivalently 7 satisfies 4z < b — Aby. It is clear how to handle the case
I =1, so assume that i > 1. Letting z = Z;;llajbj, and B to be the n X (i — 1)
matnx with by, b,,. .., b,y as its columns, we want ABa < (b — A4b,) where a
s required to be a i — 1 vector of mntegers.




432 RAVI KANNAN
7.if ILP(i — 1; AB, b — Ab,) returns yes then return yes.
end
Return No

end ILP
We first explain the enumeration process. At the beginning of step 5, we may assup,
that R is less than b,(i)n?. Thus any vector a in L(b,, ..., b,) which could belong 1,
the polytope {x: Ax < b} must have the property that |a — p| < b,(i)n”. Hence tp,
projection of a — p i the direction of b(n, n) must be less than n?b,(i). Thus, we
need to try at most

b,(1)
w()

Arguing in a similar vein to Proposition 2.13 and Proposition 4.3, the number of
candidates for A, A,,;,..., A, is at most

1+ 2n?

values of A .

o

n
2n~l+ln2(n—i+1)n

j=i

(14 2 Jn.(/8, ). 53
b (i) equals A,(L;(b,, by, ..., b,)) since we applied SHORTEST. The denominator
of (5.3) is, of course, d(L,(by, b,,..., b,)). Thus using Minkowski’s theorem, the whole
expression is bounded by (2n)%" 7+ 1D/2,
The lengthy comments already argue the correctness of the algorithm. In what
follows, I prove bounds on the number of arithmetic operations and the bits needed to
represent intermediate numbers. The latter bound is not a polynomial, which i

undesirable. Recently, Frank and Tardos (1985) have used an ingenious method of

approximating linear equations to make the number of bits in this algorithm polynomi-
ally bounded. The interested reader is referred to their paper.

THEOREM 5.4. The algorithm ILP(n; ...) on an input of length s, correctly solves the
n-variable integer programming problem in O(n/%s) arithmetic operations. Each in-
teger produced by the algorithm is O(n?"s) bits in size.

PrOOF. The second part is proved first. There are two steps that dominate the
production of large numbers—the “rounding out” step (step 1) and the execution of
SHORTEST. In what follows, I will restrict attention to these steps, leaving it to the
reader to check the other ones. The ILP algorithm takes various sections of the
polytope and works on each of these sections. Since “taking a section” reduces
the dimension by 1, there can be at most n nestings of the “rounding out” and
SHORTEST steps. 1 will argue that one pair of executions of these two steps does not
increase the size of numbers by more than a factor of O(n?), thus yielding an overall
factor of at most O(n*").

By going through the construction to “round out” a polytope due to Lovast,
one finds that this increases the number of bits by at most a factor of n?. This 15
because the algorithm obtains the affine transformation that rounds out the poly-
tope {x: Ax < b} by mapping (n+1) of its vertices (in n dimensions) 1©
(0,0,0,...,0),(1,0,...,0),(0,1,...,0),...,(0,0,...,0,1). Let S be the n Xn matriX
whose ith row equals the i + 1st of these n + 1 vertices minus the first. Then the lineaf
transformation corresponding to the affine transformation has as its matrix $~* The
number of bits of S~1 is at most O(n?) times the number of bits needed to define t,he
polytope; we lose at most a factor of O(n) to get S—see for example Gécs and Lovas
(1979) and a factor of O(n) for the inverse. Thus the transformation G0%

not increase the number of bits by more than a factor of O(n?). The algorith®
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SHORTEST then increases the sizes by at most a factor of O(n?) by Theorem 3.9.
(There is an additive n%log n term in the theorem, but this is subsumed by the other
terms.) But when the algorithm SHORTEST is finished, the sizes are much smaller by
propositions 3.1 and 3.2, in fact, they are at most O(log n) plus what it used to be at
the start of SHORTEST. Thus I have proved what I promised at the end of the last

paragraph. B
For the number of arithmetic operations, we use the recursion

T(n,s) < (2n)* "2 - 1, n’s) + cn’s.

By induction, we can now show that T(n, s) is O(n*"/%s). u

If we use the algorithm of Frank and Tardos (1985) and keep numbers polynomially
bounded in size, the number of arithmetic operations will be reduced to O(n5"/ Z5).

I will now briefly discuss the structural result underlying the algorithm. Consider the
subspace V" spanned by the vectors by, b, ..., b,_, where i is defined in step 3 of the
procedure ILP. Every lattice point of L(by, b,,..., b,) belongs to a translate of V of
the form V' + z where z is in L(b, b,,;,..., b,). What I have shown is that at most
(2n)*"= "+ 1/2 such translates intersect the polytope if the polytope contains no lattice
points. The proof applies to only “well-rounded” polytopes. But it can be easily
extended to all polytopes with positive volume: Suppose P is any polytope with
positive volume (i.e., is full-dimensional). Then Lovész’s algorithm finds a linear
transformation 7 so that P is well-rounded. Then clearly, the number of translates of
V intersecting TP equals the number of translates of (1~)¥ intersecting P.

If we only want an existential result and are not interested in finding the subspace V,
we can do better than 3 in the exponent. The argument is as follows: A result of John
(1948) says that for any convex body X in #" (the word “body” is used to denote a
set of positive volume) there are two similar ellipsoids E,, E, such that E,CKCE,
and E, is obtained by dilating E, about its center by a factor of ». Suppose 7 is the
invertible linear transformation that sends E, into a sphere of radius 1 (and hence E,
mto a sphere of radius n). Suppose also that K N 2" is empty. Let b, b,,..., b, be a
reduced basis of the lattice L = v2'" (in the sense of (2.6)). Let b,(i) be the maximum
of the b,(7)’s and let ¥ be the space spanned by by, by, ..., b, 1. Since E, N " is
empty, we must have that 7E, N L is empty and hence vn b(i)/2 > 1 by Proposition
4.2. This and the fact that 7E, has radius n can be used to show that the number of
A A, 1. A, for which there exists A, Ay, ..., A;_; (all integers) so that LiAb,
belongs to 7E, is at most

_ " 1\ b,(i)
(n—i+1)/2 !
" {1+ 5 )57

Jj=1i

and by using Minkowski’s Theorem 1.9 we get that this quantity is at most O(n2"~ +Dy,
This bounds the number of translates of ¥V intersecting the 7K and hence the number
of translates of 77!V intersecting K. The case when i was equal to 1 was the “best”
case for the algorithm, because then the problem is solved by simple enumeration, no
recursive calls were needed in this case. However, for the existential result, it is not
intersecting because then ¥ = {0} and the relevant translates of V are just the
singleton sets consisting of lattice points. Since K N Z” = @, we already know that
none of these translates intersects K. But going back to the enumeration argument,
since b,(i)/b,(i) = 1, we could argue exactly the same bound on the number of
candidates of A,.;, A,,,...A,. This ensures that the subspace ¥ is always of dimen-
sion at least 1. I have proved (albeit sketchily) the following theorem.
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THEOREM 5.5.  Suppose K is any bounded convex body in R" with K N grn =
Then there is an i, 1 <i<n— 1 and an I-dimensional space V which has a basis o

integer vectors such that the number of transiates of V containing lattice poingg thay
intersect K is at most O(n¥n=i+1)y, :

The result of H. W. Lenstra’s mentioned in the introduction can be restated as: If
iIs any bounded convex body in #" with KNng" = &, then there is an j — 1
dimensional subspace ¥, spanned by integer vectors such that the number of translateg
of V' containing integer points that intersect K is at most ¢"’. The bound wg
improved to ¢” by Babai (1985). Based on the results of Lenstra and Schnorr (1984),
Hastad (1985) improved it to a polynomial—O(n°/?). Grétschel, Lovasz and Schrijver
(1982) have extended this to unbounded convex bodies. Cook, Collurd and Tuyrap
(1985) use this to derive bounds on the number of cutting planes needed to prove the
infeasibility of integer programs. By not restricting only to n ~ 1 dimensional sup.
spaces, Theorem 5.5 is able to get a 2 in the exponent. It is likely that both Hastad’s
result and Theorem 5.5 can be improved giving us further improvement in the running
time of the integer programming algorithm.

General convex bodies and mixed integer programs. It is easy to see that the methods
of this section apply to the problem of determining whether P N 2" — & for any
convex set defined by a separation oracle (Grotschel, Lovasz and Schrijver 1982). This
1s because the actual description of the convex set (so far assumed to be a polytope) is
only used in the Lovasz rounding algorithm to approximately optimize a linear
function over the set and for this, a separation oracle suffices if we use the ellipsoid
algorithm of Khaciyan (1979). Following the argument of Lenstra (1983, §5), we can
show that a mixed integer program with n integer variables can be solved in time
O(n°"Mgq(s)) where s is the length of the input and ¢(-) is a polynomial. It is possible
that more efficient algorithms can be developed for special convex sets.

6. Complexity issues. It was conjectured in Lenstra (1979) that the problem of
finding a shortest vector in a lattice I, = L(by,...,b,) given b,, ..., b, 1s NP-hard.

The conjecture is still open. Van Emde Boas has proved the language L,-CLOSEST
defined below (which is the natural language corresponding to the Closest Vector
Problem) to be NP-complete. Van Emde Boas’s proof is complicated and technical. It
1s also not published. So I will give here a more natural NP-completeness proof of this
language. The reduction will be from 3-dimensional matching (3DM) described below
which is known to be NP-complete (Karp 1972).

(6.1) Given a set TC (1,2,..., n}?, determine whether there is a subset M of T
such that for each i {1,2,...,n}, M has precisely one 3-tuple containing / in the
first coordinate, precisely one 3-tuple containing i in the second coordinate and

precisely one 3-tuple containing it in the third coordinate. (These 3-tuples do not have
to be distinct.)

THEOREM 6.2. The language L, CLOSEST — {(bo, by, ..., b,; K)3b €
L(by, ..., b,) such thar |b — by| < K} is NP-complete.

PROOF. We can easily reduce the 3DM problem to an mteger program as follows:
We set up one variable x, for each 3-tuple ¢ in T. This variable will be forced to take
on only the values 0 or 1. The interpretation is that x, = 1iff ¢ is included in M. Then

the 3DM problem is equivalent to the following problem. I leave the proof of this to
the reader.
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(6.3) Does there exist a feasible solution to the following integer program:

) Xg, 0 =1 fori=1,2,....n, - (6.3a)
(U, k): (i, j, kyeT} ‘

b X =1 fori=12,...,n, (6.3b)
{((J, k)i (J, i, kyeT)

b X =1 fori=1,2,....n, (6.3c)
((J, k): (J, b, HET)

x,€{0,1) forallte T (6.3d)

PROPOSITION 6.4. In the above integer program, (6.3d) can be replaced by the
following conditions:

roxi<n , (6.52)
teT
x,€EZ VteT. (6.5b)

Proor. Suppose x (considered as a vector with [T'| components) is a solution to
(6.3a), (6.3b), (6.3c) and (6.3d). If x has less than n nonzero components (which are
each of course one), then one of the equations (6.3a) will be violated because (6.3a) is
comprised of n different equations in disjoint sets of variables; also if x has more than
n components with value 1, one of the left-hand sides in (6.3a) will be at least 2. Thus
x must have precisely n 1’s and so it satisfies (6.5). Conversely, suppose x satisfies
(6.3a), (6.3b), (6.3c) and (6.5). To satisfy (6.3a) for example, x must have at least n
nonzero components. Each of the nonzero components is of course an integer, so to
satisfy the inequality in (6.5), there must be precisely » nonzero components in x and
each of these must be +1. But if even one of them is —1, there is no way to satisfy
(6.3a) say. So they must all be +1 and we have proved the proposition.

With the proposition, I have shown the following problem to be NP-complete: (by
reducing 3DM to it)

(6.6) Given m X n and m X 1 matrices of integers 4 and b respectively and an
integer K, determine whether there is a n-vector x satisfying:

Ax=b, xe2" |x|<VK, (6.7)

where |x| is the Euclidean length. I will now show that this problem is polynomial time
many-one reducible to the Closest Vector Problem (CVP). By using the Hermite
Normal form algorithm of Kannan and Bachem (1979), one can find the general
Integer solution of a system of linear equations in polynomial time. We use this to
obtain by, by,..., b, belonging to 2" so that 4b,=0b and L(by, b,,..., b)) =
(x: x e " Ax = 0) whence we have {x: x € Z", Ax = b} = b, +
L(by, b,,..., b,). Thus to solve the problem (6.7), it suffices to find whether there is an
clement of L(by, b,,..., b,) within distance VK of —b,. This then completes the proof
of Theorem 6.2. =

The inequality (6.5a) may be replaced by L|x,| < n. This proves that the corre-
sponding language for the L, norm is also NP-complete. A similar proof works for the
L_ norm too.

Now, let us turn our attention to the Shortest Vector Problem (SVP). First, it is

convenient to define a language corresponding to the SVP. I will call this language
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L,-SHORTEST:

Ly-SHORTEST = {(b,,..., b,; K)@b e L(b,,.

THEOREM 6.8. Given by, by,..., b, in A", n

subroutine for deciding membership in L,-SHORTEST and
can find a vector y in L(by,..

b)) b+ 0and lblsl{}.

-» b,) such that for all y’ in L(b,,..., b,),
[y = bol < y/ns2 - |¥" = byl

REMARK. The theorem asserts tha
vector to within a factor of
L,-SHORTEST. The reductio

t the problem of findin
Vn/2 is polynomial-time Tu
n given is essentially a Cook re

We show first that
shortest vector in a
lattice in which we

given a subroutine that accepts [,
lattice. Suppose I = L(by,..., b)), bexn
want to find a shortest nonzero vector. Define

I=(Vn(d(L))"")*

Let 7 be the linear transformation
containing entries /3" + J"+1-7 jp ¢

(6.9)
given by the n X n diagonal matrix (6.10
he (7, i)th position for j = L2,...  n 10)

7 multiples the jth coordinate by (/*+1-i 4 13"). The following lemma is not
difficult to prove.

LEMMA 6.11. Suppose I = L(by,..., b,) where b egn

define I and r as in (6.9) and (6.10). Then Jor L* =
L* must be of the Sform

and are independent and
TL, any shortest nonzero vector of

Y= (174 17) yy, (177 + 17Dy, (P + Ny,) (6.12)

where (y,, Yar--vs ¥u) is a shortest vector . and for any other shortest vector
(¥{, Yisos ¥1) of L, we have

n
il <1yl forig = min {1l #1371}, (6.13)
(In other words UVih - D is the lexicographically least among the shortest vectors
of L) m

From (6.12) and the fact that a shortest nonzero vector y
satisfy |yf < 11/ for all J» we see easily that if [Y)?
can be determined: Expand the integer |Y|?

=(Js--., y,) of L must

is given, then G N A
to the base / to write

6n
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2
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y' of L*, Y] =1Y/] (by (6.13)). Let (}Y},|Y),..., |¥,) be the magnitudes of the
coordinates of a shortest vector Y of L* already found as described above. Consider
the (n = 1) dimensional lattice:

L= L* 0 {x: x|, = x,|Y}] = 0}.

Clearly, A (L’) = A;(L*) iff there is a shortest vector of L* with the first two
coordinates positive. Let L” = L* N {x: x|¥,|+ x,|Y;| = 0}. Then A,(L”)=
A,(L*) iff there is a shortest vector of L* with the first two coordinates of opposite
signs. So, we do the following: using our subroutine for L,-Shortest, we check if
ALY = Ay(L*). If so we find (recursively) a shortest vector in L’ and hence figure
out a shortest vector of L*, then of L. If not, we find (recursively) a shortest vector of
L” and do like-wise. Note that to solve the problem of finding a shortest vector in
n-dimensions, we solve one instance of the corresponding (n — 1) dimensional problem
plus polynomially many calls to L,-shortest.

LemMMA 6.14.  With polynomially many calls to a subroutine accepting the language
L,-SHORTEST and polynomial additional time, we can find a shortest nonzero vector in

a lattice.

REMARK. A lemma similar to the one above holds for most known NP-complete
languages and several other ones-like linear programming. For example, it is easy to
see by using self-reducibility that given an algorithm to test whether a given Boolean
formula is satisfiable, we may use it to find a satisfying assignment. This speaks for the
versatility of the language SAT (the set of satisfiable Boolean formulas). It is interest-
ing that the language L,-SHORTEST not yet known to be NP-complete has this
versatility.

We now study the relationship between the problem of finding a closest vector of a
lattice in 2", to a given point in #" (called the “inhomogeneous problem”) to that of
finding a shortest nonzero vector of a lattice (called the “homogeneous problem™). The
device we use to relate these two may be called the process of “homogenization”. The
technique is used in polyhedral theory. The idea is to relate the inhomogeneous
problem for a lattice L in n dimensions to a homogeneous problem for a lattice L’
constructed from L in (n + 1) dimensions.

Suppose we are given by, by,..., b,, by in 2" and are asked to find a point b of
L= L(b,,...,b,) which is approximately (to be defined later) closest (in Euclidean
distance) point of L to b,. We first check whether b, is in L by using a polynomial-time
algorithm to solve linear diophantine equations. If so, we may stop. Otherwise we find
(using the subroutines for the homogeneous problem) A;(L). We then consider the
lattice L’ in 2"*! generated by b/ = (b,0) for i=1,2,...,n and b}, =
(b, (0.51)A,(L)). We find a shortest nonzero vector v = (v, ..., U,,,) of L’ (Lemma
6.14). This gives us information about the vector closest to b, in L as summarized by
the following lemma:

LEMMA 6.15. Suppose L = L(b,,..., b,) is a lattice in Z" and by in Z" is not in L.
Let L’ be as defined in the last paragraph and let v = (vy, ..., v,, ) be a shortest nonzero
vector of L' with v,,, < 0. If v,,, =0, then |by— b| = 0.8A(L) for all b in L. If
Upiy # 0 then v, , = ~(0.51)A (L) and (v, v,,...,v,) + by is the closest vector in L
10 by,.

2 U,y of L’ must clearly satisfy

PrROOF. The shortest vector v = (vy, Ugy - ..

10, 4] < A (L) because there is a vector of length A;(L) in L and hence in L’. Thus
Vo1 = 0 or £0.51A,(L). Without loss of generality, we assumed v,,; < 0 and hence
180 or —(0.51)A;(L). Let b be a closest point of L to b, and b = Lieb;. If
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b~ byl < 0.8A,(L), then

< A (L)((0.8) + (0.51)%)7* < A (1)

n
’ ’
Z ajbj - bn+1
J=1

and hence the shortest vector v of L’ must have U1 = —(0.51)A(L). This Proves
the first statement.

To prove the second statement, assume that Upr; = —0.51A
(=b,,, + Z};]ijj’) for some integers ,[)’J and since

absolute value 0.51A,(L), v will be shortest when Y b, i o- This proyeg
the lemma. n

assume we are given a lattice J, of dimension n > 2 and a point by. First, we find the
shortest vector p in the lattice L’ used in the lemma. If o +1 # 0, then we have already

found the closest vector and we may stop. In the other case, the distance of by to L
basis b,, by...b,of L

(henceforth denoted d(by, L)) is at least 0.8A,(L). We obtain a

with b, as a shortest vector using the subroutine for L,-SHORTEST (cf. Lemma 6.14
and the procedure SELECT-BASIS of §2). In the

~

Superscript  denote the Projection perpendicular to b,. Recursi
b € L so that '

Now, find 5 in 7, so that b projects to j and b —

b, has a projection along the
direction of by of length at most 16,]/2. Then

= Y (616

We know that 1b,12/4 < (4 x 0-64) (b, L)? < 1(d(b,, 1.))>. Further, we must of

course have d(EO, L)< d(by, L). Using these two inequalities in (6.16), we get
b — byl < (n/2)(d(b,, L))? proving Theorem 6.8

ha
po
pa

the

the

bor

arg

wh

Sy
am
latt
not
Sin
hel;
use
of 1

Ga
ear)

Bab:

Blict

Cass
Cool

Cook
Edm

Fran

Furst
Gacs,
Grots
Haste
Helfr.
Hirsc:
John

¥

Kann



IhlS Proves

M v equal
*Is fixed g
[his proves

the closes;
IPPTOXima-
bvious. S
ve find the
ve already
of by to 1,
-o.b oof I
'mma 6.14
ve let the
n element

ilong the

(6.16)

> must of
we get

mplexity
der. It is
ns. One
't vector
g Sales-
hat it 18
) raises
‘educed
Integer
tion of
ad to a
ly. The
so that
riables
integer
in 2™

MINKOWSKI’S CONVEX BODY THEOREM & INTEGER PROGRAMMING 439

have integer points for some m close to n. It seems possible that we can achieve a
polynomial bound on m in terms of n alone. For the reasons stated earlier in the
paragraph, the answer to this question should shed some light on the NP-hardness of
the SVP. Another interesting open problem is to devise polynomial time algorithms
that come within a subexponential factor of the shortest vector.

One of the essential ideas for all the three algorithms in this paper is the argument
bounding the number of candidates for the enumeration. It seems possible that this
argument will be of more general use. There is a context other than those in this paper
where 1t has been shown to be useful (Furst and Kannan 1985). I mention this briefly:
Suppose we are given a basis by, b,, ..., b, of a lattice with Min”_,b,(i) = t. Then for
any vector v, we can determine in polynomial time whether there is a point u in the
lattice such that ju — v| < 1/2. To see this, let u = YA b, satisfy |u — v| < £/2. It is
not difficult to see that there is at most one candidate for A,, since b,(n) >t
Similarly, if A, A, _,,..., A, are fixed, there is at most one candidate for A,. This
helps us determine quickly whether or not there is such a u. This is one of the ideas
used by Furst and me to develop a proof system that yields polynomial length proofs
of the infeasibility of subset sum problems in almost all instances.

Acknowledgement. 1 wish to thank Alan Frieze, Merrick Furst, Bettina Helfrich,
Gary Miller, and Claus Schnorr for helpful discussions and pointing out errors in
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