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ON BARVINOK’S ALGORITHM FOR COUNTING LATTICE
POINTS IN FIXED DIMENSION

MARTIN DYER aNp RAVI KANNAN

We describe a simplification of a recent polynomial-time algorithm of A. 1. Barvinok for
counting the number of lattice points in a polyhedron in fixed dimension. In particular, we

show that only very elementary properties of exponential sums are needed to develop a
polynomial-time algorithm.

1. Introduction. Barvinok (1994) gives the first polynomial time algorithm for
counting the number of lattice points in a convex polyhedron in any fixed dimension
d. This is a significant achievement, improving dramatically on the previously known
cases for d < 4 (see Dyer 1991). In fact, Barvinok’s algorithm counts the number of
lattice points in a simplex with integer vertices, since it is known (see, for example,
Dyer 1991) that the general problem can be reduced to this case. To do this, the
method employs exponential sums. For a given polyhedron P C R? and vector ¢ € R?
this is an expression of the form

o(P,c)= Yy e°*

xepPnz?

(Note that we have made a sign change from the notation of Barvinok 1994.) In
particular, if K is a pointed polyhedral cone generated by the vectors u, (i = 1,.. ., k),
the exponential sum converges provided c.u; > 0 for i = 1,.. ., k. Barvinok’s solution
uses two deeper properties of these sums. The first property is that the sum (regarded
as a function of ¢ € C?) can be continued to define a meromorphic function on C.
The second is an identity of Brion (1992) which relates the exponential sum over a
polytope to the sums over the cones generated by the edges at each vertex. The
analytic continuation is crucial here, since it is impossible to find a single ¢ for which
all the required sums converge. This introduces an element of symbolic computation,
in order to avoid the complication caused by poles of the sums.

The remainder of Barvinok’s procedure uses an inclusion-exclusion method to
replace a sum over an arbitrary cone with a sum over a polynomial (in the size of the
data) number of primitive cones. The sum over a primitive cone can be evaluated
explicitly. We discuss this in more detail below.

The purpose of this note is to indicate that the nonelementary properties of
exponential sums invoked in Barvinok’s algorithm are unnecessary to obtain a
polynomial time algorithm for this problem. We give an algorithm which uses only the
reduction to primitive cones, replacing the symbolic computation with arithmetic

~~omputation. This results from the fact that, in our algorithm, we can compute a ¢ for

which all the sums involved converge. We should emphasize, however, that our
method still relies heavily on Barvinok’s ideas.
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2. Definitions and notation. The notation we use mainly follows Barvinok (1994),
and the reader may seek further information there on some of what follows.

Throughout, K ¢ R? will be a cone pointed at the origin with linearly independent
integral generators u; (i = 1,..., k). Then u;; will denote the jth component of u;.
Different cones will be indicated by superscripts. Note that if C =K + v is a cone
pointed at an integer point v, then o(C,¢) = e (K, ¢).

A primitive cone K is a cone having a particular unique minimal set of generators
such that x € Z¢ N K if and only if x can be expressed as a linear combination of
these u; with nonnegative integer weights. It follows that, if K is primitive,

ko
a(K,c) = [l ===

i=1

For given cone K, the index ind K of K can be defined in several equivalent ways
(see Barvinok 1994). We will use a computationally useful characterization of ind K,
as follows. Let U be the d X k matrix [u,u, - u,] formed by the generators of K.
From the Hermite normal form construction (see Schrijver 1986), there exists a d X d
unimodular matrix T such that

where R is a nonsingular upper triangular matrix. Then ind K = det R|. These
computations can be carried out in polynomial time (see Schrijver 1986). It follows
easily that K is primitive if and only if ind K = 1 and that, if K’ is any face of K,
ind K’ < ind K. Following Barvinok (1994), for integers €, and polyhedra P_’"(m e
M), we will write

P= Y e, P"
meM

to mean the corresponding identity on the characteristic functions of the polyhedra,
where the addition and scalar multiplication of functions is pointwise. Let us call the
right-hand side expression a composition of the polyhedra. Note that these do not
correspond to the usual operations of addition and scalar multiplication of convex
sets. In general, a composition of convex sets would not necessarily be a characteristic
function, let alone that of a convex set. However, this will always be the case here.

3. The algorithm. We will first show that an integral simplex S € R?™' with
vertices vy, . .., U, can be expressed as a composition of cones pointed at the vertices,
such that all cones lie in the interior of some half-space. We will assume without loss
that S is contained in the nonnegative orthant of R?~!. This can always be arranged
with a suitable translation. We wish to determine N, the number of integer points in
S. Note that, if y; = 1 + max; v, then N < y{.

While we could work directly in R4~!, it is easier for exposition to embed the proof
in R% (This is why we choose to start from a simplex in R¥~!.) Thus we consider the
cone K* ¢ RY with generators u} = (1,v,) (i = 1,...,d). Then, in an obvious nota-
tion, (1, ) = K* N H,, where H; = {x:x, = 1}.

Let us call K < RY a standard cone if its generators satisfy u,, =1 and u; =0
(i = 2...., k), and each of the vectors u, is lexicographically positive. Note that, if K
is a standard conme, and (1,C) = K N H, then C is a cone with vertex v where
(1,0) = u,.
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LEMMA 1. The cone K* is a composition of standard cones K™ (m € M) with
IM{ <39!, ¢, = +1and ind K" < ind K (m € M). Moreover, the required compo-
sition can be determined in polynomial time.

PrROOF. We will prove the lemma by induction on r, for a cone K with %
generators satisfying u;;, = 1G=1,....r),u;, =0(=r+1,...,k)where 1 <r <
k < d. (We require the case r = k = d.) The basis for the induction is r = 1, when
there is nothing to prove.

Assume the truth of the lemma for (r — 1) and suppose r > 2. We assume without
loss that the generators of K are in lexicographically decreasing order. Let w =
u; — u,, so w is lexicographically positive and w, = 0. We now use the “inclusion-
exclusion” method, as in Dyer (1991) and Barvinok (1994), to “insert” the vector w.

Now K’ = K U K", where K’ has generators w,u,,...,u, and K" has generators
upw,....uy. Let K" = KN K" be the (k — 1)-dimensional cone with generators
Uy, Us, ..., u,. Then clearly

K'=K+K'-K", ie, K=K —-K"+K".

Thus K is a composition of three cones, each with only (r — 1) generators having
nonzero first component. Note that ind K’ = ind K" = ind K, since they all generate
the same lattice, and ind K" < ind K, since the generators of K" are a subset of
those of K. Applying the inductive hypothesis gives the lemma. The proof clearly
indicates a polynomial time algorithm. o

We remark that this type of decomposition is well known. For example, it is the
starting point in Varchenko (1987) and it is mentioned there as a “folklore result.” It
also leads to an elementary proof of the Brion’s identity in the spirit of Khovanskii
and Puhlikov (1992). Now, we follow Barvinok’s method to express each of the cones
K™ from Lemma 1 as a composition of primitive cones. This is done in the following
way. For a given cone K with ind K > 1, determine the matrix R as in §2 using a
Hermite normal form algorithm. Compute the shortest nonzero vector A, in [, norm,
in the lattice generated by the columns of R™. This can be done in polynomial time,
in fixed dimension, using the basis reduction algorithm (see Schrijver 1986) followed
by enumeration. By Minkowski’s theorem (see, e.g., Schrijver 1986, p. 71),

”A“x < Idet R_lll/k = kjet R[_l/k — (ind K)_]/k,

Now A = R™'z, for some integral z so z = RA and hence

w = T“(g) = T“(Ig))\ = U],

is a nonzero integer vector which is a linear combination of the generators of X with
weights at most (ind K)~'/* in absolute value. We may clearly insist that w is
lexicographically positive. We now, using inclusion-exclusion, can express K as a
composition of faces of the cones K with generators u,,...,u;_,,w, Ujpqseers Up
See Barvinok (1994) for details. There are at most k2* cones of this form. Suppose U,
is the matrix of generators of K*. Note that w = UA. Let A, be the matrix which is a
k X k identity, except that the ith column is A. Then U, = UA,. Let T,,T be the
unimodular matrices which reduce U, U, respectively, to Hermite normal form, then

b

(R") = T, = TUA, = TJ“(

RA,
0
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from which it follows that |det R;| = ldet(RA ;). Hence
ind K = A, ind K < (ind K) ™" ind K = (ind K)*"%.

From this it follows that iterating this O(loglogind K) times we obtain cones with
indK = 1, i.e., primitive cones. The total number of cones generated is then only
polynomial in log ind X, for fixed k.
At the end of this process, we have expressed the simplex § as a composition of a
polynomial number of primitive cones, such that all cones have vertex in the
nonnegative orthant and all cone generators are lexxcographlcally positive. We now

show that there is a polynormal -sized ¢ > 0 such that ¢. u,; > 0 for all generators of all

cones.

LemMa 2. Letu, € R? (r = 1,2,...) be any collection of lexicographically positive

integer vectors such that vy, =1+ max, lu, ;| is bounded. Then the vector c, =
(81, y872, ..., 5, 1) satisfies cyu, > 1 (¥Vr).

PROOF. Suppose u, , > 1 is the first nonzero element of u,. Then

d-s—1
cot, 2y - ) (y,-Dyi=1. o
j=0

Thus there exists a ¢, such that for any ¢ = 8¢y(0 < 8 < 1), (S, ¢) can be expressed
as a sum of 7 terms of the form

e—C.U

_ I-I‘,l 1 - e-CAu") ’

(1)

where c.v > 0and c.u; >0fori=1,...,d and 7 is bounded by a polynomial in the
size of the description of S. We now show that we find a suitable & such that (S, ¢)
approximates N closely enough. Let y = max(y,, y,}.

LEMMA 3. Let § = min{1/(4dy>?),1/(87)} and ¢ = 8¢, then
o(S,c) SN<ao(S,c)+1.

PrOOF. For any x € § we have

- ¢ }
‘?“ i
c.x < 8(dyi™ )y <3y g
bael
Hence 1 — 397% <1 —c.x <e™* < 1, and thus ty T o
N-1< Y e*<N, T

= A

PRI TATNEE

since N < y%. o o

Clearly the ¢ determined in Lemma 3 is a rational vector of polynomial size in the

data. We now determine an approximation &(S,c) to o (S, ¢) such that |5(S, ¢c) —
a(S,c)l < +. Then

F(S,c) — 1 s N<G&(S,c) +14,

and thus N is &(S, c) rounded to the nearest integer. Thus it suffices to determine
each term (1) to within 1/(47).
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Let .o = a. e, = B. Then @ < 1. and since
d-1
o od
l<cu < (v Dyi<vi,
j=0

and & < 4, we have
5< B <oyl <8(4ds) < HE <.

Now let a(y) be the approximation to e using the first (2d + 3) terms of its
series expansion. This series is alternating and we have 0 < a < 3, 8§ < B; < Ve 1t
follows that a(a) approximates e, and (1 — a( 8;)) approximates (1 — e F1) with
relative error less than 189%! /(2d + 3). Thus using the approximation a(y) in (1)
leads to an approximation with relative error less than (d + 1)89*? /(2d + 3)!. Now
the term (1) is at most (2/8)%. Hence the absolute error due to approximating (1) in
this manner will be at most 2% /(2d + 3)! < § < 1/(87). Thus it suffices to replace
each exponential by the fixed polynomial a(x) of degree 2(d + 1). It now follows that
we can compute the required (S, ¢) in polynomial time.
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