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Algorithmic Geometry of Numbers

Ravindran Kannan

1 Introduction

Many computational problems have benefited greatly from the study of the mathematical structure
underlying the problems. In linear programming, the simplex algorithm, duality theory and sensi-
tivity analysis can be understood through basic linear algebra. The more recent polynomial-time
algorithms of Khaciyan [37] and Karmarkar [36] are based on solid geometry. The converse has also
been true of linear programming, particularly, the simplex algorithm - it provides elegant proofs of
structural results like Farkas’ lemma.

Problems of a more combinatorial nature like the graph matching problem also illustrate this
phenomenon - the development of algorithms like the Edmonds[{12] matching algorithm and the
study of the underlying polyhedral structure have gone hand in hand, each benefiting the other.
There are many other areas of computer science - Cryptography, primality testing and factoriza-
tion, graph isomorphism, graph embeddings, computational geometry - which have used various
branches of mathematics. In general, all of these areas share one feature - the mathematics used
by each area is what may be broadly classified as discrete mathematics (combinatorics, algebra)
or continuous mathematics (geometry, analysis, topology); rarely does one area combine the two
types of mathematics in significant proportions.

Many other combinatorial problems like the Traveling salesman problem, vertex coloring in a
graph, knapsack and integer linear programming problems have, of course, resisted attempts so
far to devise polynomial-time algorithms. The elegant theory of NP-completeness pioneered by
Cook [6] and Karp [35] has been developed [17] to show that these and many other problems
are equivalent as far as polynomial-time algorithms go. It has come to be widely believed that
these and other NP-hard problems will not admit of polynomial-time algorithms. However, there
is not a substantial body of evidence to back up such a belief. First, the known lower-bounds
on computational resources needed to solve problems are a far cry from a non-polynomial lower
bound on the computation time for any of these combinatorial problems; it is unclear that current
lower bound techniques will ever yield such strong results. Further, it is difficult to assert that very
sophisticated techniques have failed to produce efficient algorithms for NP-hard problems, for, there
have not been many such techniques until recently. Thus, it is important to study the mathematical
structure underlying NP-hard problems and develop new techniques for solving them.

There are, of course, other important reasons for studying mathematical structure. This may
help devise more efficient algorithms than naive enumeration although the algorithms may not be
polynomial-time bounded. Also, they may help solve significant special cases in polynomial-time.

An important beginning in this direction was made by H.W. Lenstra’s polynomial-time algo-
rithm for integer programming in a fixed number of dimensions [47]. This algorithm pioneered
the subject of this article - Algorithmic Geometry of Numbers. The fundamental basis reduction
algorithm of Lovasz which first appeared in Lenstra, Lenstra, Lovdsz [46] was used in Lenstra’s
algorithm for integer programming and has since been applied in myriad contexts -starting with
factorization of polynomials (A.K. Lenstra, [45]). Classical Geometry of Numbers has a special
feature in that it studies the geometric properties of (convex) sets like volume, width etc. which
come from the realm of continuous mathematics in relation to lattices which are discrete objects.
This makes it ideal for applications to integer programming and other discrete optimization prob-
lems which seem inherently harder than their “continuous” counterparts like linear programming.



In addition to the applications to algorithms, Algorithmic Geometry of Numbers has sparked a
study of mathematical structure in pure Geometry Numbers [34], [22], [41] from a somewhat newer
perspective, where sharper bounds (especially polynomial ones as opposed to super polynomial
bounds) are sought. The very recent origin of the subject makes it difficult to assert at this point
that the mathematics, or the algorithms, will have as pervasive an influence as the more established
fields like say linear programming or the theory of NP-completeness; but there is evidence that the
influence of the new subject will be substantial. The recent origin, however, gives us the advantage
of being able to present a fairly self-contained introduction to the classical mathematics as well as
to the algorithms in the subject and survey applications to cryptography, diophantine approxima-
tion, approximation of linear inequalities, factorization of polynomials among others. The attempt
here has been to present nearly complete intuitive idea of various results from which the interested
reader can work out the details rigorously. The ideas of Lenstra’s integer programming algorithm

and lovasz’s basis reduction algorithm are explained in full. Briefer descriptions of several other
results are given.

2 Convex bodies and Integer points

2.1 Minkowski’s theorems

The fundamental question addressed in Geometry of Numbers is to find conditions on the volume
(and other geometric properties) of a convex set in Euclidean space that would be sufficient to
imply the existence of certain points with all integer coordinates in the set. Classical Geometry
of Numbers generally concentrates on convex sets that are symmetric with respect to the origin -
abbreviated 0-symmetric. (A set is 0-symmetric if, whenever it contains a point , it also contains
—z.) Minkowski’s convex body theorem which may be considered the fundamental theorem of
Geometry of Numbers asserts that whenever a 0-symmetric convex set in Euclidean n—space R™
has volume greater than 27, it contains a point with integer coordinates not all zero. We will now
give an equivalent version of this statement with a proof.

Suppose K is a convex body in Euclidean n-space R™ and is symmetric about the origin. For
any positive real number ¢, denote by tK the set {z : z/t € K}; thus tK is a dilation of K by a
factor of ¢. It is interesting to ask for what ¢ 's does tK contain a point with integer coordinates,
not all of which are zero. Minkowski’s theorem states that this happens whenever ¢ exceeds 2V ~1/»
where V' is the volume of K. The proof is very simple: Let Y be the set of all points in R™ with
integer coordinates and consider the set of convex bodies {3tK + y : y € Y}. There is one
point of ¥ per unit volume in space, each has a copy of 1/2 tK centered at it and the volume of
1/2 tK exceeds 1. So it can be rigorously argued that two such bodies - say 1/2 tK + vy, and
1/2tk + y3, y1 # vy, must intersect. With Y = Y1 — ¥, 1/2tK + yand 1/2 tK intersect,
say, at a point w. Then w is in 1/2tK, so is —w, by symmetry. Further, (w—y)isin 1/2tK, so
1/2(w—y-w) = —y/2isin 1/2 tK by convexity. So —Y, a non-zero point with integer coordinates
15 in tK.

Defining the “first minimum” A;(-) of the convex body K to be the infimum over all ¢ such
that tK contains a non-zero point of Y, we see that Aq(K) < 2V~Y", More generally, Minkowski
defined the “successive minima” A;(K), Ay(K)...,A,(K) as follows: A;(K) is the infimum over all
¢t such that tK contains ¢ linearly independent points of Y. The “second theorem” of Minkowski
strengthens the convex body theorem by showing that the product A (K)Ay(K) ... A (K) is ma-
jorized by 27/V. The proof of this theorem remains hard [4 or 44].

It is interesting to look at a special family of convex bodies - ellipsoids. If K is an ellipsoid,
(open or closed) there is an invertible linear transformation 7 that maps it into the sphere S of



unit radius and origin as center (we denote this by TK = S). Noting that tK intersects Y — {0}
iff tS intersects 7Y — {0}, we see that A;(K) is the smallest positive real ¢t such that there are ¢
linearly independent elements of 7Y each of (Euclidean) length at most ¢. In particular, A;(K) is
the length of the shortest non-zero vector of the “lattice” Y. Describing 7 by a matrix (7;), it
is easy to see that (A;(K))? is the minimum of the quadratic form Y7_, 377, (7i; ¥ y;) where
¥ = (Y1,..,Yn) runs over Y — {0}. The study of quadratic forms dates back at least to Lagrange
[9, Volume IIT] and historically has been a motivation for Geometry of Numbers. As we discuss

in the next section, the so-called shortest vector problem for lattices is the problem of computing
A1(K') for an ellipsoid K.

2.2 Lattices and the shortest vector problem

A lattice in R™ is the set of all integer linear combinations of a set of linearly independent vectors
in R™. If by,bs..., b, are the linearly independent vectors (m < n), the lattice “generated” by
by, by..., b, denoted L(b;, by..., by,) is the set {& X, b; : A, € Z} .The independent vectors
by, bsy.., b,, are called a basis of the lattice. It is not difficult to see that a set S in R™ is a lattice
iff it is closed under subtractions (z,y € S = z —y € §) and is discrete, i.e., there is a positive
real § such that for any two distinct elements z, y in 5, |z — y| > 6. If we write by, b,.., b,, as
the rows of an m X n “basis matrix” B, it is easy to see that for any unimodular m X m matrix
U (integer matrix with determinant +1), the rows of U B generate the same lattice as the rows of
B: just observe that each row of U B belongs to L(b, b,... b,,) and vice versa. It is also easy to see
that if B, and B, are two different basis matrices of the same lattice, there is a unimodular matrix
U such that B; = UB,. (There is a natural correspondence between lattices and quadratic forms.
With a lattice L with basis matrix B, we can associate the quadratic form yBB*y* * and study the
values of the form as y ranges over Z"; by the above, this set of values is obviously independent of
the basis chosen.)

It now follows that the “determinant” of the lattice L(b;,b;.., b,,) defined to be the m-
dimensional volume of the parallelopiped spanned by the origin, b;, b,...,b,, is an invariant of
the lattice. We denote by d(L), the determinant of the lattice. The determinant is also the product
of the lengths of the orthogonal vectors obtained by doing the familiar Grahm-Schmidt process on
by, ...y by. In detail, define b;, b}..,b} as follows: b} equals b; and for 7 > 2, b} equals component
of b; orthogonal to the space spanned by by, bs..., b;_;. The determinant of the lattice, then, is the
product of the lengths of the b}. Using traditional algorithms, all these quantities may be computed
in polynomial-time.

It will be useful for conceptual understanding of many of the algorithms to define the unit
vectors uy, Uy, . . . Up, by u; = b7 /|b}|. These vectors form an orthonormal basis for the vector space
spanned by by, bs..., b,,. We can represent the basis vectors in the coordinate system with the u;
as the axes vectors. Then the basis matrix (with each row as a basis vector) is lower triangular :

1* denotes the transpose of a matrix.
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The lower triangular representation of the basis matrix

Here, obviously, b;; = [b;|. In practice, we do not actually change the coordinate system, for
example, |b7| may be irrational even if the entries of b; are all rational.

Suppose we are given a basis by, bs...,b,, of a lattice L in R*. A very natural and simply stated
computational problem is to find the (a) shortest (in Euclidean length) non-zero vector in L. We
call this the shortest vector problem (SVP). Most of the computational applications of Geometry
of Numbers are based on the SVP, its relaxation (that of finding an approximately shortest vector)
and certain related problems.

It is not known to date whether the SVP is NP-complete. No deterministic or random polynomial-
time algorithm is known for it either; these remain important open questions in the area. The
Lovasz basis reduction algorithm finds a non-zero vector in the lattice whose length is at most 2™/2
times the length of the shortest one; it runs in polynomial-time. This algorithm is the foundation
of many other algorithms in the area; it is the cornerstone of Algorithmic Geometry of Numbers.
The factor of 2™/2 has subsequently been improved to ¢™ for any constant ¢ with the running-time
remaining polynomial [58]; it would be interesting to approximate to a subexponential factor in
polynomial-time. Before the papers of Lenstra [47] and Lenstra, Lenstra and Lovész [46], there
were some algorithms known for the SVP [8], [54], [39, section 3], [10]; but these are not even
polynomial time bounded when the number of dimensions is fixed. An algorithm that solves the
SVP exactly in polynomial time when the number of dimensions is fixed is given in [31].

The existence of short non-zero vectors in lattices is in fact implied by Minkowski’s theorems,
as we presently describe. For a lattice L, in R” of dimension m, let us define A;(L) to be the least
positive real ¢, such that there are 4 linearly independent elements of L each of (Euclidean) length
at most ¢t. (We are abusing notion slightly here; if p is the linear transformation that maps L into
the lattice Z™ generated by m unit vectors, A;(L) equals A; of the convex body pK according to
our earlier definition, where K is the intersection of the sphere of unit radius centered at the origin
in R™ with the vector space spanned by L. Note that pK is an ellipsoid.). Then Minkowski’s
Convex body theorem implies that

(A(L))™ < 27d(L)/ Vs

and Minkowski’s second theorem implies

Ay(L) Ay(L) .. A (L) < 2™d(L)/V,,
where V,,, 1s the volume of the unit sphere in m-dimensions.
Both implications follow easily from two observations: since d(Z™) = 1, determinant of p
equals 1/d(L) and the volume of pK equals V,,/d(L) . Using estimates for V,,, we have



A(L) < /m(d(L))Hm

and a (stronger) inequality for the product of the minima.
Lovasz [48] has shown that the computational problem of finding a non-zero vector in a lattice
L of length at most a polynomial times A;(L) is polynomial-time equivalent to that of finding one

of length within a polynomial factor of (d(L))'/™. Neither is known at the present time to be
polynomial-time computable.

2.3 Reduced bases of a lattice

The successive minima Ay(L),A2(L),...A,(L) of an n dimensional lattice L described in the last
section are an important set of constants for the lattice. If the minima are realized by n elements
v1,vz...0, of the lattice, the set {v;,v;...v,}, of course spans the vector space spanned by L;
however, it does not, in general, form a basis of the lattice. It is of interest to consider a basis
of a lattice consisting of “short” vectors. We will define several notions of “reduced basis” of a
lattice; a reduced basis consists of short vectors. First we make an intuitive connection between
the vectors comprising a basis of a lattice being short and their being “nearly orthogonal” to each
other. For a 2-dimensional lattice L with by, by, as a basis, d(L) = |by| |by|sin@ where 6 is the
acute angle between b; and b;. So it is clear that since d(L) is an invariant, if |b;| and |b,| are
small, then @ is large, i.e., the vectors are “close to ” orthogonal. If L is an n-dimensional lattice
with basis by, bs..., b, let 6; be the angle between b; and the vector space spanned by by,...5,_;
for i = 2,3..,n. Then d(L) equals |by| [bs]...[b,|(sin ;) (sin6s)...(sin 8,), so if |by], |by|.. -y bl
are small, 0,...,0, are large (not necessarily individually). i.e., the i** basis vector is “nearly
orthogonal” to the previous ones. There is, in a sense, a converse to this argument. Suppose we are
given a basis which is nearly orthogonal in the sense that |b;| [by|...|b,|/d(L) = M is small. Then the
shortest of the basis vectors is clearly at most (Md(L))"/" (cf Minkowski A;(L) < /n (d(L))™
), though it may be considerably longer than A;(L). More can be said; we can “quickly” compute
a shortest non-zero vector v in L from such a basis: suppose v = S, X\; b, ,\; € Z. Then by
Cramer’s rule for solving simultaneous linear equations, and Hadamar’s inequality,

(Al < {bal [baf - [bica] 0] [biga| [Bal/d(L) < M

since |v| < [b;]. So v may be found by enumerating relatively few candidates for Ay, Xs..., A,..
The ratio [by] [bs] .. .|bn|/d(L) was considered by Hermite [25] who first showed that every lattice
has a basis with the ratio bounded above by a function of its dimension alone, actually 2°(**). when
the dimension is n. The ratio has been called the “orthogonality defect” [58] of the basis b; ..., b, .

For a vector space, there is always a completely orthogonal basis - for example, the Grahm
-Schmidt process finds one from any given basis. From simple 2-dimensional examples, it can be
seen that a lattice may not always have a completely orthogonal basis. For example, consider the
lattice generated by two vectors of equal length at an angle of 60°. However, it is interesting that
there is always a basis with orthogonality defect bounded above by a function of the dimension of
the lattice alone as Hermite showed. There are different notions of “reduced basis” in Geometry
of Numbers. However, they all share the property that their orthogonality defect is bounded by
a function of the dimension alone. Minkowski defined a basis by, b,,..., b, of a lattice L to be
reduced if for each 7,1 < 7 < n b, is a shortest vector in L so that {b1...,b;} forms a subset of
some basis of L. (i.e., {b;...,b;} forms a so-called primitive set of L). He showed [52] that the
orthogonality defect of his reduced basis , which is different from the one used by Hermite, is 20",
(Contrast this with the fact that an n dimensional lattice L contains n linearly independent vectors



V1, V.., Up With |vg||va] .. |v,]/d(L) < 27 - a consequence of Minkowski’s second theorem pointed
out in section 2.1.)

There is a second natural notion of a reduced basis due to Korkhine and Zolotarav [40] which
has turned out to be more useful computationally. Instead of requiring b, to be the shortest vector
which along with b,, forms a primitive set, it requires the component of b, orthogonal to b,(i.e.,b}
by — —2—’~b ) to be as short as possible stlll preserving the primitiveness of {b;,5,}. In general, the
(:omponent b of b; orthogonal to the vector space spanned by {by, b;...,b;_1} is required to be as
short as possible while still maintaining the primitiveness of {b1, by...,b;} . Equivalently, we can
stipulate that the component of b; orthogonal to V;_; = the span of {by, by...,b;_1} is the shortest
(nonzero) vector of the lattice L’ obtained by projecting L orthogonal to V;_;.

We will call a basis satisfying these conditions plus the condition that for each 7, 1 < 7 <
n, (b, — b?) belongs to the rectangular solid {ZJ b <y <iforj=1,2,...,1-1}
a K - Z reduced basis. We will see in section 3 that the last condition which we refer to as
properness of the basis is easily achieved by adding suitable integer multiples of b;_;.b;_s..., b
to b; (in that order) and that this does not affect the previous conditions. The next paragraph
contains an equivalent definition of K — Z reduced.

A basis is K — Z reduced if in the lower triangular representation of the basis discussed in section
2.2, each diagonal entry b,; is the length of the shortest nonzero vector in the lattice generated by
the rows of the (n—4+41) X (n—1+1) submatrix consisting of the last n—i+1 rows and columns; and
furthermore, each entry b;; below the diagonal satisfies —b;;/2 < b;; < b;; /2. The last condition is
equivalent to properness.

It has been shown that K — Z reduced basis has orthogonality defect at most n™ [58]; this is
the best known for any basis. Lovasz’s algorithm finds a third reduced basis, we will define it later;
it has an orthogonality defect of 2°(**) [46] which we prove in section 3. The Lovasz reduced basis
shares a feature with K — Z reduced basis in that it puts requirements on the components of each
basis vector orthogonal to the previous ones. But it is weaker than the K — Z reduced basis. For
both of these bases, Babai [1] has shown the following fact : let o; be the angle between b; and the
subspace spanned by all the other basis vectors. Then

sin oy > (\/5/3)”

This obviously implies the corresponding lower bound on sin 8; for the angle 6; between b; and
the subspace spanned by the previous basis vectors.

Interestingly, Minkowski reduced bases have been studied more extensively than K — Z reduced
bases [4, 44]. There has been some work on K — Z reduced bases and algorithms for them predating
Lenstra’s paper [55,53]; a survey of these and other results may be found in [56]. One of the
reasons for the greater emphasis on Minkowski reduced bases is perhaps the fact that in the context
of quadratic forms they are more natural than reduced bases involving projections orthogonal to
subspaces like the K — Z reduced basis and Lovész reduced basis. Lovész’s algorithm demonstrated
that reduced basis involving projections may be more useful for computational purposes. Further
evidence of this was provided by Kannan [31] where a polynomial time algorithm for finding a K — Z
reduced basis for fixed number of dimensions was given and was used to develop faster algorithms
for integer programming and other lattice problems; this is described in section 5. Schnorr’s (58]
proof that the orthogonality defect of a K — Z reduced basis was O(n") gives an explanation of the
computational advantage enjoyed by the basis over a Minkowski reduced basis. Lagarias, Lenstra
and Schnorr [41] proved some nice structural properties of K — Z reduced basis and used these to
prove sharper “transferrance ” bounds than the classical ones obtained by using Minkowski reduced



basis and successive minima [4,section XI.3] ; their work is described in section 7. Projections also
play a crucial role in the study of structure of lattice point-free convex bodies undertaken by Kannan
and Lovdsz [34] described in section 7. This study was motivated by efficiency of algorithms. Thus,
the renewed interest in using projections orthogonal to certain lattice vectors spurred on because
of the computational advantages seems to be proving of value for purely structural reasons too.

2.4 Dual Lattices

If L is any lattice, the dual (or polar) lattice of L, denoted L* is the set

L'={y:y€ spanof L; yz € ZVz € L}

It is easily checked that if L is an n dimensional lattice in R™ and by, b,,...b, is a basis of L,
then with B equal to the “basis matrix” of L (consisting of by,d,...b, as its rows), (B~') is a
basis of the lattice L* and therefore the determinant of L* is the reciprocal of the determinant of
L. Thus, we have by Minkowski’s convex body theorem,

A(LD)A(LY) < n

This is the first of the so called “transferrance results” which connect the “primal” and dual
lattice. It has been shown by a counting argument that the upper bound on A;(L)A;(L*) cannot
be improved by more than a constant [Conway and Thompson quoted in 50] .

2.5 Gauss’s basis reduction algorithm in 2 dimensions

The earliest basis reduction algorithm is due to Gauss [20, Article 171] for finding reduced basis
in 2-dimensional lattices. (The notions of Minkowski reduced and K — Z reduced basis coincide
in two dimensions and Gauss’s algorithm finds them.) He stated it in terms of quadratic forms;
here we describe it for lattices. The Lovész basis reduction algorithm may be viewed as an efficient
generalization of this to n-dimensions. Suppose by, b, forms the current basis of the lattice and
assume after renaming them, if necessary, that [b;] < [by]. A simple way to shorten b, (and
preserve a basis of the lattice) is to replace b, by the shortest vector of the form b, — mb;, m € Z.
It is easy to check that m equal to the integer nearest to (b, - b1)/(b; - by) achieves this and that
(b2—mb;) = b; has a component of length at most |b;|/2 along the direction of b;. Now if [b}] > |b,],
we stop, else we swap them and repeat the procedure. It readily follows that at the end of the
procedure, the acute angle between b; and b, is at least 60 degrees, so they are “fairly” orthogonal
and also that the basis is reduced. The procedure must terminate since there are only a finite
number of lattice elements of any given length or less. If we slightly modify Gauss’s algorithm to
say: if [b5] > (1 — €) |by], we stop, else, we swap them and repeat the procedure, where ¢ is any
positive constant, then the length of the shortest basis vector falls by a factor at least (1 — €) each
iteration and so it is easy to prove that the number of iterations of the algorithm is O(log, |b(10)|)
where b(lo) is the initial b;. Thus, the running - time is bounded above by a polynomial. In this
case, the basis by, b, at the end satisfies :

[b2] > (1 = €)]bs| |b2.01] < [b1.54]/2
whence we have also [b3] > /(1 — €)2 — (1/4) |b,].




2.6 Basic computational problems on lattices

The following basic questions on lattices are all solvable in polynomial-time (in any variable number
of dimensions) when the data are rational numbers.

1). Membership: Given a set (of possibly) dependent vectors by,b,. .., b, and another vector
v; find if v is an integer linear combination of bi,by...,b,.

2). Homogeneous equations: Given a system of homogeneous linear equations Az = 0
find a basis of the lattice L = {z: Az = 0; each component of z is an integer }. L is a lattice
since it is closed under subtractions and it is discrete.

3). Finding a basis: Given a set by, b,...,b,, (of possibly dependent) vectors, find a basis of
the lattice L of all integer linear combinations of b; . . ., b,,. (We need the rationality of by,b,...,b,,
to argue that L is discrete and hence a lattice; consider, for example, the set of all integer linear
combinations of v/2 and 1 on the real line.)

The first problem was solved by von zur Gathen and Sieveking [18] who gave a polynomial-time
algorithm to solve a system of linear diophantine equations. Problem 2 was independently solved
by Kannan and Bachem [32] and Voytakov and Frumkin [64]. A solution to 3 follows as a simple
corollary to the procedures developed in either of these two papers. The solution of [32] involves
finding a “triangular” basis of a lattice (or the so-called Hermite normal form of a matrix) which
we describe below since it has other applications, for example, in Lenstra’s algorithm to handle non
full-dimensionality of the given polytope.

It is a classical result of Hermite that every n-dimensional sublattice of Z" (the elements of R™
with integer coordinates) has a basis by,b,...,b, where b, - eg =0forj < i—1. (e1...,e, are
the unit vectors along the coordinate axes.) Thus if the vector by, by, ...,b, are represented as the
rows of an n X n matrix, it is upper triangular, and so will call this basis a triangular basis of the
lattice. Such a basis exists whenever the lattice only contains vectors with rational coordinates and
does not in general when the coordinates are real. The first fact is Hermite’s theorem and follows
from the fact that Z is a Euclidean ring. To see the second statement, consider, for example, the
lattice in R? with basis vectors (v/2 1) and (1 v/2).

Suppose B is any given basis matrix of a lattice L C Z". By Hermite’s theorem, there
1s a unimodular matrix U such that UB is upper triangular. With some additional technical
conditions, we can ensure the uniqueness of U B, this unique matrix is called the Hermite normal
form of the matrix B. Hermite’s proof was constructive and led directly to an algorithm . The
main difficulty in deriving a polynomial-time algorithm was to keep the sizes (number of bits) of all
numbers bounded by a polynomial in the length of the input. This was first accomplished in [32].
Several polynomial-time algorithms are now known. ([5], [11], [27]) The normal form as well as the
algorithm can be extended to rectangular matrices with possibly dependent rows. More precisely,
given a m X n matrix B of integers, we can find in polynomial-time a unimodular m X m matrix
U and a permutation matrix P such that for i = 1,2,.. .,m, the ¢** row of UBP has its first
min (: — 1, n) entries equal to 0. All three problems mentioned at the beginning of this subsection
can be solved in polynomial-time using this. We only touch upon (2).

Given the m x n matrix A of problem (2), let B be its transpose and find U, P as in the last
paragraph. Let C be the transpose of UBP. C is lower triangular and C = P*AV with (Vv = UY).
So

L={z:A2=0,2¢€Z'} ={Vy:Cy=0;y € 7z}

(since V, V~' have integer entries). So it suffices to find a basis for L' = {y: Cy = 0,y €
Z"}. If C has rank v, it is easily checked (by the lower-triangularity of C) that {e,,1, €42, ... €5}
for a basis of L'. (It ¥ = n, I’ = {0}, of course ).



2.7 Rounding convex bodies

In integer programming, as well as in general, it is useful to transform given convex bodies into
“well-rounded” ones. We will make this precise presently. It is a classical theorem of John that if
K is any convex body in R", there is an ellipsoid F such that F is contained in K and the dilation
of £ about its center by a factor of n contains K.

In fact E can be taken to be the ellipsoid of largest volume in K. If 7 is the linear transformation
that sends E to the sphere S of unit radius, then S C 7K C §’, where S’ is concentric with §
and has radius n. Unfortunately, we do not know how to find the ellipsoid E, given, say, a convex
polytope K by its inequalities. Lovdsz [48, theorem 2-4-1] has developed an ingenious polynomial-
time algorithm to produce a “weak” John ellipsoid E for a polytope K; it has the property that
E is contained in K and a dilation of E by a factor of (n + 1)/n contains K. This is based on
Khaciyan’s [37] ellipsoid algorithm for linear programming. Here is a very brief description of it :
by the ellipsoid algorithm, we can find an ellipsoid F with center ¢ such that c € K and K C F.
Suppose the end points of the axes of F are ¢ £+ a; (fori=1,2,...,n). We check if ¢+ a,/(n+1)
belong to K for 7 = 1,2...,n. If all these 2n points are in K, so is their convex hull Q. But Q
contains the ellipsoid F” with center ¢ obtained from F by shrinking by a factor of 1/(n + 1)4/n.
So F' would suffice as the answer. Suppose now that for example ¢ + a;/(n+1)is not in K. Then
it does not satisfy one of the inequalities describing K; we can use this 1nequa11ty as a cut in the
sense of the ellipsoid algorithm to produce a new ellipsoid F so that again F D K. If the center
¢ of F does not belong to K, we use a cut passing through the center to get a smaller ellipsoid; if
¢ € K, we apply the same procedure to F' that we did to F. It is not difficult to see that either cut
reduces the volume of the ellipsoid by a factor and this guarantees polynomial-time termination.
At the end of the process, we must clearly have an ellipsoid with the required properties.

The transformation that sends the final (concentric) ellipsoids into spheres, makes the polytope
K well-rounded in the sense of the following definition.

Definition : A convex body K in R” is well-rounded if there are two concentric spheres S and
S’ of radii r and 7’ such that

SCKCcCY r/r' < (n+1)vn

Such a process can be carried out not only for polytopes, but closed convex sets K described
only by a “separation oracle” of Grotschel, Lovasz and Schrijver [21] . The separation oracle for
K is a black box which when presented with y, either says y € K or gives a hyperplane c¢-z = c,
which separates y and K.

3 The Lovasz Basis Reduction Algorithm

3.1 Definition of Lovasz reduced basis, the algorithm

As we mentioned earlier, the complexity of the SVP is unknown. Clearly, no polynomial-time is
known for finding either the Minkowski-reduced or the K — Z reduced bases. In fact, it is easy
to see that finding a Minkowski-reduced basis is NP-hard. K — Z reduced bases can be found
by repeatedly finding shortest non-zero vectors in projected lattices, so the problem of finding a
K — Z reduced basis is polynomial-time (Cook) equivalent to the SVP; so its complexity is open.
The question is to find a suitable definition of a “reduced basis” that has the following desirable
properties: it has a low orthogonality defect; the shortest vector in the basis is approximately a
shortest vector in the lattice; and the reduced basis can be found in polynomial-time. The basis
reduction algorithm presented in Lenstra, Lenstra and Lovéasz [46] accomplishes all these. We



will slightly modify their definition and the algorithm (but keeping the spirit of it) for ease of
presentation. Choose any ¢ in the interval (0 %) Suppose b1, b;...,b, are linearly independent
and generate a lattice L. Let 67,65 ...,b* be the orthogonal basis of the vector space spanned by L
obtained by doing the Grahm-Schmidt procedure on by, b, . . -0, (Of course the b7 may not belong

to L.) The basis b1,b,...,b, of L is called a reduced basis if it is proper (cf section 2.3) and for
eachi, 1 < ¢ <n-—1,

67,11 = 61}

i+1

Again, it is easier to conceptualize it in terms of the lower triangular representation of the basis
matrix. A basis is Lovasz reduced if it is proper and for all 1, biy1ip1 > 6by. It is easy to show
that every K-Z reduced basis is also Lovisz reduced : from the definition of K-Z reduced, we have
(bi1,4)® 4 (big1,i41)? > (bi)? since, b, is the length of the shortest vector in the lattice generated
by the bottom right (n — ¢+ 1) x (n — i + 1) submatrix of the basis matrix. Properness implies
;41,0 < |bii]/2, so we have biy1i41 > (\/?_)/2)bii. This should also explain the reason for choosing
¢ in the interval (0 +/3/2).

First we will argue that a Lovasz reduced basis has the desired properties and then give the
algorithm for finding it. For ease of exposition, we take § to be 1 /2, although any § in the interval
(0 v/3/2) would do just as well. First, note that we obviously have

(«) 16l < [Bj|277V1<j <i<m

Any non-zero vector v in L must be of the form 25:1 A; b; with A; # 0 and A\; € Z, so
lvl = X1 1651 > [b3] > [b3] 2177, So we have [b| = |b;] < 2"A1(L). Next we will bound the
orthogonality defect. By properness,

* l = * 7n *
bl < (61 + 5 D0 I851) < 27 jb] by(x)
ji=1

Multiplying together the n such inequalities, it follows that the orthogonality defect is at most
2"". (We have not taken care to present the sharpest estimates.)

We will give the algorithm again assuming § = 1 /2. Pick any positive € < 1 satisfying
6% + 1/4 < (1 - ¢)®. For convenience, let ¢ = (1 —1/3/2). We need some notion: Suppose
b1,b2...,b, is the current basis of the lattice. Let V; be the vector space spanned by b;...,b; (for
t=1,2...,n) and Vo = {0} and for any vector v, denote by v/V; the component of v orthogonal
to V;. We proceed as follows: For the current basis B = {b1,bz...,b,}, we compute b7,b%...,b"

by Grahm -Schmidt process. Suppose for some 1, b7 4] < IbZI/Z We run the modified - Gauss

- algorithm with € = (1 — 1/3/2) on bi/Vi_l = z (say) and bi+1/V}_1 = vy (say); let » and v be
the reduced basis obtained at the end; let U be the 2 x 2 unimodular matrix so that

/() - )
Let (,i) = U (bb+)

Obviously, B = {b1, ba...,b,_1, Ei, 3i+1,bi+2, ...,bn} s a basis of L; we replace the current

basis with this and repeat this process until [b} ;| > [b;|/2 is satisfied for all :. Finally, we render
the basis proper by ensuring for s = 1,2...,n (in that order) that b; — b} belong the rectangle
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{E] bl — 1< o < 3}: for each 4, this is a accomplished by subtracting suitable (integer)
multiples of b;,_y, b;_,...,b; (in that order) from b;. This process does not affect any of the b}, so
at the end, the basis is reduced.

Again, it is useful to go to the lower triangular representation of the basis matrix to understand
the process to make the basis proper. To make the basis proper, we wish to make each off-diagonal
entry at most half the diagonal entry in its column. This is easily seen to be acieved by doing
the following : for 7 = 1,2...,n, subtract from row 7 a suitable integer multiple of row g for
J=1t~1,2~2...1in that order. The lower triangularity ensures that subtraction of a multiple of
row j from row ¢ does not affect the ¢,k entries for k& > j. Of course, the whole process does not
change the diagonal entries as claimed.

We have to argue polynomial-time termination. This is obvious for the final stage of making
the algorithm proper. For the first stage of ensuring [b,,| > |b}| /2, we proceed as follows: Each
modified -Gauss algorithm runs in polynomla.l time as argued before and at the end of the procedure,
we have (arguing as in section 2.5) |v|] > (1 —¢€) [u| = +/3|u|/2. Further, the component of v
along the direction of u is at most |u|/2, so the component z of v orthogonal to u is at least |u|/+/2.
Letting b5 ...,b2_,, b7, bz+1, b,5...,b; denote the orthogonal basis corresponding to B, we see
that |b; 'l = |zl and |87] = |u|, so |bl+1| |671/+/2. Further, of course [67] 167,41 = 167] |8; Tl
and before the Gauss procedure, we had |b} +1| < |b7|/2. Combining these three inequalities, we
see that |b7| < |b7]/2Y/*.

To complete the proof, consider the quantity

D = T le;|™»
i=1
We have argued that D falls by a factor of at least 2'/% at each iteration; then combined with
upper and lower bounds on D, it is not difficult to show that the number of iterations is bounded by
a polynomial in the length of the (rational) data. It is more difficult (but only a technical matter)
to show that the sizes (number of bits) of all numbers are bounded by a polynomial in the length
of input; we do not give this proof here.

3.2 Remarks on the algorithm and time analysis

We proved bounds on the length of the first vector in a Lovész reduced basis and the orthogonality
defect. The question arises : are these the best possible bounds ? The answer is nearly yes as the
following example shows. Consider the lattice generated by the rows of a lower triangular matrix
B defined by : B;; = 0for j > 4; B;; = p*~' and B;; = pP~1/2 for i > j where p = /3/2. It is easily
checked that this is a Lovasz reduced basis for any choice of §. The length of each basis vector is
1. The determinant of the lattice is p™(»~1)/2 50 the orthogonality defect is the reciprocal of this.
By Minkowski’s theorem there is a nonzero vector in the lattice of length at most 1/np"~'/2, so
each of the basis vectors is off by an exponential factor. The same applies when any subset of the
entries of the basis matrix is multiplied by -1.

The time analysis of the basis reduction algorithm is in terms of two parameters : n, the
dimension of the lattice and B the maximum length of one of the initial basis vectors which are all
assumed to have integer entries. Let us first consider the number of calls to the Gauss procedure :
the initial value of D is at most B™ and it is always an integer; so the number of calls is at most
O(n’log B). The actual implementation proposed by the Lenstra, Lenstra and Lovdsz paper is
different from the description here - it actually does not call the Gauss procedure as a subroutine,
but goes into the guts of it. More importantly, they do not perform Gram-Schmidt procedure
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after each change of basis, but update the orthogonal basis. Also, they continually keep the basis
proper to avoid large numbers. With these modifications, they show that a reduced basis may
be found using O(n*log B) operations on operands of size O(nlog B). It can be shown that the
algorithm as we have described it in the last section also takes polynomial number of operations on
polynomial size operands, but the complexity will not be as good. Recently, the complexity of the
basis reduction algorithm has been improved to O(n*log B) operations on O(n+log B) bit integers
[69]. See also [29] and [60].

4 Lenstra’s algorithm for integer programming

The integer programming optimization problem is the problem of maximizing (or minimizing) a
linear function c-x over the integer points (points of Y) in a polyhedron P in R™ described by a set
of linear inequalities with rational coefficients. This problem can be polynomial-time reduced to
the integer programming feasibility question: given a polyhedron P, determine whether P contains
an integer point in it. Further it has been shown [19] that if P does contain an integer point, then
it must contain one whose coordinates have sizes (number of bits) bounded by a polynomial in
the length of description of P; so adding these bounds, we may assume that P is a polytope (a
bounded polyhedron). Further, we may assume that P has non-zero volume: if necessary, restrict
to the affine subspace of R” spanned by P and use unimodular transformations to transform the
lattice into the standard one. This can be done in polynomial-time using the Hermite Normal
Form algorithm of [32]. Lenstra [47] describes these technical matters in detail. So by integer
programming, we will henceforth mean the problem of determining whether a polytope P in R" of
non-zero volume has an integer point in it.

This problem is known to be NP-hard in general [35]. However, the question of interest was to
find a polynomial-time algorithm for the problem when 7, the number of dimensions is fixed. For
n = 2, algorithms were given in [26], [30], and [57]. In an important breakthrough, Lenstra [47]
used ideas from the Geometry of Numbers to solve the problem for general (fixed) n. To describe
his algorithm, we introduce some terminology.

Suppose K is a convex body (set of non-zero volume) in R™. The difference body of K written
(K — K)is the body {z —y: 2,y € K} and the dual (body) of K written K* equals {v:v - z <
lforall z in K'}. Thus if K is a closed and bounded convex body, (K — K)* is precisely the set of
all vectors v such that the “width” of K along v (= max{v - z:2 € K} —min{v -z:2 € K})is
at most 1. For fixed n, Lenstra gave a polynomial-time algorithm that accomplishes the following:
it either finds an integer point in the given polytope P or finds an integer vector v in ¢ (P - P)*,

(incidentally proving that such a vector exists if P N Z = () where ¢ is an absolute constant?.
We will presently describe this algorithm; but note that v has the following property: every integer
point must lie on a hyperplane H of the form {¢ : v - z = 2z}, z an integer; further

max{v-z :z € P} — min{v - z:2 € P} < ¢, so at most ¢®" + 1 such hyperplanes H intersect
P. So it suffices to determine for these H, whether P N H contains an integer point. The PN H
are all (n — 1)-dimensional polytopes, so we have reduced the n-dimensional problem to ¢* + 1
problems in (n — 1) dimensions giving a recursive procedure for integer programming. The factor
¢ has gone through several improvements to be described in section 7.

It is conceptually easier to first describe Lenstra’s algorithm assuming P is an ellipsoid, then
do it for polytopes. For an ellipsoid F, there is an invertible linear transformation 7 that sends E
into a sphere S of unit radius. Clearly, ENY is non-empty if S N 7Y is. (Y is the standard
lattice of integer points.) Using the basis-reduction algorithm of the last section, we find a reduced

“Reminder on notation : For a convex body $ and a positive real number ¢, tS denotes the set {z : z/t € S}
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basis by, by..., b, of 7Y . Renumber the basis vectors if necessary so that |b,] > |b;|Vi. Let the
center of 5 be ¢ = 377, a; b; where the a; are reals.

If [o;] is the integer nearest to o;, then ¢ = 3 [o;] b; belongs to 7Y and further |¢ — ¢/| <
2 18;1/2 = M (say). So if the radius of S(= 1) is at least M, clearly ¢ is in S, so E contains
a point of Y namely 77'¢’. On the other hand, if M is greater than 1, we will show the existence
of avin (¢ (E— E) NnY). Suppose M > 1. Let V be vector space spanned by by, by...,b,_;
and consider the family of hyperplanes V + zb,, 2 € Z. These cover 7Y and further the distance
between 2 adjacent such planes is |b}| where b}, is the component of b, orthogonal to V. Then,
letting L' = L(by,bs,...,b,_1), and using the fact that the basis by, ... b, is reduced,

H b;| < 27" d(rY) < 27" |br| d(L') < 27 |} H 1

2 2M 2
So [bi] > 27" by > s > el”

n2n* T

for a suitable constant c, Thus we see that the number of hyperplanes of the sort V+2b,, z €
Z that intersect S is at most ¢, ¢ constant. Now applying 771, we see that {77V + zr~1b,}, z €
Z cover Y, and at most c” elements of this family intersect E; th]S gives us a v - namely the normal
to 77!V that makes a unit dot product with 77'b,. Indeed, it is easy to see that v = 7* b7 /|b%|?
where 7 is the transpose of 7. The fact that the family of hyperplanes {z : v - ¢ = 2} z€Z
covers Y implies that the components of v must be integers. In 1 dimension, the problem can be
easily solved. This completes the description of Lenstra’s recursive algorithm for ellipsoids. Note
that equivalently, we have described an algorithm that given a sphere in R™ and a general lattice
L = (rY for some linear transformation 7), finds either a point of L in the sphere or reduces the
problem to lower dimensional ones.

For a general polytope P we proceed as follows to determine whether P NY is nonempty : We
apply the Lovdsz algorithm (of section 2.7) to determine a weak - John ellipsoid E for P, i.e, an
ellipsoid E such that E C P and a dilation E’ of E by a factor of (n + 1) /n (about the center)
contains P. By our preceding algorithm, we either find a point of Y in E (hence in P) or find a
integer vector v such that the width of E along v is at most ¢™ . Clearly, then, the width of E’
along v is at most ¢** (n 4 1) y/n < d* for some constant d. Thus the width of P along v is at
most this too and we again have a reduction to lower dimensional problems.

This completes the description of Lenstra’s algorithm for polytopes ; the proof of the polynomial-
time bound is technical, but straight-forward; the interested reader is referred to Lenstra’s paper.

It is possible to see that the same procedure can be carried out for all convex bodies described by
a separation oracle (cf section 2), not just polytopes. Using this, it is not difficult to see that mixed
integer programming problem with a fixed number of integer variables can be solved in polynomial
time; this generalizes Khaciyan’s polynomial time algorithm for the case when the number of integer
variables is zero.

The theoretical foundations of the Lenstra algorithm have been studied further; they can for-

mulated in terms of the dual lattice and the dual convex body. We do so more fully in a later
section.
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5 Faster algorithms for Integer Programming and other lattice
problems

5.1 Introduction

In this section, we will examine faster ways of solving integer programs as well as other lattice
problems: shortest vector problem, its “inhomogeneous version” called the closest vector problem
(to be defined).

As we remarked in section 2.3, the SV P may be solved once we have a basis of low orthogonality
defect. Since the Lovasz basis reduction algorithm gives such a basis (of orthogonality defect at most
27"), the SV P may be solved by enumerating at most 2*° candidates. Kannan [31] showed that
with a “partial” K — Z reduced basis on hand, only (O(n))*/? candidates need to be enumerated;
further the “partial” K — Z reduced basis may be found by K — Z reducing lower dimensional
lattices. The overall dependence of the complexity of SV P on n is O(n™). A similar complexity is
achieved for the so-called closest vector problem in the paper. The paper deals also with integer
programming. Instead of looking for a few hyperplanes cutting the polytope, this algorithm looks
for affine subspaces of arbitrary dimension. Using a K — Z reduced basis, it either finds an integer
point in the given polytope P(in R™) or finds for some ¢, (chosen by the algorithm), 1 < 7 < n
an (n — 1) dimensional subspace of R™ such that its translates cover Z" and at most (2n)3* such
translates intersect P. Thus an n-dimensional problem is reduced to (2n)%* problems each in
(n — 1) variables paying a polynomial factor O(n®?) per variable instead of an exponential one as
in Lenstra’s algorithm. These results are described in this section in some detail. Helfrich [24] has
made some improvements in the algorithms of this paper.

The closest vector problem (CVP) is: given linearly independent vectors by, b,..., b, in R®
and a vector b, find the closest (in Euclidean distance) vector to b in L(by, by ..., b,). Unlike the
SV P, this problem is known to be NP-hard [63 ,31].

5.2 The algorithms

First, we look at (simplified versions of) the algorithm of [31]. For the SV P, the algorithm first
finds a basis by, b, ..., b, so that three conditions are met:

(1) With Vi = Span {61}, by/V4, bs/Vi,...,b,/V; form a K — Z reduced basis for the (n— 1)-
dimensional lattice they generate. (Reminder on notation : 4/V is the component of b orthogonal
to the subspace V)

(2) [63] > & by| where 6 is some fixed constant in (0 1/3/2). Say § = 1/2 for convenience.

(3) The basis is proper. (cf section 2.3)

(1) Can be achieved by applying (recursively) the procedure for lower dimensional lattices.
Properness can be now acieved without violating (1) as mentioned in section 2. If now (2) is
violated replace b, by b, — [%f%f]bl and then swap b; and b, and redo (1); it is clear by the
geometric decrease in |by| that this calls for only polynomially many iterations. With this basis on
hand, we show that only a “few” candidates need to be enumerated to find a shortest vector of L.

Let b, b3,...,b; be the vectors obtained by doing Grahm -Schmidt process on by, b,..., b,
satisfying (1), (2) and (3). Suppose v = Y7, A, b; is a shortest non-zero vector in L. If A; # 0 for
some j, then v has a non-zero component orthogonal to V},_; = span{b,...,b,_,} forevery k < j
and so by (1), |v|] > |b;|. Thus we may assume, without loss of generality, that 6] < [b1] V7, else
we can discard bj, b;11,..., by. It is clear that [v] > |A,||b}]. Of course, we must have |v| < |b;].
So |A,| < |b1]/10;]. Thus, there are at most 1 + 2[b|/[b]| “candidates” for A, in finding v. In a
similar vein, it can be argued that the number of candidates for \; once Xis1, Aigz ..., A, are fixed

14



is at most 1+ 2[b,[/[67] < 3|b4|/[b7|. (This uses the fact that [b}| < |b;].) We thus have a total of
at most

11 3leal/18;]
i=1

candidates. The denominator is d(L), so by Minkowski’s convex body theorem, we would have a
bound on the whole quantity if we could assert [b;| < s Ay(L) where s is small (cf section 2.2). This
1s indeed the case: either v = b; whence |b;] = Aj(L)orv = 3 ) b; with one of Ay, A5..., A,
non-zero whence by the preceding argument, [v| > [b3| > 1/2|by|. In any case, |b;| < 2A4(L).
This gives a bound of 6” n™/? on the number of candidates (since A,(L) < /n(d(L))™ ). We
may enumerate all these candidates and take the one that yields the shortest nonzero vector. To
complete the recursive procedure, we must find an entire K — Z reduced basis, which of course is
easily done by taking any basis containing the shortest nonzero vector in the lattice as the first
vector and ensuring (1) one more time. There are many technical details for which the reader
1s referred to the paper . The time bound proved in the paper is O(n" s) arithmetic operations
(additions, subtractions, multiplications, divisions and comparisons of two rational numbers) on
operands of size O(n? s) where s is the length of the original input basis. The upper bound on the
size of the operands in this as well as many of the algorithms described in this paper turns out to
be very complicated, but purely technical. We have omitted all such proofs in this brief article,
however, they are quite important for algorithms that manipulate numbers.

Now we consider the inhomogeneous version - the CVP. Here, given a sphere S of radius, say,
r and a lattice L, we wish to determine whether S N L is nonempty. First find an K — Z reduced
basis by,b5...,5, of L. Let

0}| = max {|bj|: j = 1,2...,n}

Ifr > /n|b]], it is easy to argue that S contains a point of L. (indeed, to any point p in
space, there is a point p' of L such that [p— p'| < (3 [67]%)"/?). So assume not. Let H be the
subspace of R spanned by b;,b,,...,b,_;. An argument similar to one used to bound the number
of candidates to find the SV P now shows that the number of translates of H containing integer
points that intersect S is at most

L+ 20/1850) -

(Any translate of H that contains an integer point is of the form H + E?:i A;b; where ); are
integers. Thus, the idea is to bound the number of “candidates” for A;, Aig1,--- A, such that the
distance between the centre of S and the affine set H + Y i=i Ajb; is at most r. ) Using the bound
7 < /n|b;| and Minkowski’s convex body theorem, we see that this number is bounded by

(27L + \/ﬁ)"_H'I

Once a candidate A;, A;11, ...\, is fixed, it clearly suffices to find the point of (H+E;.‘:i A0 )NL
closest to ¢’ the projection of ¢ into this affine set. This is a 7 — 1 dimensional CVP. Thus an n-
dimensional C'V P is reduced to this many (: — 1) dimensional C'V P's.

For integer programming, such an argument is extended to polytopes from spheres by using
Lovéasz’s rounding algorithm just as Lenstra’s approach does.

This method of bounding the number of candidates will be used later in section 7 to solve the
approximate version of the CVP. It will be useful for that purpose to formulate the result as follows
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: the number of candidates that we need to enumerate the solve the CVP for a lattice L, given a
basis by, b,,...b, is bounded above by

J

T+ [ i)

k=1

It is also clear that we can replace (3%_, |b%|?)"/? by any other upper bound on the distance
from any point in span (by, by, ...b;) to the lattice L(by,bs,...b;).

6 Applications of the basis reduction algorithm

6.1 Introduction

As mentioned earlier, the basis reduction algorithm has a wide range of applications. We will de-
scribe some of these in this section. To cover more ground, we begin with an annotated bibliography
of the papers.

A K.Lenstra [45] reduced the problem of factorization of polynomials with rational coefficients
into irreducible factors over the rationals to the problem of finding short vectors in lattices. The
Lenstra, Lenstra, Lovdsz [46] paper shows that the Lovasz basis reduction algorithm finds short
enough vectors to give a polynomial time algorithm for factorization. A variant of this method
independently due to Schénhage [60] and Kannan, Lenstra and Lovasz [33] is described in section
6.3.

Lenstra, Lenstra and Lovasz [46] show that the classical problem of simultaneous diophantine
approximation can be approximately solved by the basis reduction algorithm in polynomial time.
This is described in section 6.1.

Shamir [61] cracked the famous Merkle-Hellman crypto system.

Lagarias and Odlysko [42] considered “low-density ” subset sum problems . Suppose a1, as, .. .a, :

are integer coeflicients and we wish to solve the subset sum problem : Y7 a;z; = b ;2; € {0,1}.
They show that if the a; are uniformly and independently distributed in the range [0 M | and
there is guaranteed to be a solution to the problem, then with high probability, we can find one
in polynomial time provided M > ¢* where ¢ is a constant. Nothing can be said of the cases
when there is no solution. Frieze [14] considerably simplified and improved their result. Furst and
Kannan [16] show that there is a nondeterministic polynomial time algorithm that will yield proofs
of wnfeasibality for all but a vanishing fraction of the infeasible subset sum problems when the a;
are integers in the interval [0 M] provided M is greater than ¢, ¢ a constant. Further, they show
that when the a; are in the interval [0 N], with N > ¢*’, there is a deterministic polynomial time
algorithm that will determine for all but a vanishing fraction of the problems whether or not they
are feasible and if feasible, find a solution.

Landau and Miller [43] devised a polynomial time algorithm for the classical problem of solvabil-
ity by radicals - given a polynomial with integer coeflicients, determine if the roots equal expressions
involving +, —, X, /, 3/ for arbitrary natural numbers n and the integers.

Hastad, Just, Lagarias and Schnorr [23] gave a polynomial time algorithm that given a vector
z with n components, finds a n vector v of integers not all zero such that v -z = 0 and whenever
u-2 = 0, u integral and nonzero, |v| < 2"|u/|; or determines that no nonzero integral vector u exists
such that v -z = 0. Here, z is a vector of reals given as an oracle.

Frieze, Hastad, Kannan, Lagarias and Shamir [15] give a polynomial time algorithm that with
high probability reconstructs the values of the variables z;,x3, .. .2, given some linear congruences
satisfied by the variables and some bits obtained by truncating the binary expansions of the values
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of the variables. This algorithm is essentially optimal in the use of information in that it will
solve problems with high probability as soon as the variables become uniquely determined by their
constraints. They have some cryptoanalytic applications of this algorithm.

Frank and Tardds [13] give a method of approximating linear inequalities by so as to preserve
“small” integer solutions. Their method is described in section 6.4.

Lovasz and Scarf [49] use the results described in section 7 to prove some structural results
about integer programming.

6.2 Simultaneous diophantine approximation

Suppose @y, @z ...,y are an arbitrary set of real numbers. For many applications, it is interesting
to approximate them by n rationals p,/q,p,/q...,p,/q all with the same (integer) denominator gq.
This is the problem of simultaneous diophantine approximation. More precisely, we ask given reals
Qi, Q. .., 0n,€ > 0 and a natural number @, when is it possible to prove the existence of integers
P1,P2..-,Ps, and g so that O < ¢ < @ and

lo; —pi/q] <e€/q Vi

Writing the inequalities as |[ga; — p;| < € and with the change of variables p, = —p;, we see that
the requirements can be formulated as:

—e< Az < ¢

where z is the vector of unknowns (p},p},...p., q) and

1 0 O aq
1 0 . . . a«a
0 0 1 Qs
A=
o . . .01 a
0 . . . . 0 €@

Let P be the parallelopiped {z : —¢ < Az < ¢} in R**'. Then we are asking for conditions
under which P contains an integer point other than the origin (assuming |e| < 1). P is, of course
convex and symmetric about the origin and has volume = 2"+1e**1/det(A4) = 2"tV Qe*. So by
Minkowski’s convex body theorem, we have a solution whenever @ > ¢ ". Clearly, we can make
q positive after multiplying by -1 if necessary. Dirichlet’s fundamental theorem on simultaneous
diophantine approximation states precisely this:

For any n arbitrary reals a;,a;. .., a,, and two reals €, Q satisfying € > 0,Q > €™, there are
integers py,ps...,Pn,q, With 0 < ¢ < Q and |ga; — p;| < € for all 4.

Now the question is how to find this good approximation. There is a simple and elegant
reformulation of this as a question on lattices. As the vector z varies over Z"*!, Az varies over
the lattice L generated by the columns of A, so the question is to find non-zero vectors in L that
have L.,-norm at most . Obviously, this can be solved in exponential time by the algorithms of
section 5 to solve the SVP in the L.,-norm. Using the Lovasz basis reduction algorithm we can
find approximately L, -shortest vector of L, whence clearly, we can also find an approximately
Lo, -shortest vector. (noting that for any vector v in R™,|v|s, < |v]y < +/m|v|e). Let us work
out the degree of approximation. The determinant of L is €/Q, so A;(L) < /n+1 (¢/Q)Y+D)

by Minkowski ’s theorem ; thus the basis reduction algorithm finds a non-zero vector v of L such
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that [v], < 2°+D/2/n 1T (/@)Y ") and of course |v|,, < |v|;. As we argued earlier, we would
like |v|o, < €. This would hold if

22 /T (e/ Q)Y < ¢

It can be checked that (except for small values of n), this is true whenever

Q Z 27’12 G—TL

This completes the description of the algorithm for simultaneous diophantine approximation.
We will make use of the algorithm of this section in rounding integer inequalities in section 6.4. A
number of other applications are discussed in [48]. In fact one of Lovdsz’s main motivations for
developing the basis reduction algorithm was to do simultaneous diophantine approximation.

6.3 Factorization of polynomials

A.K. Lenstra [45] reduced the problem of polynomial factorization to one of finding short vectors
in lattices. This combined with the basis reduction algorithm, gave a polynomial-time for factoring
polynomials with rational coefficients to its irreducible factors (over the rationals) [46]. Schonhage
[60] and Kannan, Lenstra and Lovasz [33] gave another algorithm which used the approximate roots
of the polynomials in the complex plane rather than over the p-adic numbers. It is this algorithm
that we outline here. We need a few definitions: A complex number « is said to be algebraic if
1t is the root of a polynomial with integer coefficients. There is a unique primitive polynomial
(a polynomial with integer coefficients with greatest common divisor equal to 1) satisfied by each
algebraic number; this is called the minimal polynomial of the number. If f(z) is a polynomial with
integer coefficients and with a as a root, the minimal polynomial of « is an irreducible factor of
f(z). It is well-known that given f(z), an approximation & of each root of a (so that |&@ — a| < e,
for a specified €) may be found in time polynomial in the number of bits needed to represent f(z)
and the number of bits of the approximation, i.e. , [log,(1/¢)]. We will show that if € is suitably
small, then with & on hand, we may find the minimal polynomial h(z) of the actual root a which is
of course an irreducible factor of f(z). For ease of description, we will initially make the assumption
that we have the exact a; of course, we discard this later.

Suppose the degree of f(x)is 7 and the (unknown) degree of h(z)is m < n. It can be shown that
|~leo < |fleo2™ where for a polynomial p(z) with integer coefficients, |p|o, is the maximum absolute
value of any coefficient of p(z). (Collins, quoted in [39], page 391) ) We omit the subscript co in what
follows. Let By, B2 ..., Bm be the real parts of the powers of a,i.e. of 1,a?, a?,...,a™ respectively
and let o, 71 ..., 7 be the respective imaginary parts. Then the unknowns h = (ho, Ry ..., hy)
(the coefficients of h(z)) are integers satisfying

|he] < 27 |f] Vi ZhiﬁiZO Zhi%’:O

Interestingly, it can be shown that even if we relax this system to a system of inequalities below,
every non-zero integer solution must be either h or an integer multiple of it:

he| < |f] 2" Vi 1> B <6 1> hivl < 6 (%)
where § = 2-27"| f|=(37)_ (see proposition 1.6 of [33] ) These can be written in matrix notation:
-§ <Ah <6

with
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¢ 0 0 O
0 C 0 0
0 0 C 0O

A =
o . . . ... C
1 B B2 o . . . Pm
0 Y1 Y2 . e )

where C = 6 /(| f|2°").

Analogous to the last section, we consider the lattice L generated by the columns of A. We
know that for the minimal polynomial A(z) of @, Ah is an element of L with L., - norm at most
6/2" and that for any vector g which is not an integer multiple of h, Ag has L., -norm greater
than ¢. This implies that a Lovasz-reduced basis of L must contain as a first vector an integer
multiple of Ah, which must, per force be Ah or —Ah since we have a basis of L. This completes
the description of how to fund h with @ on hand.

Suppose we have now only an approximation B, 31 . . ., Bm to the 3’s and 5o, 71 . - ., Fm to the ¥’s.
Let A be the matrix corresponding to A with these approximations. Let L be the lattice 4 Z™+1.
Since the § and 7 are close to 8 and 4's’s, it is possible to show that Ah is a vector in L with “small”
norm. Further, any integer vector g which is a not multiple of h, violates one of the inequalities of
(*), so it violates either one of the first (m + 1) inequalities or max(] Y ¢:5:|,| 3 g:v:|) > § whence
for a suitably small €, max(| 3 ¢:8:], | 2 gi %:|) > 6 — ¢; in either case we can argue that Ag has a
“large” norm. So in a Lovasz reduced basis of L, the first vector must be h.

The running-time of the original factorization algorithm of Lenstra, Lenstra and Lovész was
O(n'* 4+ n°(log | f|)®) bit operations where the polynomial f to be factored had integer coefficients
of maximum magnitude |f| and degree n. Kaltofen [29] improved the time and Schonage [60] has
further improved it is to O(n®t¢ 4 n*(log| f|)2*¢) bit operations.

Kannan, Lenstra and Lovasz [33] also give an efficient algorithm for solving the following prob-
lem which they use in the factorization algorithm : given a sufficiently good rational approximation
to the real and imaginary parts of an algebraic number, find the minimal polynomial satisfied by
it. This shows in a natural way that the bits of an algebraic number are not random. Further, it
gives a way of computing with algebraic numbers by keeping their approximations. The reader is
referred to their paper for details.

6.4 Approximation of linear inequalities

Suppose we have a linear inequality ¢ -z < a with arbitrary rational coefficients. The hyperplane
H corresponding to this inequality divides space into three regions - {z : az > b}, {z : az = b} and
{z : ez < b}. A natural question which turns out to have a lot of applications is: can we find a linear
inequality with “small” integer coefficients that preserves the sets “small” integer points in each of
three regions? More precisely, given a real n— vector a, a real number o and a natural number N,
we wish to find an integer vector @ and an integer “right hand side” & in time polynomial in the
size number of bits of a,« and N so that every integer vector z with |z|,, < N satisfies

a-rT>asa-T>a a-c=asar=a0 arz<asarr<a;

turther we require that @ and & are bounded in size (number of bits) by a polynomial in n, the
number of variables and the size of N. Frank and Tardos [13] gave an algorithm to do so. We will
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describe their interesting algorithm in this section. First, we wish to point out that it is a little
surprising that they can do this: Consider the inequality

z;+ ez, <0

where ¢ is a very “small” positive rational. If ¢ is small enough, it is clear that the best
approximation using “small” integer coefficients to the direction of the vector (1 €) is given by
the vector {1 0). Unfortunately, the inequality z, + 0z, < 0 is a bad replacement for the original
inequality. For example, z, = 0,z, = 1 satisfies z; + ez, > 0, but not z; + 0z, > 0. So indeed,
the best approximation to the direction of the original inequality will not do; we may have to use
a slightly worse approximation. If € < 1/N, then we see that the sign of (N 4 1)z, + z, is the same
as the sign (positive, negative or zero) of z; + ez, for integers 1, z, with |z,],|z2] < N. (To see
this, note that if z; is nonzero, the sign of both z; + ez, and (N + 1)z; + 2, is the sign of z; and
if z, = 0, they are both equal to the sign of z,).

Now we give the Frank, Tardos algorithm in general. First note that it suffices to deal with
homogeneous inequalities since a -2 — o equals (¢ @) - (z 1). So assume we are given the rational
vector a with n components. The algorithm will find in polynomial-time an integer vector @ with

gl < 27" NV

such that for all integer z with |z|,, < N, the sign of a-z equals the sign of @-z (sign is positive,
negative or zero). We let f(n) = 2*°N™" in the sequel. We may assume that a is non-zero, so after
a suitable division, we may assume |a|,, = 1, and further that a; = 1. Let ¢ = 1/(2Nn). Using the

simultaneous diophantine approximation algorithm of section 6.1, find integers p;,p; ..., Ps,q such
that
€
la; — pi/q| < -
q
and

0 < q S 277.26—71

Clearly, we must have p; = q. Consider the vector a¥) = (1,p,/q,ps/q,"-,P,/q). If  is any
integer vector with |z]e, < N and a*) - z # 0, then we claim that the sign of a -z and a(!) - ¢ are
the same: |a) -z| > 1/g and |a-z — a¥ - z| < |a — a| |z| < eNn/q < 1/2q establish this. So
we need only worry about 2’s such that a(¥) -z = 0. To handle this, let &/ = a — a(}). Note that o’
has at most (n — 1) non-zero coordinates; recursively find a integer vector v with |v|e, < f(n — 1)
so that for all integer z with |z|, < N, the sign of v - z and the sign of @’ - = are the same. Our
final resulting vector @ will be

a=2Nnf(n- 1)(qa(1)) 4+

The correctness argument is as follows: consider any integer z with |z|, < N. If aM .z # 0, it
is easy to see that sign of @ - z and the sign of a(!) - z are the same. We have already argued that
the sign of a*) - z and @ - z are the same for this case. Now suppose a¥) -z = 0. Then the sign of
@ - equals the sign of v-z which equals the sign of a' -z which equals the sign of a-z. To complete
the argument, a simple calculation shows that |a|., < f(n) for all but small values of n. (noting
that |V, = 1.)

Frank and Tardos [13] have applied their rounding algorithm to several problems of interest
to us like integer programming. In both Lenstra’s algorithm and Kannan’s (sections 4,5), the
successive reductions to lower dimensional problems may cause the sizes of coeflicients to increase
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nonpolynomially. Indeed, both the original papers only proved nonpolynomial bounds on the sizes;
using the rounding algorithm of this section, they can be kept polynomially bounded which improves
their running-time and makes them aesthetically better. The fundamental nature of the problem of
rounding inequalities seems to indicate a great potential for this method. Perhaps one application
of such ideas might be to develop a strongly polynomial-time algorithm for linear programming .
This interesting question remains unsolved. A stronger result would be to find a polynomial-time
algorithm which given a m X n system of linear inequalities Az < b with rational coefficients, finds
A, b with integer entries and size bounded by a polynomial in n and m such that Az < b is feasible
if and only if Az < bis. Now, Az < b is feasible iff there is a basic feasible solution, and every
basic feasible solution has rational components with denominators bounded above by a number
M which we can calculate. Unfortunately M depends on the size of A,b as well as m,n. If it
depended on only m,n, we may round each of the inequalities in Az < b to preserve all “small”
rational solutions with denominators at most M by slightly modifying the procedure that rounds
preserving all integer solutions. Since this is not possible, some simultaneous rounding of all the
inequalities in Az < b seems to be called for.

7 Structure of lattice point-free convex bodies and applications

7.1 Structural theorems

The structural result that allows the reduction of an n dimensional integer programming problem
to lower dimensional ones is the fact that if K is a convex body which does not contain any integer
points, then there is an integer vector v such that the “width” of K along v (=max{v .z :z €
K} —min{v.z :2z € K}) is bounded above by a function of n alone. Lenstra proved a bound of
¢"" as mentioned in section 4. This bound has since been improved to O(n5/?) by Hastad [private
communication]| and subsequently to O(n?) by Kannan and Lovéasz [34]. The best known lower
bound is Q(n). It is of algorithmic as well as structural interest to analyze further convex bodies
free of integer points and more generally, points of a lattice L. Such an analysis can be considered
a natural extension to convex bodies that are not necessarily symmetric with respect to the origin
of the so-called “transferrance” theorems of classical Geometry of Numbers [4 ,44]. We will first
describe a general setting for the study. Then we will describe some of the results and connections
to classical theory.

The result on the width of convex bodies free of integer points easily extends to general lattices.
Suppose L is an n dimensional lattice in R” and K is a convex body free of points of L. Let 7
be the linear transformation that sends L into the standard lattice Y of integer points. Then, 7K
does not contain any integer points and thus, there is an integer vector v so that the width of 7K
along v is at most say f(n). For any vector z in space, v.z equals T'v.77'z, so the width of K
along 7*v equals the width of 7K along v and is therefore at most f(n). By the same argument on
dot products, 7*v belongs to the dual lattice L* (cf section 2.4) of L. So, we have proved that if
K is a convex body free of points of a lattice L (this is refereed to as “L admissible” in Geometry
of Numbers), then there is an element y of L* so that the width of K along y is at most f(n).
There is another way to state this in terms of dual bodies (cf section 4). The width of a closed,
bounded convex body K along a vector y is the least positive real number ¢ so that y belongs to
t(K — K)*, thus the result says that if K does not contain any points of L, then there is a y in
L* N f(n)(K — K)*. This has the flavour of the theorems of alternatives like the Farkas lemma of
linear programming, Menger’s theorem etc. We will remark on this further later.

In classical geometry of Numbers, the following quantities are defined for any 0-symmetric
convex body K and lattice L in R™:
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Ai(K,L) = inf{t :tK contains ¢ linearly independent points of L}

and 3

p(K,L) = inf{t : tK + L = R"}

With V equal to the volume of K, it is easy to see from Minkowski’s theorems that

MK, L) < 2°d(L))V

As(K,L)Ay(K,L).. . A(K,L) < 2d(L)]V

;From the first inequality and its dual version, it follows that

A1(K,L)A1(K*,L*) < 4/(VV*)1/n

where V* is the volume of the dual body K* to K. It is a recent theorem of Bourgain and
Milman [2] that for any centrally symmetric convex body K in R" and its dual K* the product of
the volumes is at least (cn)™™ where ¢ is an absolute constant. (For a sphere of radius 1 and its
dual - itself - the product of the volumes is (dn)~" for an absolute constant d, so this result cannot
be improved substantially.) This purely geometric result, thus implies that

AI(K, L)Al(K*, L*) S c,n

(This was first observed in [34].) Suppose now K does not contain any points of the lattice
L other than the origin. Then, clearly, A;(K,L) > 1 and thus A;(K*,L*) < c,n; i.e., there is
a nonzero element v of L* so that the width of K along v is at most 2¢,n, by using the central
symmetry of K. Stronger results can be obtained by similar arguments using the second theorem
of Minkowski. Such theorems are called “transferrance theorems” - they connect the non-existence
of nonzero lattice points in a 0-symmetric convex body K with the existence of points of the dual
lattice in a dilation of the dual body, or equivalently, the width of the body K along dual lattice
directions. As stated at the outset of this section, our concern is to extend these results to convex
bodies not necessarily symmetric about the origin assuming they contain no points at all of the
lattice - there is, of course, no need now to include the origin. For this, we follow the developement
of Kannan and Lovasz [34].

They consider what they call the “covering minima” of a general convex body (i.e., one that
is not necessarily centrally symmetric) K in R™ with respect to a lattice L. For 2 = 1,2,...n,
they define the i** covering minimum p;(K, L) to be the infimum over all positive reals ¢ such that
({tz:z € K} + L) intersects every n — ¢ dimensional affine subspace of span(L). It is not difficult
to see that the covering minima are invariant under translations of K, so this definition makes sense
whether or not 0 belongs to K. Since, 0-dimensional affine subsapces are points, it is clear that
pn(K, L) is the “covering radius” defined earlier as pu(K, L) for 0-symmetric bodies. They prove
the “transferrance” theorem :

pn(K, LY A ((K — K)*,L*) < cn?

where ¢ is an absolute constant. This can be used to bound the width of convex sets K free
of points of L as follows : if K N L is empty, it is obvious that u,(K, L) > 1, thus by the above

*Notation : For two sets P,Q P + Q denotes the set {p+9 : pEPqeQ}
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transferrance theorem, A;((K — K)*, L*) < cn?, i.e., there is a nonzero element v in L* such that
the width of K along v is at most O(n?). We now give the simple proof of the transferrance result.

Let A, denote A;((K — K), L) in this proof and A} denote A;((K — K)*, L*) and p,, = p.(K, L)
(Note that (K — K) and (K — K)* are O-symmetric.) For the case n = 1, it is easy to see that
p1(K, L) = A; and thus the transferrance result easily follows. We proceed by induction on n. Let
v be acieve the first minimum of L with respect to K — K. After translating K appropriately, we
may assume that 0,v € A;K. Let V = span(v) and let K’ = K/V ;L' = L/V .* Then we assert
that

;un S ;u/n—l(K/aL/)—I_Al (*)

Let 4/ = p,_1(K', L"). Suppose pis any point in space. Let [ be the line through p parallel to v.
By definition, u' K’ 4+ L’ contains span(L)/V, thus 'K + L intersects . Clearly, it must intersect
[ at a point ¢ so that p — ¢ = av for some a € [0 1). Since 0,v € A K, we have p — ¢ € A, K,
sop=p-gq+qisin (g + A;)K + L. Since this is true of an arbitrary point p, the inequality
(*) follows. To complete the inductive proof of the transferrance bound, we have by induction
WAL (K™, L) <c(n— 1) and it is easily checked that K’* C K*; L'* C L*, so A(K'*,L™) > A}.
Further, as pointed out earlier A;A} < ¢,n, so p,A] < ¢,n + ¢(n—1)? and the transferrance bound
follows with a suitable choice of c.

In the case that K is a sphere, (*) may be replaced by the stronger

ph < A7+ (0)?
and it follows that

phn, < cn®l?

by induction, a result that was first proved by Lagarias, Lenstra and Schnorr [41].

As briefly mentioned in the introduction, the transferrance theorems have the flavour of theo-
rems of the alternative. Using these we can produce good characterizations in the sense of Edmonds
[12] for the closest vector problem (CVP), but only “approximate” good characterizations. This is
perhaps expected because of the NP-hardness of the CVP which means that a good characterization
for it would make NP=co-NP. We will make some definitions and explain this application.

Kannan and Lovasz prove some more general results bounding the other covering minima which
we do not go into here. They address the question of what more can be said of lattice free convex
bodies than the fact that their width along one direction in the dual lattice is small.

In an interesting paper, Hastad [22] has shown a transferrance result which is not subsumed by
the results mentioned so far. Suppose L is an n dimensional lattice in R™ and z is any point in
R”. Let d(z, L) denote the distance of z to the closest point in L. For any real number « let us
denote by {{a}} the distance from « to the nearest integer. Suppose v is any nonzero element of
the dual lattice L* to L. Since v.y is an integer for any y € L, it is clear that d(z, L) > {{v.z}}/|v|.
Khintchine {38] had shown that for any z, there exists a dual lattice vector v such that {{v.z}}/|v| >
d(z,L)/(n!)?. Hastad has replaced the (n!)? by n%, a substantial improvement.

7.2 Approximating the shortest and closest vectors

We say that a deterministic algorithm approximates the SVP to a factor of f(n), if given any n»
independent vectors by, b, .. .b,, the algorithm finds a nonzero vector v € L = L(by,b,,...b,) such

*Reminder : K/V is the projection of K orthogonal to V.
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that jv| < f(n)A;(L). We will say the same of a nondeterministic algorithm if it produces a nonzero
v in L and a proof that |v| < f(n)A;(L). (Note that if the time taken by the nondeterministic
algorithm is ¢, then the length of the proof is at most ¢.) Similar definitions are made for the CVP
as well.

Several relationships are known among these problems. Kannan [31] showed that if can solve
the SVP exactly in deterministic polynomial time, then we can approximate the CVP to a factor
of \/n in deterministic polynomial time. Lagarias, Lenstra and Schnorr [41] showed that we can
approximate the SVP to a factor of n and the CVP to a factor of n%/2 both in nondeterministic
polynomial time. We presently describe their algorithms, using the transferrance bounds.

Every lattice has a nice basis in the following sense. Suppose L is an n—dimensional lattice and
L its dual lattice. Let ¢y, ¢,,...c, be a K —Z reduced basis of L* and consider a corresponding basis
b1,bs,...b, of L (i.e., the unique by,b, ..., b, satisfying b; -c; = 0if 1 # n—5+1 and b; “Cpojir = 1).
Suppose as usual b},b},...b} are obtained by doing Gram-Schmidt process on by, b, ...,b,. Then
the following relationships hold ®

7 2 As(L)/n [0}] > pi(L(ba, by, . b3)) /)

We prove these now. Let V be the span of ¢;. Then it is clear that ¢y/V, cs/V,...c,/VisaK-Z
reduced basis of L*/V. Further, by,b,,...b,_; forms a basis of the dual lattice say L' of L*/V.
Clearly, Ay(L') > Ay(L), so using induction on n, we see that it suffices to show the two inequalities
for = = n. But, it is easily seen from the definition of by,b,,...,b, that [5%] = 1/|c;| = 1/A1(L*).
By section 2.4, we know that A;(L*)A:(L) < n, so the first inequality follows. The second one
follows from the transferrance theorem that u,(L)A;(L*) < n®/2.

For approximating the SVP nondeterministically, we just guess such a basis and in addition a
shortest nonzero vector. By the fact that A;(L) > min |b}|, the algorithm follows. For the CVP, we
again guess such a basis and by a remark at the end of section 5, we may approximate the closest
vector by enumerating at most one candidate.

In the deterministic case, it is possible to show using the transferrance bound that the problem
of approximating the CVP to a factor of n*2(f(n))? is polynomial time Turing reducible (i.e.,
Cook reducible) to the problem of approximating the SVP to a factor of f(n) for any nondecreasing
function f(n). Suppose we wish to find a point of a lattice L close to a point . First, observe that if
we can approximate the SVP to a factor of f(n), we can easily find an “approximately K-Z ” reduced
basis of a lattice L - i.e., a basis by, by, . . . b, such that it is proper and if 43, 43, .. .b? is the orthogonal
set obtained by Gram-Schmidt process, then |b]| < f(n—i+1)A;(L/span (b1,b;...5;_1)). Find such
a basis of the given lattice L. It is easy to find an element b € L such that |b— 2| < 2(3 [67]%)*/2
Also, it is easy to see that (L/ span (by,bs,...b0;,_1))* C L”, so that |b}|A;(L*) < f(n)c,nV i, whence
we have

|6 —z| < con3/2f(n)/A1(L*)

We may also find a nonzero vector v in L* such that |[v| < f(n)A;(L*). Let Ho be the hyperplane
nearest to z of the sort {y : v-y = 2}, 2z an integer. Suppose pis the closest point of L to z. Then
there are two cases to consider. If p does not lie on Ho, |p— z| > 1/(2|v]) > 1/(2f(n)As(L*)) >
1b—z|/O(n**(f(n))?) whence b is good enough as the answer. In the case that p does lie on Hy, we
can recursively find an element ¥’ € LN Hy such that [b'—2'| < O(n%2)(f(n))?|p—2'| where z' is the
projection of z into Hy. In this case, |b'—z|? = |b'—2/|?+|z—2']* < O(n®)(f(n))}|p—2'|*+|z—2'|® <
O(n*)(f(n))%p— z|? from which it follows that & suffices as the answer. Of course, we do not know

®For a lattice L, we let pi(L) denote pi(S, L) where S is the sphere of unit radius with the origin as centre.
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which of the two cases we are in ; but note that we can find b in polynomial time and recursively
also find &' and the closer of b,4' to z will suffice as the answer.

Babai [1] gave a polynomial time deterministic algorithm that approximates the closest vector to
a factor of 27/2 ; this follows from the previous argument and the Lovész basis reduction algorithm

with 6§ = 1/v/2.
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