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Abstract This paper considers the “Frobenius problem” : Given n
natural numbers a,, as,...a, such that their greatest common divisor is 1,
find the largest natural number that is not expressible as a nonnegative
integer combination of them. This problem can be seen to be NP-hard. For
the cases n = 2, 3 polynomial time algorithms are known to solve it. Here a
polynomial time algorithm is given for every fixed n. This is done by first
proving an exact relation between the Frobenius problem and a geometric
concept called the “covering radius”. Then a polynomial time algorithm is
developed for finding the covering radius of any polytope in a fixed number
of dimensions. The last algorithm relies on a structural theorem proved here
that describes for any polytope K, the set K + Z" = {z:zeR"; z =
y+z:y€K; z€Z"} which is the portion of space covered by all lattice
translates of K. The proof of the structural theorem relies on some recent
developments in the Geometry of Numbers. In particular, it uses a theorem
of Kannan and Lovasz [??}, bounding the width of lattice-point-free convex
bodies and the techniques of Kannan, Lovész and Scarf [??] to study the
shapes of a polyhedron obtained by translating each facet parallel to itself.
The concepts involved are defined from first principles. In the last section,
I develop an algorithm which is polynomial time bounded for fixed p,n to
decide the truth / falsity of any sentence of the following form (where Q
is a given copolyhedron in R? and A, B,b are given matrices of suitable
dimensions. See Notation below.)

Vy € Q/Z' 3z € Z™ Az + By <b.

The sentence says in words : for every y for which an integer vector
v € Z' exists such that (y, z) is in @, there exists also an integer vector = so
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that Az + By < b. The Frobenius problem can be easily reduced to such a
sentence.

Notation

R™ is Euclidean n space. The lattice of all integer vectors in R™ is denoted
Z". For any two sets S,7 C R", we denote by S + T the set {s+t:s¢€
S;t € T}. For any positive real, A, we denote by \S, the set {As:s e S}
For any set W in R™* and any set V in R}, we denote by W/V the set

{z:2 € R" such that there exists a y € V with (z,y) € W}.

W/V' is the set obtained by “projecting out” V from W.

A copolyhedron is the intersection of a finite number of half spaces -
some of them closed and the others open. (“co” for closed / open.) If a
copolyhedron is bounded, I will call it a copolytope.

Some statements in the paper will assert “the algorithm finds copolytope
P 7. The precise meaning of this statement is as follows : suppose P, is
in R". The algorithm will find a rational m x (n+1) matrix C and a rational
m x 1 vector b where [ is at most some polynomial function of n and for each
row of (', either the < or the < sign such that P, equals

{2 :z € R" such that there exists a y € R with C’(;) <§> b}.

By a “rational polyhedron”, we mean a polyhedron that can be described
by a system of inequalities that have rational coefficients; the inequalities
may have irrational right hand sides.

In much of the paper A will be a fixed m x n matrix. If the meaning
of A is clear from the context, for any b in R™, the polyhedron {z € R™:
Ax < b} will be denoted by K,. In much of the paper, b will vary over
some copolyhedron in R™. Some bounds in the paper will be in terms of
the affine dimension j, of this copolyhedron. Except for Theorem (7.2), this
generality is not strictly needed. The reader may restrict attention to the
case when j, = m for the first reading. The “size” of a rational matrix is the
number of bits needed to express it. It is assumed that integers are written



in binary notation, so it takes a O(log M) length string to express an integer
of magnitude M.

A basis B of the lattice Z™ is a set of m linearly independent vectors
{by,b9,...b,} in Z", such that each member of Z" can be expressed as an
integer linear combination of {by, bs, ... b, }. The “fundamental parallelopied”
corresponding to B is the set {z : z = 37 | \;b; where \; € R satisfy 0 <
A; < 1}. It is denoted F'(B). For each point y in R™, there is a unique lattice
point z such that z+ F(B) contains y. The parallelopied z + F(B) is denoted
F(B;y). 1t is an elementary fact that the set of integer solutions to a linear
system of congruences i.e., a set of the form {(zy,%s,...2n) : 301 NOT; =
0(modp)} where a;, p are natural numbers, is a lattice. This fact will be used
once only in the paper, in section 2.

In most of the paper, the only lattices that occur are Z" for some natural
number 7. In section 2, we use more general lattices. A lattice in general
is the set of all integer linear combinations of a set of linearly independent
vectors in Euclidean space.

1 Introduction

The Frobenius problem can be rephrased as follows : “Given n coins of
denominations a, as, . .. a,, with GCD(a1, as, ... a,) equal to 1, what is the
largest integer amount of money for which change cannot be made with these
coins 7 7 Note that the GCD condition implies that we can in fact make
change for any large enough integer amount of money. The simple statement
of the Frobenius problem makes it attractive. Not surprisingly, the Frobenius
problem is NP-hard in general. This is not proved in this paper. For the
special case of n = 2, the answer is explicitly known - it is ajas —a; —ay. The
proof of this is elementary. (For example, this follows from Theorem 2.1.)
Algorithms to solve the Frobenius problem in the case n = 3 were recently
developed by Rodseth [?7], Selmer and Beyer[??] Greenberg[??] and Scarf
and Shallcross [?7]. There is a substantial literature on the general problem
- see for example [??] and the bibliography in [?7?], [??]. No polynomial time
is known for fixed n greater than 3. This paper develops one for any fixed



n. It might seem that this result would follow from the result of Lenstra
177] that Integer Programming in a fixed number of variables can be solved
in polynomial time ; but note that a niive solution to the Frobenius prob-
lem involves solving (in the worst case) an exponential number of Integer
Programs - one each to determine for each natural number b whether b can
be expressed as a nonnegative integer combination of ai, Gg,...0n. Some
pruning is possible, but no such direct method is known to work. For an
approximation algorithm, see [?7].

The Frobenius problem is related to the study of maximal lattice point
free convex bodies, a topic of long-standing interest in the Geometry of Num-
bers. This relation is described by Lovasz in [??]. He also formulates a con-
jecture which he proves would imply a polynomial time algorithm for the
Frobenius problem for a fixed number of integers. The structural result of
this paper does not prove this conjecture, but does imply a closely related
one as shown in section 7 . Scarf and Shallcross [??] have recently observed
a somewhat direct relation between maximal lattice free convex bodies and
the Frobenius problem. There have been some applications of the Frobenius

problem to a sorting method called Shell-Sort - see for example Incerpi and
Sedgwick [??] and Sedgwick [?7].

In section 2, the Frobenius problem for n coins is exactly related to the
“covering radius” of a certain simplex in R"~!. The notion of covering radius
tor centrally symmetric convex sets is a classical notion in the Geometry of
Numbers ; in [?7], it was introduced and studied for general convex sets. It
is defined as follows :

For a closed bounded convex set P of nonzero volume in R™, and a lattice
L of dimension n also in R™, the least positive real ¢ so that tP + L equals
R™ is called the “covering radius” of P with respect to L. It will be denoted
by p(P, L).

In words, the covering radius is the least amount % by which we must
“blow up” P and one copy of P placed at each lattice point so that all of
space 1s covered.

Suppose K is a closed bounded convex set in R™ and v is an element of



R". The width of K along v is
max{v-z:zx € K} —min{v-z:z € K}.

The width of K (with respect to the lattice Z" ) is defined to be the
minimum width of K along any nonzero integer vector. Note that this differs
from the usual definition of the geometric width of K, where the minimum
is over all vectors v of length 1, rather than all nonzero integer vectors. The
width as defined here is greater than or equal to the geometric width since
nonzero integer vectors have length at least one. The following theorem will
be used.

Flatness Theorem [?7] There is a universal constant ¢, such that any
closed bounded convex set K in R™ of width at least c,n? contains a point
of Z™.

Remark : The constant ¢, will be used throughout the paper. By
looking at the case n = 1, we see that ¢, must be at least 1, a fact that we
will use.

Kannan, Lovasz and Scarf [??] show that for any fixed m x n matrix
4 satisfying some nondegeneracy condition, there is a small finite set V
of nonzero integer vectors such that for any “right hand side” b, there is
some v(b) belonging to V' such that the polytope K, = {z : Az < b} has
approximately the smallest width along v(b); more precisely, the width of
K, along v(b) is at most twice the width of K, along any nonzero integer
vector. Section 3 of this paper proves from first principles a result in the same
spirit. There are two differences - here, I do not assume any nondegeneracy
condition. Secondly, in the result here, b is allowed to vary over some subset of
R™ and the upper bound on the cardinality of V' is in terms of the dimension
of the affine hull of this subset. Letting the subset be the whole of R™, we
can recover a result similar to {?7?].

The result of section 3 will be used in the main structural theorem proved
in section 4 which describes the set K + Z™ where K is a polyhedron. The
proof of this theorem is by induction ; the inductive proof will need a “uni-
form” description of K + Z" as each facet of K is moved parallel to itself in
some restricted fashion. In this context, the theorem of section 3 comes in
useful.
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Section 5 gives a polynomial time algorithm for finding the covering radius
of a polytope in a fixed number of dimensions using the theorem of section
4. Thus also, the Frobenius problem is solved for fixed n in the sense of a
polynomial time algorithm.

In both sections 3 and 4, the “right hand side” b is allowed to vary only
over a bounded set. Section 6 proves the theorem of section 4 without such
a restriction.

The result of section 6 is used to produce a “test set” for Integer Program-
ming - see Theorem (7.1). This theorem is then used to design a decision
procedure for sentences of the form mentioned in the Abstract - see Theorem
(7.2). In particular, the decision procedure decides in polynomlal time (for
fixed n, p), the truth / falsity of a sentence of the form

VyeZl 3xeZ" :Az+ By <hb.

This is a generalization of Lenstra’s result which gives a polynomial time
algorithm for deciding sentences of the form

dzeZ" . Ax <hb.

[t is an interesting open problem to devise such algorithms for sentences with
a higher number of alternations, in particular for sentences of the form

dze?ZF VYyecZ' 3xe€Z" :Arx+By+Cz<b.

See Remark 4 of section 8.

2  Frobenius problem to Covering Radius

Foray.a,. .., a, positive integers with GCD(a, . . . yan) = 1,let Frob(a; ..., ay)

largest natural number ¢ such that ¢ is not a nonnegative integer combina-
tion of a; ..., a,. The aim of this section is to relate Frob(ay,as,...a,) to
the covering radius of a certain n — 1 dimensional simplex. This is done in
Theorem (2.5).

(2.1) Theorem [?7]



Frob(ay...,a,) = ze{1r21.l.af y t — an (2.2)

where ¢; = the smallest positive integer congruent to [ modulo a,, that is
expressible as nonnegative integer combination of a; ..., dn-1.

Proof: The proof is rather simple. Let N be any positive integer. If
N = 0(mod a,), then N is a nonnegative integer combination of a, alone.
Otherwise, if N = [(mod a,), then N is a nonnegative integer combination
of a; . .,a, T N > 1.

n—1
Let L={(x1...,Zn-1):z; integers and Z a;x; = 0(mod a,)}  (2.3)
=1
n—1

and let S ={(z1,22...,2n-1) : z; > 0 reals and Z a;z; <1} (2.4)

i=1

(2.5) Theorem u(S,L) = Frob(ai,as...,an) +a1 +az+ ...+ an
where p(S, L) is the covering radius of S with respect to L.

Proof: Abbreviate Frob(ai,as,...,a,) by F and u(S, L) by p. First, I
show p < F4ai4as...+ay. Supposey € Z* 1 and 7 a;y: = l(mod ay).
By definition of ¢;, 3z, ..., 2,1, %, > 0 integers such that 21’-‘:_1 T, =t =
[+ apty; thus with 2/ = (z ..., z,_1), we have (y—2') € L and (y—z')+4S
contains y — z’ + z’ = y. Since this is true of any y € Z" ' and t;, < F +a,,
we have:

2P C(F+a,)S+ L (2.6)

Further it is clear that R*™* C Z"! + (a; + ...+ a,—1)S. To see this, note
that for z € R*!, we have |z| = (|21],... [2n-1]) € Z" " and (2 — |2]) €
(a; +as...+an_1)S. Hence I have shown

R*'CZ" '+ (g +... +an)SC(F+a+...+a,)S+L  (2.7)

Now for the converse: Consider (F +a,)S + L. I claim that F'+a, is the
smallest positive real t such that tS + L contains Z"~!. Suppose, for some
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' < F+ay, ¢S+ L contains Z"~. Then for any [ € {1,...,a, — 1}, pick
ay € Z"! such that 37t ay, = l(mod ay). y is in ¥'S + z for some z in
L,so (y—=x)isin¢'S. But X7 " a;(y; — z;) = l(mod a,) and y; — z; > 0V,
implies that #; < ¢'. Since this is true of any I, we have F < # — a, < F a
contradiction (using Theorem (2.1)). Thus I have shown:

F+a, =min{t:¢>0, real and tS+ L D Z""!} (2.8)

By (2.8), we see that 3y € Z"~!, such that for any z € L, with y; — z; > 0Vi,
we have Y77 a;(y;— ;) > F+a,. Now let ¢ be any real number with 0 < € <

1 and consider the point p = (p1,ps, ... pp—1) defined by p; = y; + (1 — €)Vs.
Suppose ¢ is any point of L such that p; > ¢;Vi. Then ¢; are all integers, so
we must have ¢; < 1,V;.

n-—-1 n—1

n—1
So. Za Zal 1—e)+ Zaz—(yi (1—e¢) Zal +(F +ay)
1

1 1
by the above.
Since this argument holds for any ¢ € (0 1), we have u > F 4+ X" a,.
Together with (2.7) now, Theorem (2.5) is proved.

Remark : By applying a suitable linear transformation, we can “send”
L to Z"'. This sends the simplex S to some simplex whose constraint matrix
1s still rational. It is easy to see that applying the same linear transformation
to S and L leaves the covering radius unchanged. I assume this has been
done ; in the coming sections, I will deal only with covering radii of sets
with respect to the standard lattice of integer points. It is assumed that the
reader is familiar with computational aspects of linear algebra; I omit the
details of how the linear trnasformation above is applied etc.. For a thorough
ntroduction to such matters, the reader is referred to [??].

3 Vectors along which Kj, have small width

Our main aim is to develop an algorithm to find the covering radius of a
polytope K = {z : Az <b}. As will be explained in the beginning of section

8



4, it will be useful to deal with K, where b is allowed to vary over some
copolytope. This section will develop the tools needed for section 4. For
each fixed b, there is an nonzero integer direction that acheives the minimum
width of K. The main result of this section is lemma 3.1 which says that
we can compute a small number of nonzero integer directions such that as
b varies over a large set, for each K, one of our directions acheives close to
minimum width. This is the third point in the conclusion of lemma 3.1, the
first two are technical ones that are needed for theorem 4.1.

(3.1) Lemma : Suppose A is an m X n matrix of integers of size ¢.
For each b € R™, we denote by K the polyhedron {z : Az < b}. Let P be
a copolytope in R™ of affine dimension j, such that for all b € P, K, is
nonempty and bounded. Let M be max{|b| : b € P}. There is an algorithm
that finds a partition of P into copolytopes Py, P, ... P, where 7 is at most
m*+io (2log, M + 12n2¢))" ™, and for each copolytope P;, it finds a nonzero
integer vector v; and n x m matrices T;, T} such that for all ¢, 1 <7 < r and
all b € P;, we have

1. The point 7;b maximizes the linear function v; - x over z in K.

Lo

. The point T}b minimizes the linear function v; - z over z in K, and

either ~ Width,, (K,) <1
or Yu # 0,u € Z", Width,, (K;) < 2Width,, (K).

Further, the algorithm works in time polynomial in data and log M if
n, j, are fixed.

Proof 1 first describe how to find the nonzero integer vectors vy, vs, . ..
with which to prove the theorem and then describe how to find the partition
of P. The first m of the vectors will be the rows of A. We note that every
K, of zero volume has width 0 along one of these m vectors. Also, if a
K, has width at most 1 along one of these m directions, it is “taken care
of” by that direction. So we only need the rest of the vectors to take care of
full-dimensional K}, with width at least 1 along each of the m facet directions.



Since K, is bounded, we have that K, is contained in a ball of radius
M24°# [22 Theorem 10.2] around the origin. Also, K} has a centroid - say
- Zo. (The centroid z, is the unique point such that Jx,(z — zo)dz = 0.
) Consider K, — z,. Let this be {z : Az < V'}. Note that ¥’ belongs to
P' = P+( column space of A ) which is a set of affine dimension at most
n+ Jjo . By the above, 0 < ¥ < M5 by By a property of the centroid
(namely, if y, is the centroid of a bounded convex set K in R”, then for any
z € K, we have (1+ 1)y, — 1z € K.) , and the lower bound of 1 on the
width of K, in any of the facet directions, we have that

L << moey
(n+1)
Let £ C R™ be the rectangular solid {y : (—ni—l) <y < M25”2¢\'/i}. Applying

lemma (3.3) with @ = the affine hull of P’ | we get a finite set V' in R™
such that for each y € RN P’ there is a y' € V' with ¢/ < y < 2. (Note
that by that lemma, the set V' can be found in polynomial time when N, Jo
are fixed.) For each 3" in V' such that K, is full dimensional, we find the
nonzero integer vector that attains the width of K. This set of nonzero
nteger vectors suffices as our set of v; 's. This is so because ¢/ < y < 2y
implies that K,y € K, C K, which implies that for any nonzero vector
v, Width,(Ky) < Width,(K,) < Width,(Ks,). (The nonzero integer
vector along which the width of a polyhedron is minimised, can be found in
polynomial time for a fixed number of dimensions - see [?? (1986) version).)

We now have a set of vectors vy, vs,... such that each of the relevant
Ky has “small” width (“Small” will mean either at most 1 or at most twice
the minimum width along any nonzero integer direction.) along one of these
vectors. For each v;, we perturb it slightly to get a v; with the property
that (i) for any b € P, a vertex of K, achieves the maximum (minimum) of
the linear function v/ - z over K, iff it achieves the maximum (respectively
minimum) of v; - x over K} ; and (ii) for each b in P, there is a unique vertex
of Kj that achieves the maximum and a unique vertex that achieves the
minimum of v; - z over K,. This is possible with an increase in size by at
most a polynomial additive term. (For example, see [??].) Consider each of
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the (at most m™) nonsingular n X n submatrices B of A. For each of these
we can define an n x m matrix 7' by augmenting B~! with 0 columns so that
the possible corners of any K, are of the form 7'b for such 7. I will denote
by f(T') the ordered subset of {1,2,...m} of cardinality n that contains the
indices of the rows of A that go into B. Let f(T) = {f1(T), fo(T), ... fo(T)}.
We let fo(T) be zero for all T'. If there is degeneracy, it may happen that a
vertex v of some K, equals Tb for more than one 7. In that case, we will
say that T is the lexicographically least one defining the vertex v if the set
f(T') is lexicographically least among all “basis” sets that define v. This can
be expressed more precisely as follows : let g(7') be the set of [ such that for
s with f(T) <l < fs11(T), we have that row [ of A is independent of rows
f(T), fo(T), ... fs(T) of A. Then, we say that v = T'b satisfies Av < b and
for each [ in g(7"), we have the [ th component of Av is strictly less than b;.

We order the T ’s and call them 17,75, .... There will be one copolytope
P(T;,Tj.vg) for each triple ¢, 7,k in the partition of P. The copolytope
P(T},T;, v) will be the set of all b ’s in P for which

e p =Tb and g = T;b belong to K. Further, T; is the lexicographically
least one that defines p and the same for 7; and gq.

e The maximum value of v, - over K, is attained at T;b.
e The minimum value of v, - z over K} is attained at Tjb.

e For each [ < k, there exist 2, y® in K, such that v, - (z® — y®) >
Vg * (sz - T7b)

e For each [ > k, there exist ), y® in K, such that v, - (z0 — y®) >
vg-(T;0—T;b). (This and the previous condition say that the width of K
along vy is the least among all the directions {v;}. The strict inequality

in the previous condition is there to ensure that each b belongs to only
one P(T;,T;,v).

(3.2) Claim FEach P(T;,Tj,v;) defined above is a copolytope. The
copolytopes form a partition of P. For each b € P(T;,T;,vs), we have that
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Ky has small width (at most 1 or at most twice the minimum in any integer
direction) along v;, and further 7,6 maximizes U@ over Ky and T;b minimizes
vk - x over K.

Proof To prove the first statement, I will show that each of the above
conditions in the definition of P(T;,T;,v) can be expressed by linear con-
straints possibly with the introduction of new variables. Only the second
and third condition need any explanation at all. The second condition is ex-
pressed by complementary slackness of linear programming - namely, we say
that the complementary solution is feasible to the dual, i.e., that v, B7' > 0
where B is the n x n basis matrix corresponding to 7;. Note that in fact, this
statement does not involve b, so it need not be included as a constraint, if it
is not satisfied, then the P(T}, *,vy) is empty for all = T}, so these pieces
need not be included in the partition of P. Condition 3 is treated similarly.

The statement in the claim that the copolytopes form a partition of P is
casy to see : if b belongs to P(T}, T}, vx), then the width of K, along vy is
less than its width along vy, vs, ... vk_; and at most its width along vy, ...,
0 v 1s uniquely determined by b. Then clearly, by the perturbation, 7; and
T; are uniquely determined.

The rest of the claim is easy to see.

Now for the lemma : we may return the partition {P(T;, T;,v)} of P,
and associated with P(T;,T},v;), the vector vy and the matrices T;,T; to
satisfy the lemma. The upper bound on r, the number of elements in the
partition is easily obtained.

(3.3) Lemma Let R C R™ be the rectangle {y : a < y; < gvi}
where 0 < o < ( are arbitrary rationals. Let @ be any affine subspace
of R™ with dimension say ¢. Then there exist a finite set V' in R™ with

t
V' < <2m(10g2 g + 1)) such that for each y € RN Q, thereis a y € V'
with v <y <2y



Further, given R, @, the set V' can be found in polynomial time provided
n,t are fixed.
Proof : Divide R into sub-rectangles each of the form

{2:02P < z < a2 fori=1,2...,m}

where py,ps ..., pm are natural numbers between 0 and | = log,(8/a). I
will show by induction on the pair £, m that @ N R is contained in the union
of some |

28mi(l + 1)
subrectangles of R which clearly proves the lemma.

The case t = 0 is clear for all m. The case m = 0 is trivial. For higher
t, note that if @ intersects a subrectangle, it intersects the boundary of the
subrectangle. For any ¢,1 < ¢ < m and any p;,0 < p; < [, consider the
(m - 1)-dimensional rectangle R = RN{z : z; = 2P} and the division of it
into subrectangles “induced” by the division of R. Also, let Qn{z : z; = 2P o}
be . If for any ¢ and any p;, such a @’ equals @), we have the lemma by
induction on m. So assume this is not the case. Then, @' is a (t — 1)-
dimensional affine space. Applying the inductive assumption, we know that
there are (2(m — 1)(I 4+ 1))'~! subrectangles whose union contains Q' N R'.
Fach such subrectangle is a facet of 2 subrectangles of R. Thus there are
2.(2(m — 1)(I + 1)) m (I + 1) subrectangles of R whose union contains
QN ER.

To get the required algorithm, note that in the case where some @' equals
(), we get one “problem of size ” ¢, m—1 and in the other case, we get m{l+1)
problems each of “size” ¢t — 1, m — 1.

(3.4) Lemma : Suppose K is a rational polyhedron in R™ and v €
Z™\ {0} satisfies
either Width,(K) <1

or Vu # 0,u € Z", Width, (K) < 2Width, (K).
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Suppose also that 4 is in K and v-y = a. For 8 € R, denote by H(f) the
set {x € R" :v-z = 8}. Let s = 2¢c,n*> + 1 (where ¢, is the constant from
the Flatness theorem of section 1). Then for all v € (& « + 1], we have

k=—s

(K+ZMYNH(y) = [KJF ( U (Z"nH(k)))} N H(y).

Proof : It is easy to see that we may assume that y=0and a =0
since both sides in the above equation are unchanged by translations of K
(provided of course, H(7y) is also suitably translated). Now suppose z belongs
to H(7y) for some v € (0 1] and = belongs to K +7Z". So x — K intersects VA
hence there exists a real number ¢ € [0 1] such that z — tK intersects 7z,
but the interior of  — tK does not. (This uses the fact that K is closed and
0 € K.) Then the width of tK along some nonzero integer vector must be
at most ¢,n* by the Flatness Theorem from which it follows that the width
of tK along v must be at most 2c,n?. Then if 2 is in (z — tK) N Z", we have
v (2 —z)| < 2¢,n’, thus we have [v - z| < s which implies that = belongs to

K+ ( LS) (Z”mH(k)))J

k=—s

proving the lemma.

4 The structure of K, + Z" as b varies over a
bounded set

[n this section, the main structural theorem is stated and proved. The idea
of the theorem is to describe the set K + Z" where K is a polyhedron . We
assume K is described by m linear inequalities Az < b where A is an m x n
matrix and b an m x 1 vector. If it happens that K is contained in the
fundamental parallelopiped F(B) corresponding to some basis B of L = z",
then clearly, K'+ L = (K N F(B)) + L. This of course is not true in general.
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In spirit, the theorem below states that in general, it is enough to look
at the portion of K + L (where L = Z"), contained in some parallelopipeds
which are lattice translates of the fundamental parallelopiped corresponding
to some bases (note the plural) of L. Further, we need to consider only a
“small” number of lattice translates. The number of bases of L as well as the
number of lattice translates is bounded above by a function of n alone. The
proof of the theorem will be by induction; in the body of the inductive proof,
we will look at sets of the form K’ + L' where K’ is the intersection of K
with some lattice hyperplane and L' the intersection of L with the subspace
parallel to the hyperplane. We will need to derive a “uniform” description of
these sets as the hyperplane is translated parallel to itself. The sections then
can be all described as {y : A’y < b’} where the V' varies as an affine function
of b and the position of the hyperplane. To facilitate such an inductive proof,
we will consider a more general setting than K + L, namely Kj + L where
Ky = {z : Az < b} and now, we let b vary over a copolytope P in R™.
The theorem will say that for fixed n and the affine dimension of P, we can
partition P into a polynomial number of copolytopes such that in each part,
there is an uniform description of K, + L. ?

(4.1) Theorem Let A be an m x n matrix of integers of size ¢. Let P
be a copolytope in R™ of affine dimension j, such that for all b € P, the set
K, = {z : Az < b} is nonempty and bounded. Let M = (maxsep(|d] + 1)).
There is an algorithm which for any fixed n, j, runs in time polynomial in
®.log M and finds a partition of P x R™ into subsets Si, Ss, ... S, such that

1. r < (n¢mlog j\/[)j“”dn, where d is a constant independent of n, m, M, ¢.

2. Bach S; is of the form S}/Z! where S! is a copolyhedron in R™*"* and
I < (3con)®™.

3. Letting S;(b) = {z € R™: (b,z) € S;}, we have for all ¢ and all b € P,
Si(b) + Z" = Si(b).

The algorithm also finds corresponding to each S;, a collection B; of at
most (3c,n)>" bases of Z". Corresponding to each basis B in each B;, it finds
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an affine transformation T'(B) : R™ — R™ and a set Z(B) of at most n”
points of Z" such that for all ¢ and all b € P, we have

(Ky +Z™) N S;(b) =

H U (& +2(B))n F(B; T(B)b))} + Z”J N S;(b).
BeB;

/*END OF STATEMENT OF THE THEOREM* /

Remark Reminder on some notation : F(B;y) is the lattice translate
of the fundamental parallelopiped F(B) corresponding to the basis B , that
contains the point .

Proof : The proof is by induction on n. First, [ do the case n = 1. Here
each row of A can be assumed to be £1 ; say the first k¥ rows are +1 and the
rest -1. We will have S, 5,,... S, € P x R! defined by

SZ"—'»{<Z),.’U)Zbép;bi<b1,bi<b2,...bi<bi_1,biSbi_{_l,biSbH_Q...biSbk}.

In words. .S; consists of all (b,z) for which i is the minimum j such that
by =min{b : 1 =1,2,...k}. For (b,x) € S;, we have b; € K,,. Let B; = {{1}}
for all » and let T(B) be the affine transformation defined by T(B)b = b; for
the single basis B in B;. Finally, let Z(B) = {0, 1} for all B. It is easy
to check that the theorem is valid with these quantities; this completes the
proof for n = 1.

It is useful to remark that the role of T(B) is to “get a hold of a point”
I(B)b that is guaranteed to be in K,. We then know that we have all the
information needed regarding K + Z by just looking at the intersection of
Ky with the parallelopiped containing that point and a neighbouring paral-
lelopiped.

Now we go to general n. First, we may restrict attention to each of the
copolytopes that lemma (3.1) partitions P into in turn. So without loss of
generality, assume that we know a linear transformations 7', 7" and a nonzero
integer vector v such that for all b € P, we have K, has “small” width (i.e.,
width of at most 1 or a width at most twice the minimum width along a
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nonzero integer direction) along v and 7'b minimizes v - x over z in K, and
T'b maximizes v - x over z in Kj.

After a suitable unimodular transformation, we may assume that v is the
first unit vector e;.

Let now e, -Th = «. For any real number v, let H(y) ={z € R" : e;-2 =
v}. Let L = Z".

The idea now will be to obtain an expression for (K, + L) N H(7y) as v
varies over (o « + 1]. The inductive assumption will enable us to get an
expression for each such section and then we will put the sections together.

For any 8 € R, let Q(b, 8) = KyNH(B). We can find an integer mx (n—1) N 4/(
matrix C', an m x m affine transformation D and an m— vector d such that p R

Vb, 3 Qb,B) = {(8,%): 2 € R" ! satisfies C% < Db+ (3d}.

Let Q(b,3) = {# € R*': Ci& < Db+ fd}. ,
For v € (& @ + 1], we have by lemma (3.4), (with s = 2¢,n* + 1)

W

RSN R I
< trpnslal oA Tg

e cer subspact €10

(Ky+L)NH(y) =
(Ko +Uie (LN H(K)) N H(y) =
Uies (Ko N H(y — k) + (LN H(k))} =
Upe—, ((Q(b,y = k) + L") + key) (4.2)

where L' = LN H(0) = 0x Z"!. As stated earlier, v will vary over the range
(a a+1], s0 3 =~ —k will vary over the range (¢ —s a+s+1]. Let I(b) =
(3 € (a—s a+s+1]:Q(b, 3) # 0} which is equal to (a—s a+s+1]N[Tb T'b].
Let b = Db~ Gd. As b varies over P, and  varies over I(b), &/ varies over
some copolytope P’ of affine dimension at most j, + 1. Further, clearly, we
can obtain a natural number ¢/ so that it is bounded in size by a polynomial
in the size of 4 and log(maxep(|b]-+1)) and P’ is contained in a ball of radius
V' about the origin in R™. Also, for all b’ € P’, we have Q(V') = {¢: C# < b'}
1s nonempty and bounded.

Applying the inductive assumption on Q (V') +Z" ! will give us a partition
of P'xR™!; clearly, we may substitute b’ = Db+ (3d to make this a partition
of Py x R*! where Py = {(b,3) : b€ P;3 € I{b)}. So by induction, we get

(4.3) a partition of Py x R™"! into subsets Ry, R», ... R; such that
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L. each R; is of the form R]/Z' where R/ is a copolyhedron in R™* and
[ < (Bco(n —1))3™=Y and for all (b, 8) € P,

2. Ri(b, 8) + 2" = Ri(b,3). (Reminder on notation : Ry(b,3) = {z €
R™: (b, 8,2) € Ri}.)

For technical convenience, we let Ry = {(b, 8,z) : T'b < 8 < a+s+1;bc
Pyand Ry = {(b,8,2) :a—s < 8 < Thb c P}. Now Ry, Ry,...Ripy
form a partition of P x (¢ — s a+ s+ 1].

We also get corresponding to each subset R;, for 1 < i <t a collection B;
of bases of Z"~! containing at most (3¢,(n—1))3™=1 bages, and corresponding
to each basis B, an affine transformation T(B) and a set Z(B) of points in
Z" ! so that for all 4 = 1,2, .. ¢ and all (b, B) € Py, we have

(Q®,8) +2") N (Ri(b, 8)) =

BeB;

{ U {@(b, 8)+ 2(B))n F(B: T(B) (m +zn—1} NRG.6)  (44)

We let By = By1 = 0. Since, Q(b,8) = 0 for 8 ¢ [Tb T'b), (4.4) is now
valid for all (b,5) in P x (a —s a+ s+ 1].

The subsets of P x R™ with which I prove the theorem are obtained as
follows : Let J = (i, i_,q,...1,.. .1s) be any (2s + 1) - tuple of integers
each in the range [0 ¢+ 1]. There will be one subset S, in the partition of
P < R™ for each such J. It is defined as the set of (b,8,z):be P,BecR,z e
R"! such that

dzeZ:f0+z€(a a+1], (b,8+2—kx) €Ry fork=—-s5—-s+1,...5

(4.5)
Note here that b “comes from” P and (8,z) “come from” R™. It is obvious
that the sets S; are of the form 5% /Z' where the S, is a copolyhedron and
is not too high. (In fact, I <1+ (25 + 1)(3co(n — 1))~V < (3¢,n)*".) To
show for any b, the intersection of S;(b) and S () is empty for J # J', we
proceed as follows : J and J' must differ in one of their “coordinates”, say,
in the & th coordinate J has j and J' has j' with j # 5. For any b € P, and
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3 € (a—s a+s+1}, we have that R;(b, §) and Rj (b, ) do not intersect,
from this it follows that S;(b) and S (b) do not intersect.

The other two properties required of the collection {S;} - that their union
is P x R" for any fixed b and they are invariant under Z" also follow easily.

The bound on the number of S; given by item 1 is argued by induction
on n as follows : It is obvious for n = 1. For other m, by lemma (3.1),
the partition of P incurs us a factor of at most (mnlog M @)*™+¥) for some
constant c¢. Then we may apply the inductive assumption for ¢, the number of
pieces into which P’ x R"~! is partitioned. The ¢ and log M passed on to this
problem are easily checked to be at most n¢ times the original ¢ and log M
and of course the n + j, passed on is the same as before, since n is decreased
by 1 and j, increased by 1. Further, the number of .J is at most (¢ + 2)2°*L.
So we get, by induction, the number of J is at most (mnlog M¢)*™" for a
suitable choice of d.

We must now associate a certain set of bases of Z™ with each S;. I do
this after giving an idea of what the set must be. For each J, say J =
(g i ga1y. - 10y.--1g), and for v € (a « + 1], we get using (4.2),

((Ky+ L) N H(y)) N Ss(0) =

S

yx | U (Qov=k+z1) N Si(0) (4.6)

k=—s

c U v~ [(Qb,y — k) + 2" ) ARy (b,y — k)}
k=-—s

where the last containment comes from the fact that for v in the range
(v o+ 1], if (b, 7, Z) belongs to Sy, then (b,y — k,Z) belongs to R;,. Now,
by (4.4). we get,

(Q(b, v—k)+ Z"‘l> N R (byy—k)= (4.7)

{Z""‘l +{ U [(Q(b,y—k)JrZ(B))ﬂF(B;T(B) <7 b k))}}} N R (b,v—k).

BeB;, -
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We can write T(B) (g) as Tob + w'( where Tj is an affine transformation
and w’ 1s an (n — 1) x 1 vector. Let Ty be the n x m matrix with 0 ’s in the
first row and Tj in the other rows ; let w be the n vector (u?,). Let z € Z™!
be such that

w' € F(B) + z.

We “complete ” B to a basis B’ of L as follows : if B = {61, b2, ... b1},
then we let B' = {(0,b1), (0,b5),...(0,b,-1), (1, 2)}.

To define T'(B’), we proceed as follows: let B € B;,. Lety = T(B) (Wfk) =
Toh + w'(y — k). Let y' = (0,y) and let y, = (y — k)e; +13'. Then as
v varies over (a o + 1], y, varies on the straight line segment p from
Tob+ (v —k)(e1 +w) = z,, say, to z,+e; +w. We can express z, as Ub where
U is an affine transformation. Then it is easy to see that p C F(B";Ub)+C,

for a set C' of at most n corners of F(B'). So we get, for v in (o «+ 1],

b

{o x F(B;T(B) (7 i

))} +(y—ker CC+F(B;Ub)  (4.8)

We will let U = T'(B') be the affine transformation corresponding to B’
We let Z(B') = (0 x Z(B)) — C. So, we have |Z(B")| < n|Z(B)| < n" using
the inductive assumption. The collection B; of bases of L corresponding to
S, is defined as the set of B’ defined as above - one for each B in each R;,
fork=—s,—s+1,...0,...s.

Now, for v belonging to (& «a + 1], we have

(v~ k) x [(@M—k)”@)”F<B;T(B)(vik>>}

C(Ky+Z(BY))NF(B;Ub+C (4.9)
By substituting this into (4.7), we get
(= k)% (Qby = k) +Z"Y) 0 (v — k) x Ry (b, v — k)

C U [(Ky+Z(B"))NF(B,Ub)| + 2"
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Substituting this into (4.6), we get

(Ky+ L)N H(v))NS;(b) €

U ker+ | [(Ks+ Z(B)) N F(B;Ub)] + 2" (4.10).
k=—s BeB;,
Since ke; + Z™ = Z™ and the right hand side of (4.10) is invariant under
adding Z", we have
(Ky+Z") N S;(0b) =
U (& +2Z(B)NFB;Ub) +2Z" 0 S,(b)
B'eB,

This completes the proof of the theorem.

5 Algorithm to find the covering radius

(5.1) Proposition : There is a polynomial p(-) such that for any rational
polytope @ of nonzero volume and rational lattice L, with total size N,
p = u(Q, L) is a rational number of size at most p(N).

Proof : We have u < ¢,n?/A} [??7] . But A} is equal to the dot product
of an integer vector with the difference of two vertices of @), so we have
A > 1/M where M is an integer with number of bits bounded above by
some polynomial in N. Thus p < ¢,n?M. The diameter of @ (the maximum
Euclidean distance between two points in @) is bounded above by an integer
with number of bits bounded above by some polynomial in /N. From these
two facts, we can derive an integer D with polynomial number of bits such
that the Euclidean distance between any two points in p) is at most D.
Since p is invariant under translations, we can translate @ so that 0 belongs
to the interior of @. Let @ = {z: a®x < b;;1 = 1,2,...m} where b; are all
now strictly positive.

In what follows, we say that a point z in space is “covered” by a lattice
point z if z € z + u@. Let R be the fundamental parallelopiped of L corre-
sponding to some basis of L. Let T be the set of all points of L at distance
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at most D from R. Then, each point of R is covered by a point of 7. There
is a “last” point xy in R that is covered and thus for each [ € T, we have
that zo does not lie in the interior of I + @, i.e., there exists an integer
i({),1 < #(l) < m, such that aC®) (g, — 1) > wbiqy. Thus, there is a function
1T — 1,2,...m such that we have that 4 is the maximum value of the
following linear program : (using the fact that b; > 0Y5)

i)

maxt:z € R (-0 >tvleT
by
The maximum value must be attained at a basic feasible solution of this

linear program whose coefficients are rationals whose sizes are polynomially
bounded in NV and thus the proposition follows.

Given a rational polyhedron K, = {z : Az < b} in R", we wish to
compute its covering radius. Since this is a fraction with numerator and
denominator polynomially bounded in size, we can do this by binary search
provided for any rational ¢, we can check whether tK, 4+ Z" equals R™. With-
out loss of generality, we may assume that ¢t = 1. We appeal to the theorem
of the last section to find the S;, B; etc. where P is assumed to be the single-
ton {6}. Then we check in turn for each S; whether there exists an z € Si(b)
so that z ¢ K + Z". We will formulate the last as several mixed integer
programs each with polynomially many constraints and a fixed number of
integer variables (for fixed n). For each B in B;, and for each z € Z(B),
we wish to assert that the unique lattice translate z(B) of & that falls in
the parallelopiped F(B;T(B)b) is not in Kj + 2. To express this by linear
constraints, we consider all mappings f of the following sort : f takes two
arguments - a B in B; and a z in Z(B). The range of f is {1,2,...m}. We
will consider each possible such mapping f and for each solve a mixed integer
program that asserts that there exists an z in S;(b) such that for each B € B;
and for each z € Z(B), there is a y(B) in Z" such that z + y(B) belongs to
F(B;T(B)b) and = + y(B) — z violates the f(B, z) th constraint among the
m constraints Az < b. If any of the MIP’s is feasible , then we know that

22



K, +Z" #+ R™, otherwise K, + Z™ = R". We use the algorithm from [??] to
solve each MIP in polynomial time.

Here, j, = 1 and M = |b|. So the number of S; ’s is at most (n¢m log 1)
by L. of Theorem (4.1). The number of f ’s is at most m(em*™ again from The-
orem (4.1). The number of integer variables in each MIP is at most (O(n))*.
So the total running time of the algorithm for checking if K +Z" = R" is

(ngmip])™"

for some constant e. A similar bound with a different constant obviously ap-
plies to the algorithm for finding the covering radius and solving the Frobe-
nius problem.

This concludes the description of the algorithm to find the covering radius
of a polytope in a fixed number of dimensions.

6 The case of unbounded right hand sides

This section proves Theorem (6.1) which extends Theorem (4.1) to the case
when P is a copolyhedron. In this case, the parameter ¢, the size of the ma-
trix A will essentially substitute log(max,cp)|b|. Here is a precise statement
of the theorem.

(6.1) Theorem Let A be an m X n matrix of integers of size ¢. Let
P be a copolvhedron in R™ of affine dimension j, such that for all b € P,
the set K, = {x : Az < b} is nonempty and bounded. There is an algorithm
which for any fixed 7, j, runs in time polynomial in the size of the input and
finds subsets a partition of P x R" into subsets Ri, Ry, ... R, such that

1. r < (ngm)?™" where e is a constant.

9. Each R, is of the form R!/Z! where R} is a copolyhedron in R™*"*
and [ < n°™.

3. Letting R;(b) = {x € R": (b,x) € R;}, we have for all i and all b € P,
Ri(b) + Z" = R, (b).
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The algorithm also finds corresponding to each R;, a collection B; of at
most n°"™ bages of Zn. Corresponding to each basis B in each B;, it finds an
affine transformation T'(B) : R™ — R™ and a set Z(B) of at most n” points
of Z" such that for all 7 and all b € P, we have

(Ky +Z") N Ry(b) =

H U ((Kb—!—Z(B))ﬂF(B;T(B)b))}+Z" N R;(b).

Ben;

/*END OF STATEMENT OF THE THEOREM*/

I will prove the theorem by using Theorem (4.1). To do so, I will show
using lemma (6.2) below that for any b € P, the description of K + Z"
can be easily obtained from the description of K, + Z® where ¢ has all its
components in the range [0 n2°?]. Further, I will show that ¢ is a “piecewise
aftine” function of b ; i.e., that P can be partitioned into polynomially many
copolyhedra such that for each copolyhedron in the partition, there is an
affine function that maps b to ¢. This proof will use lemma (6.3). Throughout
this section, I let M denote n23%.

Lemma (6.2) : Let A be an m x n matrix of integers of size ¢. Suppose
b is any point in R™ with b > 0. (So, 0 is in K}.) Define ¥’ = (b, 05, ...00)
by : ; = min{b;, n23}. Then,

Ky+7Z" = Ky +Z™.

Proof : The proof is based on the following fact due to Cook, Gerards,
Schrijver and Tardos [??] : Let A be the maximum absolute value of any
subdeterminant of A. If a point p belongs to Ky, and if K} contains some
powt in Z", then there is a point ¢ € Z" N K, with |p; — g;| < nA for
»=1.2,...n. (This fact is true for any “right hand side” b.)

It is clear that

Ky+72" 2D Ky + 272"

Now, [ will prove the converse. Suppose z is any point in K + Z™. Then
K, — x contains an integer point; it also contains —z. S0, by the above fact,
there is an integer point z in K —z with |z;+2;| < nA for all 5. By Theorem
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3.2 of [?7], A is at most 22¢. It is now easy to see that z + 2 belongs to Ky
finishing the proof of the lemma.

Suppose v -z = v, is a hyperplane in Euclidean space. It partitions space
into two “regions” - {x : v-z < v} and {z : v -z > v,}. Similarly, a set
of | hyperplanes in R™ partition R™ into (at most) 2! “regions” each region
being determined by which side of each hyperplane it is on. There is another
well-known upper bound on the number of regions - it is

50

For | < m, the sum is 2! and the result is obvious. For [ > m, we proceed by
induction. The number of regions formed by the first [ — 1 of the hyperplanes
is at most Y i-, (l;l) by induction. Now imagine adding the [ th hyperplane.
[ claim that the number of existing regiouns that the [ th hyperplane intersects
is at most 7 (l;1> - to see this, note that the intersections of the existing
regions with the [ th hyperplane form a partition of the [ th hyperplane
(an m ~ 1 dimensional affine space). Each region intersected by the [ th
hyperplane is divided into two by it. So we get the total number of regions
formed by all the [ hyperplanes is at most

S0 5002 (05) ()

which proves the claim. The lemma below follows immediately.

Lemma (6.3) Suppose V is a j dimensional affine subspace of R™. For
anv set of [ hyperplanes in R™, the number of regions in the partition of R™
bv the | hyperplanes that V' intersects is at most

5 ()=

Further, if j is fixed, then given the hyperplanes and V, we can find the
regions intersected by V' in polynomial time.
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Proof : The first part is already proved. For the algorithm, we go
again to the first part of the proof and see that a problem with parameters
[, is reduced to two problems one with parameters | — 1,7 and the other
=1, j—1. If the running time of the algorithm is T' (1,7), we get the recurrence
T, j) <T(l-1,7)+T(l—1,7—1)+O(1) which solves to T(1,7) isin O(IY).

Suppose as in the Theorem (6.1), P is a copolyhedron of affine dimension
Jo in R™. Consider each of the (at most m”) nonsingular n x n submatrices
B of A. For each of these we can define an n x m matrix T by augmenting
B! with 0 columns so that the possible corners of any K are of the form Tb
for such T'. For each such T, and each i, 1 < i < m, consider the hyperplane
{p: a"Th = b} in R™ (Reminder : a® is the i th row of A.) There
are at most m™ ™ such hyperplanes and so by lemma (6.3) , we have that
P intersects at most m(™tD% of the regions that these hyperplanes partition
R™ into. It is not difficult to see that for fixed n, Jo, we can find these regions
in polynomial time. For each such region U, there is a T} such that Tyb is
in K, for all b € U ; in other words b — ATyb is a nonnegative vector for
all b e U. Consider the m hyperplanes (b — ATyb); = M for i = 1,2,...m.
By applying lemma (6.3) again, we see that U intersects at most m of the
regions that these m hyperplanes partition space into. We partition U into
these m/° or less parts. Thus we have found so far in polynomial time, a
partition of P into copolyhedra P;, P,, ... P, with

t < mint2)io

and associated with copolyhedron P, in the above partition, we have an affine
transformation T'(P;) and an I(P) C {1,2,...m} such that for all b € P,,

0< (b~ AT(P:)b); < MVi € I(P) and
For each b € Py, let V' = b — AT(Py)b, let b” be defined by b} = b for
» € I{Fy) and bf = M for other i. Let b” = b" 4+ AT(P,)b. Note that there
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is a linear transformation that maps each b to b"”. Now by lemma (6.2), we
see that for all b € Py, we have

Kb’ + Zn = Kbn + Zn

Note that 6" belongs to the copolytope

P'=1{b:be P;b < M}

We apply the main theorem (4.1) with this copolytope. I will show that
an easy argument then gives us Theorem (6.1). To this end, let S; be one of
the sets in the partition of P’ x R" that Theorem (4.1) yields. Corresponding
to each such S; we define one subset R, of P, x R™ for each k. Namely,

Rik = {(b7 JT) b e Pk ; (b”,.’l? — T(Pk)b) & SZ}

It 18 easy to see that the R;;, have all properties 1,2, and 3 in the statement
of Theorem (6.1) with a suitable choice of constant e. By Theorem (4.1), we
have for all b in P,

(Ky +Z")NS(0") = (Ky +Z")NS(V') =

H U ((sz+Z(B))ﬂF(B;T(B)b”))}+Z" N S;(b").

BeB;

Translating the sets on both sides of the above equation by T(Py)b, we
obtain

(Kp +Z™) N Ry (b) =

{{ U ((Kbm + Z(B)) N F(B,T(B)b” + T(Pk)b))} -+ Zn M Rzk(b)

BeB;

Since Ky» C K,, we may replace Ky« on the right hand side (rhs) of the
above equation by K. (Note that then we would have lhs contained in the
rhs. The converse is obvious.) Further, there is an affine transformation,
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say, () that takes b to 6”. So, we may now define the affine transformation
corresponding to the basis B to be

T(B)Q + T(Px)

to complete the proof of Theorem (6.1).

7 Test sets for Integer Programs, V3 sentences
and maximal lattice-free K,

For linear programming problems, we know that if there is a feasible solution,
there is a basic feasible one. This can be expressed as follows :

Suppose as before A is an m x n matrix of rank n. Consider as before,
each of the (at most m™) nonsingular n x n submatrices B of A. For each of
these we can define an n x m matrix T by augmenting B! with 0 columus so
that the possible corners of any K, are of the form Tb for such 7. Then we
can say that for all possible right hand sides b, if K, is nonempty, then one
of the Tb belongs to Kj. This section proves a similar theorem for Integer
Programs.

(7.1) Theorem : Let A be an m X n matrix of integers of size ¢ with
the property that {z : Az < 0} = {0} (or equivalently, K, is bounded for
all b). Let P be a copolyhedron in R™ of affine dimension Jo- For n, g,
fixed, there is a polynomial time algorithm that finds a partition of P into
PPy, .. P, with r < (mn¢)*™™" and each P, of the form P!/Z' where P!
is & coplyhedron and [ is a constant and for each P, finds a set T; of pairs
(T.71") affine transformations where 7 : R™ — R™ and 7" : Z" — Z" such
that for all ¢+ and for all b € B,

KyNnZ" # D = E(T, T/> cT; : T/LTI?J e K,.

Further, for each i, the set 7; contains at most (O(n))*" pairs (T, T").
Proof : First, we may replace P by {b: b€ P,3z: Az < b}. So assume
without loss of generality that for all b in P, we have K, # () and bounded.
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Let L = Z™. Note that K, N L is empty iff K + L does not contain 0. We
apply Theorem (6.1) to get the partition of P x R™ into E;, Ry, ... R,. Let
P, =1{b:0 € Ry(b)}. Tt is easy to see that P; is of the form P//Z' where P}
is a copolyhedron and [ is a constant (for fixed n).

Also, from Theorem (6.1), we have for b in P,

(Kb+Zn) ﬂZ" -

H U (K»+ Z(B)) N F(B; T(B)b)} + Z"} aVAS
BeB;

The left hand side in the above equation is empty if and only if for each B,
the unique lattice point zz(b) in F(B;T(B)b) has the property that zg(b) —
Z(B) does not intersect K. It is quite straightforward to see that for each
p € Z(B), we can find a pair of affine transformations (7,7") as required
in the statement of Theorem (7.1), such that zg(b) —p = T'(|Tb]). This
completes the proof of the theorem.

[ now give a decision procedure for deciding the truth or falsity of certain
sentences in Presberger arithmetic.

(7.2) Theorem : There is an algorithm which takes as input an m x n
matrix 4 and an m x p matrix B and an m X 1 matrix b all made up
of integers and a copolyhedron @ in RP*! by a set of defining inequalities,
decides whether the following sentence is true.

Yy € Q/Z) 3z Z": Az + By <b.

Further for fixed n, p, [, the algorithm runs in time bounded by a polyno-
mial in the length of the input.

Remark : Note RP and Z? are both special cases of sets of the form
Q/Z'. The first is obvious. For the second, we can make | = p and Q =
{(y,y):y € RP}. Also, it is easy to see that the Frobenius problem : given
Ay, as. ... 0n, Aoy, 18 Froblay,as,...a,) < anqp 7 is a special case of such a
sentence.



Proof : Let Q/R'= Q’. The set Q' includes the set Q/Z" - the set of all
the y of interest. For y in @, the quantity b — By is in an affine subspace P
of R™ of dimension p or less. So by Theorem (7.1), we can find in polynomial
time (since 7, p are fixed) a partition of P into P, Py, ... P, with

r < (nqﬁm)”"dﬂ

and for each P;, a collection 7; of pairs of affine transformations (T, T")
satisfying the conditions of that theorem. The sentence

Vye Q/Z! 3z eZ: Az + By <b
is false iff there is some P, with the property that
Jy e BNQ/Z VT, T e T : T'|T(b— By)| ¢ {z: Az < b— By).

This will be true iff one of the Mixed Integer programs set up below is feasible
. Coonsider each of the m(®»*" maps f from pairs (I,T') in T; to {1,2,...m}.
For each such map, we will have one MIP that asserts that there exists a
y € PN Q/Z" with (T'|T(b— By)]) violating the f(T,T") th constraint for
each (T, T"). Note that the floor of a real variable w can be expressed using a
new integer variable which is constrained to be in the interval (w—1 w]. Also
the condition that y € Q/Z' can be expressed by introducing ! new integer
variables. Each P; is of the form P//Z* and we deal with this analogously.
For convenience, order the pairs (T,T’) and refer to them as (T, T");. The
MIP will read as follows :

WERF 2€Z,2,2,...€Z": (y,2) € Q;y € P,
Ti(b = By) =1 < z < Ti(b— By); (AT/2) jerny, > bpera)

i

Clearly, we may solve each MIP for each P, in turn and if one of them is
feasible, return false for the sentence otherwise, true.
It is not difficult to see that the required bound on the running time.
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The rest of the section discusses properties of the set of right hand sides
b for which K, N Z"™ is empty.
Let
LF(A,P)={b:be P, K,NZ" = 0}.

Let Py, Ps, ... be the partition of P that Theorem (7.1) yields. Let
LF(A, P) = U;LF(A, P).

LF(A, P;) can be described by linear constraints with the introduction of
some extra integer variables as the following shows : we consider all mappings
f of the following sort : f takes as argument a pair (7,7") in 7; and its range
is {1,2,...m}. Let V (i, f) be the set of b satisfying

e ) belongs to P;.

o (| Tb]) violates constraint number f(7,7T") of the m constraints Az <
b.

To express the floor, we can introduce a new integer variable and linear
constraint. Thus, we see that LF (A, P;) is the union of a polynomial number
of sets each of the form copolyhedron/Z! where [ is a constant for fixed n, j,.
We use this discussion in a slightly different context below.

Suppose as above A is a fixed m x n matrix of integers with {z : Az <
0} = {0}. For any b € R™, as before, we let K, = {z : z € R™ Az < b}.
We say that a K} is maximal-lattice-point free if it has no points of Z"
in 1ts interior and any convex set that strictly contains K, does. We can
replace the last condition by the requirement that every facet of K, have a
lattice point interior to it [??]. By a theorem of Bell [??] and Scarf [?7], a
maximal lattice free K, has at most 2" facets. We choose all subsets of the
m inequalities Az < b of cardinality at most 2", and for each subset, we will
study the positions of the facets that result in maximal lattice free sets; we
only incur an extra factor of m?" by this which is polynomially bounded for
fixed n. Then arguing as for the case of lattice-point-free sets and adding the
condition that each facet have a lattice point, we get the following theorem.
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(7.3) Theorem : Suppose n is fixed. Then for any m x n integral
matrix A, there exists a collection of sets {Uy, Us, ... U}, where t is bounded
by a polynomial in the size of A, and each U, is of the form U!/Z!, where [
is a constant, and U is a copolyhedron such that the collection of maximal
lattice point free sets K, is precisely the collection{ Ky : b € Uy UU, U...Uy}.

Remark : Note that a similar theorem is not true for Jjust lattice-point-
free b - there we would have also needed to assume that m was fixed or else
at least the affine dimension of P over which b varied was fixed. The theorem
of Bell and Scarf helps us dispense with this assumption for mazimal lattice
point free sets.

8 Remarks

Remark 1 : The time bounds for the decision procedure for the sentences
of Theorem (7.2) have a double exponential dependence on n, the number
of variables in the inner quantifier. While this may seem prohibitive, it
will be shown in a forthcoming paper that the following problem is NP-
complete - given a sentence of the form in Theorem (7.2) in which n + p is
O(log( length of the sentence )), decide whether it is true or false. (In other
words, even if the number of variables is restricted to be very small, the
problem still remains NP-hard.) A substantial improvement in the double
exponential dependence would thus result in faster simulations of general
nondeterministic Turing machines by deterministic ones.

Remark 2 : The question arises : what can be said about the Frobenius
problem when n is not fixed. In a forthcoming paper, I will show that for
variable n, in deterministic polynomial time, we can find an approximation
to the Frobenius number to within a factor of 2”. With a nondeterministic
algorithm, we can come within a factor of O(n?) in polynomial time.

Remark 3 : Related to the Frobenius problem is the following : Given
a1, Q. ... an, with GCD(ay,as,...a,) equal to 1, find the total number of
natural numbers that cannot be expressed as a nonnegative integer combi-
nation of ai, as, ... a,. It is easy to see that this number is within a factor of
2 of F'' = Frob(ay,as,...a,) : just note that for any integer z, 1 <z < F,

32



either x or F' — x cannot be expressed as a nonnegative integer combination
of a,as,...a,. No polynomial time algorithm is known to find this number
exactly in fixed dimension.

Remark 4 : Lenstra’s result quoted earlier gives a polynomial time al-
gorithm to decide the truth or falsity of a ¥J; sentence over Presberger arith-
metic, (using terminology from Logic) i.e., a sentence of the form :

dx1,29,. .. op €0 € LPUPRUP; ... B

where P, are polyhedra. Actually, ¥; sentences may have a conjunctions,
disjunctions and negations of linear constraints. Negations may be replaced
by the opposite inequality. We may then use Lemma (6.3) to convert the
linear constraints into “disjunctive normal form”, i.e., into a disjunction of
groups where each group is a conjunction of constraints, or equivalently, a
polyhedron. By Lemma (6.3), this does not increase the size by more than a
polynomial in fixed dimension. The details of the conversion to “disjunctive
normal form” are left to the reader. Also, note that Lenstra’s result as stated
works only for the case of one polyhedron ; but obviously, we may repeat the
procedure for each ;. The algorithm is polynomial time bounded provided
n is fixed.

Theorem (7.2) gives an algorithm for deciding certain so-called II, sen-
tences (using terminology from Logic) , i.e., sentences of the form

Vye€ZP 3JxreZ™: (z,y) € P.

This algorithm is polynomial time bounded provided n+p is fixed. A general
[1, sentence over Presberger arithmetic could require (z,y) to belong to a
union of polytopes rather than just one (cf. last paragraph) . If it is the
union of [ polytopes, then using O(log!) extra integer variables, we can write
it as a conjunction of constraints. So if [ also fixed, we have a polynomial
time algorithm for deciding such sentences. It is an interesting open problem
to remove this restriction that [ be fixed.

More interestingly, we do not know decision procedure for ¥3 sentences
which runs in polynomial time for fixed number of variables. This and similar
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algorithms for higher levels of the hierarchy in Presberger arithmetic remain
interesting open problems.

Acknowledgments [ thank Imre Barany, Bill Cook, Mark Hartmann,
Laci Lovész, Herb Scarf and David Shallcross for many helpful discussions.
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