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We give an upper bound on the number of vertices of Py, the integer hull of a polyhedron P, in
terms of the dimension n of the space, the number m of inequalities required to describe P, and the

size  of these inequalities. For fixed n the bound is O(m"tp"“l). We also describe an algorithm
which determines the number of integer points in a polyhedron to within a multiplicative factor of
1 + ¢ in time polynomial in m, v and 1/¢ when the dimension n is fixed.

1. Introduction and Notation

In connection with the family of integer programming problems

minimize ¢z
(1) subject to xz € P
x integral

associated with different cost vectors ¢, two sets of integer points are of fundamental
interest. One of these is clearly the set of feasible solutions to the problem (1), the
set of integer points in the polyhedron P. Techniques for solving (1) have taken

advantage of the equivalence between this problem and the linear programming

problem
minimize ¢fz

subject to =z € Py

where Py, the integer hull of P, is the convex hull of all integer points in P. When
problem (1) is bounded, it must have an optimal solution which is a vertex of Py,
and each vertex of Pr is the unique optimal solution of (1) for some ¢, so this set of
integer points is also a natural candidate for study.

It is easy to see that the number of vertices of Py cannot be bounded above by
any polynomial p(n,m) in the dimension n of the space and the number m of linear
inequalities required to describe P. In fact, there is no function f(n,m) with this
property. In order to obtain an upper bound, we must also consider the sizes of the
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cocflicients appearing in the inequalities which describe £ Following Schrijver [19],
we define the size of an inequadity a’# < 4 to he the mtmber of bits necessary Lo
encode it as a binary string,. .

Our algorithm for approximating the number of integer points in a polytope is
a modification of the integer programuming algorithim of Kannan [12], which relies
o concepts and results from the Geometry of Numbers, The necessary concepts
are outlined below (for proofs and further results in the Geometry of Numbers. sece
Cassels [2). Gruber and Lekkerkerker (9] and Lekkerkerker (13)).

A lattice £ in B is the set of all integral linear combinations of m linearly
independent vectors by, ... by,. which in turn are said to form a basis of £ . The de-
tertmanant d(£) of the lattice & s the m-volame of the m-dimensional parallelopiped
spanned by by b, (when nod(# ) is the determinant of the matrix with
columns by, by). A consequence of Minkowski's convex body theorem is that such
a lattice £ must contain a non-zero vector whose length is at most /m d(g)/m.

Let b7...., by, be the vectors which result from the Gram-Schmidt orthogonal-
ization process defined by &) = b; and

bl = bt = 5 (01 6/1183113)8;
fori=1,....m — 1. where || - |3 is the ly-norm. Then __@w__m is the distance from b;
to the subspace spanned by by...., b;_) and d(£) = sznh 67112 Kannan [12] gives
an algorithm which finds a Korkhine-Zolotoreff reduced basis bi...., by, for a given
lattice & . which has the property that by is a shortest non-zero vector in ¥ and for
j > 2. :ow:u is in fact the length of the shortest non-zero vector in the projection of
£ orthogonal to the subspace spanned by by..... b, ).

Finally. if §is a set of points, yis a vector and « is a scalar, then |S] is the
rardinality of S, conv{S} is the convex hull of §. S + y = {x+y:z€ S}is the
trauslation of S by y, aS = {azx: z € S} is the dilation of S by a factor of «, and
B(y.a) ={z: ||z - yll2 < a} is the ball of radius o with center Y.

2. Vertices of the Integer Hull

Shevehienko [20] and Hayes and Larman (11] obtained an upper bound on the
number of vertices of the integer hull of the knapsack polytope,

P={xeR": mﬂemmi\uw 0}.

where @ > 0 and 4 > 0 If the inequality a’z < 3 has size ¥, then the number of
vertices of Pris at most . This result can casily be generalized to give a bound on
the uumber of points of an arbitrary lattice ¢ contained in the knapsack polytope,
and ac noted by Sehrijver [19]. this inmediately yields an O(m™2") upper bound for
arhitrary polyhedra for ixed by triangulation. One is then tempted to ask whether
or not this bound 1s tight.

Provionsly. Rubin [18] found a class of knapsack polytopes in R? whose integer
hlls have an arbitrarily large number of vertices. The gth polytope in the class is
desceribed by the inequalities Fopr + Foriiy < Hum» w1~ Lo >0and y >0, where F),

::.

i~ the Fibenacel number. Rubin shows that the iuteger hull of the gt polytope

P
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has K+ 3 vertices, and the size of the inequality Fopa + Fyg gy < ».u..».t — Lis clearly

tincar in & Recently, Morgan [17) has obtained a elass of polytopes in B with i - 5
for which the number of vertices of the integer hull grows as »?, and more generally
Bardny, Howe and Lovisz {1] gave a construction which yields a class of polytopes
in R™ with 1 = 20% for which the number of vertices of the integer hull grows as
@1 These examples show that the order of ¢ appearing in the bound obtained
below is best possible.

Theorem 2.1. If I’ is a rational polyhedron in R™ which is the solution set of a system

of at most m lincar incqualities whose size is at most . then the number of vertices
of Py is at most 2m” (6n% )" 1.

e e - [

mvnco..wlsﬁ_ﬁs.; we may asswne that oo > 2 and that 17 has at least one vertex
{otherwise the conclusion is trivial). We will first establish a crude upper bound
on the “width™ of Py in the directions aj.....a,,. Theorem 17.1 of Schrijver
(19] (see the proof of Corollary 17.1a) implies that if v is a vertex of Py, then
lvlloc < (n+ 1)2204D7°% where || - || is the loc-norm. If we allow cach inequality
to have size at most np, we can assume that P is described by the mequalities
:We < b; for ¢ = 1,....m, where each a; is an integral n-vector, each b; is integral,
and all vertices of Py lie in the interior of P (we replace the inequality DWH MSE\

2D;a; © < 2D;b; + 1, where D; is the lowest common denowminator of the coefficients

of nmﬁa < b;). A rough estimate gives

b, — :::Tﬁ.N v:ivis avertex of Pr) < 2™ 42 (g 4 1)22n %y

< Nm:uﬁ.
Next we choose real numbers 61, ..., 6,, such that
£ 2 e
(2) 270, — :::T:N T:xis avertex of Pp}) <0, <1
for i = 1,...,m. We first choose #; = 1, and then inductively suppose that the
T

values 6], ....60; have been chosen in such a way that the hyperplanes {z:a z=
by — 29i6;} for j; = 1,....5n%p and i = 1,... k are in “general position,” i.e.. no
7 hyperplanes of this form intersect in a set of dimension n — 5 + 1 or greater, for
J=1,...,min{k, n} + 1. Since there can be at most finitely many values of fr41 for
which the inductive hypothesis fails to hold for k£ + 1, we can choose a value for Or 1
in the interval (2) which satisfies the inductive hypothesis for k + 1.

Now for cach vertex v of Py and cach index i = 1... ., m there exists an integer
Join {12000, 508 ) such that by, — 2440, < :Mﬁe < b, = 200719, Let

Py jm) = a& b, 27y, < QN,HM by, ~ w.:\_S;\ lo.ooom

L

for integers ji. ..o {1200 5n%p}). Lovisz [15] calls each Pl .gm) a
reflecting set {Hayes and Larman [11] used similar sets, but called them “boxes.”

since theirs were rectangular). The name “reflecting set™ refers to the fact that the
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reflection of any point p in P(ji,. .., jm) about a point ¢ in P(j1,.--,Jm) {(which is
2q — p) lies in the polyhedron P, since

ol (2q - p) = 2al g— ol p < 2(b; — 2716;) — (b; — 216:) = b;

for i = 1,...,m (this is illustrated in Figure 1). Note that no reflecting set can
contain two distinct vertices of Pp; if P(j1,...,Jjm) contained the integral point
y # v, then reflecting y about v we obtain the integral point 2v — y which lies in Py,

contradicting the fact that v is a vertex of Pr.

NN AN [/

NN
NN N

Fig. 1. Reflecting in a reflecting set

Define the polytope
2
P = AS“FIM,«E ¥e; < Q.NJHM b; — 0;, &HH,...,SV

5n? 7

= U PG

Fraendm=1

. jm) C P

If P is bounded, then P’ is described by the inequalities awa <b;—8;fori=1,...,m
and (P'); = P;. On the other hand, if P is unbounded, then we must work with the
convex hull of the vertices of Py, which may be properly contained in (Phy.

Let U = {w u is a vertex of some Py, .- jm)}, and call an element of U
a boundary verter if it lies on a face of the polytope P'. If Py has M vertices,
we will show that there arc at least M boundary vertices by assigning the labels
1...., M to some of the reflecting sets in such a way that we can associate each label
with a unique boundary vertex. Since there can be at most 2m Aﬁ,.wu:m:mﬁ + ::|~
boundary vertices, this will prove the theorem.

Let v, ..., vas be the vertices of Pr. and let Neonv{vy,....opt={ur, ..., un}
We will also assume (without loss of generality) that u; geonv{vi,...,UrL UL, - - U1
for j=1,...,N (choose u, to be an extreme point of conv{vy, ..., Vp UL, ..oy w;}
for i = N.....1). For ecach k = 1,.... M pick a reflecting set which contains vy and
is not contained in conv{v....,vpr} and give it the label & (such a reflecting set

e PR

sy wmare,
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always exists, since otherwise vy would lie in the interior of Py, a contradiction).
These reflecting sets must be distinct, since no reflecting set contains two vertices of
P;. Next we describe a procedure which constructs M disjoint connected sequences
of similarly labelled reflecting sets by adding the points uy, . . ., uy to the convex hull
one-at-a-time. The kB sequence begins with the labelled reflecting set containing
v, and ends with a reflecting set that contains a distinguished boundary vertex.
Let Ry, ..., Ry be the reflecting sets most recently labelled 1,..., M, and sup-
pose that for some i, each of these M reflecting sets intersects but is not con:
tained in conv{vi,..., UM, Uls---; 1;}. Let j be the smallest index for whicl
R; C no:ier...,SS,E,..;EV for some k which has not yet been associatec
with a boundary vertex. Note that the point u; must be a vertex of Ry, since oth
erwise Ry C conv{vy,...,vp, Ul,s-- s u;_1}. It follows that for any point z # u; ir
Ry, the point 2u; — T must lic outside of conv{vy, ..., vp, U1, - s u;}, since u; car
be expressed as a convex combination of the points 2u; — z and . Because u; lie

on exactly n hyperplanes of the form {z: :m,s = b; — 27i6;}, the index k must bi
uniquely determined, and we have one of the following two cases:

Case 1: The point u; is a boundary vertex. In this case, we associate the label
with uj.

Case 2: For all z € Ry, sufficiently close to u; the points 2u; — z lie in an unlabelle
reflecting set R for which RN conv{vy, ..., Um, ¥l,-- -, u;} = u;. In this case, W
give the reflecting set R the label k.

Because there are only finitely many reflecting sets, the procedure can be applie
only finitely many times, so since the points 1y, ..., uy are added to the convex hu
one-at-a-time, ultimately a unique boundary vertex is associated with each label k.

Remarks: (2.2) In case Py is not of full dimension, the bound may be improved. |
P has dimension 0 < d < n, then by an analogous argument using d-dimension:
reflecting sets which lie in the affine space of Py, one can show that the number ¢
vertices of Py is at most 2md(6np)d1.

(2.3) Together with the Upper Bound Theorem [16], our result implies that th
number of facets of Py is OAG?T:?\NJ. The polytopes constructed by Béran
Howe and Lovisz [1] have (™" !) facets. Whether or not the number of facets
Py is also O(¢™1) is an interesting open problem. o

(2.4) The decomposition of the polytope P’ into reflecting sets when 6y = - -~
f,, = 1 can be used together with Lenstra’s algorithm [14] for integer programiiz
to find a list «;, ...,z of integral points which contains the vertices of Py, since
reflecting set that contains more than one integer point cannot contain a vertex
P;. This yields an O((mg)*™) algorithm which finds the vertices of P; when n
fixed (sce Hartmann [10] for details).

(2.5) If the polytope P is only given by an optimization oracle, we can st
find the vertices of P; in time polynomial in p and the number of vertices of
when n is fixed using a slight generalization of a method used by Edmonds, Lova
and Pulleyblank [6] to find the affine hull of a polytope given by an optimizati
oracle. Given a partial list of vertices of Pr, we first find a list of inequaliti
am,H < by, i = 1,...,m which describes their convex hull, and then find vertic
ﬂ

of P; maximizing a,

zover Ppfori=1.....m.
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3. Estimating the Number of Integer Points

It is easy to see that determining the mumber of integer points in a polytope is
# P-complete, since determining the number of matchings in a bipartite graph is 4 P-
complete [21]. There is, on the other hand, the possibility that when the dimension n
is fixed the number of integer points in a polytope described by m inequalities of size
at most @ can be determined in time polynomial in m and ¥. In a series of papers,
Zamansky and Cherkassky [22-25] develop algorithms for determining the number of
integer points in a polytope. In [23], they describe an algorithm which determines the
number of integral points in a polytope in R2 described by 11 inequalitics of size at
most ¢ in time O(myp) and in [25] they give an algorithm that determines the number
of integer points in a polytope in R3 which is, however, not shown to be polynomial.
Recently, Dyer [4] has given several reductions of the problem of determining the
number of integer points in a polytope. He first reduces this problem to the problem
of determining the number of integer points in polynomially many integral simplices
using the algorithm described in Remark (2.4), and then further reduces the problem
of determining the number of integer points in an integral simplex to the problem
of determining the number of integer points in O(n!) integral simplices of a special
type. Generalizing a method of Mordell, he shows that in R3 this reduces to the
computation of Dedekind sums, which can be evaluated in polynomial time, yielding
a %055055_ algorithm for determining the number of integer points in a polytope in
R, He also reduces the problem in even dimensions to the next lower odd dimension,
which yields a polynomial algorithm for determining the number of integer points in
a polytope in R4, Whether there is a polynomial algorithm in dimension n > 4 is
unknown.

We will give an algorithm which estimates the number of integer points in a
polytope to within a multiplicative factor of 1 + ¢ in polynomial time when the
dimension 7 is fixed. More precisely, we prove the following theorem:

Theorem 3.1. For any fixed integer n > 1, there exists an algorithm that, for any
polytope P described by m inequalities of size at most @ and any positive rational
number ¢, finds, in time polynomial in m, ¢ and 1/e, two integers L and U such that
L<IPNIY<U andU < (1+¢e)L.

Proof. First we do some preprocessing to ensure that the polytope is “well-rounded.”
Asin Lenstra’s algorithm, we determine whether the polytope is full-dimensional, and
if not, find a unimodular tranformation which projects it down to a lower dimensional
space in which it is full-dimensional. Then an invertible linear transformation is
applied to both the polytope and the integral lattice so that the polytope gets
sandwiched between two concentric spheres whose radii differ by a multiplicative
factor of n3/2. Since all of the preprocessing is described in Grotschel, Lovasz
and Schrijver (8], we will simply state precisely the problem at the end of the
preprocessing: Given independent rational vectors vy. . . . . vn and a rational polytope
P. find integers L and U such that L < |P NL| < U and U < (14 ¢)L. where £ is
the lattice gencrated by vy, . ... v, and the following additional condition is satisfied
Ly the input: There is a rational vector p such that B(p,1) C P C B(p. :u\sv.

At this point, Lenstra’s alogorithm uses Lovdsz's basis reduction algorithm
to find a reduced basis by ... .. b, of the lattice £ which has the property that

INTEGER POINTS IN POLYHEDRA

T bl < azngﬁmv. Then if Bmx:?:_w.,..;__o:__i is sufficiently small,
can casily obtain a point £ € PN&. Otherwise, the number of certain hyperpla
containing lattice points which intersect P can be bounded ,5\ a :_‘::;:, ;crcm:.
only on n. It is not difficult to modify this part of Lenstra’s &mo::::,no esti
the number of lattice points in P, since if max{||bi||2,..., | bnl2} is sufficiently sn
the number of lattice points in I is very nearly vol{P}/d{£ ). However, the modi
algorithm has an Qﬁzmn%ml:v running time. OQur algorithm, which is a modifical
of the integer programming algorithm of Kannan [12], uses a stronger reduced b
to cut the running time down to O(ne~™). The bulk of the proof of Theorem
ill be broken up into Propositions 3.2-3.6. .

" We use the Mmolﬁ:: %mowﬂ_mmﬂ of Kannan [12] to find a Korkhine-Zolotc
reduced basis by, ..., by of the lattice £ (since SHORTEST requires ESMH.E inj
the vectors vj,..., v, are first multiplied by the _o.émmﬁ common amzoEEwao_
of their components, and subsequently the vectors in the noaﬁooa basis Mo::a
SHORTEST are multiplied by D™!). Letting ||bf||2 = max{||b]]l2,...,[|b4]l2}
6 = min{e, 1}/4n, we consider the following two cases:

Case 1: ||b]|2 < 28/+/n. In this case, we give the lower and upper bounds explici

Clmvaee:ﬁw G+3:ec~tuw._
d(£) (<) ,

where vol{P} is the volume of P. When the dimension n is fixed, vol{ P} can

computed in polynomial time (see Cohen and Hickey [3}), so the bounds olmwﬁ

computed in polynomial time. We also have (1 + §)™/(1 - H* < (1 - 3

(1 —2n8)"1 <1 +e¢. To show that the bounds are valid, we first note that if

1 - _
mnAMTS&”;WmSAu;|r:;i,

then R has volume d(¥), R is contained in B(0,0) w:a.erm rectangular pri
{R+z:z €L } form a partition of R™. In the first proposition below, we show t
if z € PN, then a slight dilation of P about p contains R + . In the mmnoca,
show that if £ € PN, then a slight contraction of P about p %.uow not Ewcz
R+ z. Propositions 3.2 and 3.3 are Propositions 1 and 2 of Dyer, Frieze and Kan
[5], although the proofs we give below are new.
Proposition 3.2. : If z € P, then B(z,6) C (1+ 6}(P — p) + p.
Proof. Without loss of generality, assume that p = 0. Let y satisfy {|yll2 < 6. Si
z € P and y/||yllz € B(0,1) C P, the point

1 1 lyll2 v

= T +
T P e P A P e P

lies in P. Then 1+ |ly|l2 < 1 + 6 implies that z+ y € (1 + §)P.

For any € PN, we have R+ 2 C B(z,é), 0o R+ C (1 +A)(P—-p)+phy
above claim. Therefore,

AP NL] < vol{(1+8)(P —p)+p} =1+ vol{P},

T_EEL

which gives the upper bound.
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Proposition 3.3. If B(x,6)N(1 - 8§)(P —p)+p # 0, then z € P.

Proof. Again we may assume that p = 0. Suppos )
; = 0. ppose that ¢ — 2z € (1 — 8)P
lzll2 < 6. Since (1 —8)P C (1 — ||2ll2) P and z/||2|| € B(0,1) C P, A P and

T— 2z z
z = (1-|z|2) +l2ll2
I F P P
expresses T as a convex combination of two points in P. ]

Since R+ = C B(x, ), applying this to those z in PN i i
= 1 O impl s #
(1 — &) vol{ P}, which gives the lower bound. plies that AP N 2] >

. * y I M 1
Case 2: [16f 2 > 26/vn. In this case, we will argue that the number of certain i — 1
a:.dm:m_o:& affine spaces intersecting P is small. Since every = € £ can be expressed
uniquely as €= 210y + - - + 2, by, with 21,..., 2, € Z, we have

P2 = 3 {IP@) N2 by = 5bit o+ 2nbu, iy € 2],

— —1 .
where Nu?ovzﬁ {ye R y1b + -+ Y101 + by € P}. If we can find a finite
mc.wmma T m _ mmcow that |P(by) NZ*~1| = 0 for all such by &€ T, then the algorithm
will recursively find numbers L(by) and U(by) such that L(bg) < |P(by) N2~ <
U(bg) and U(bg) < (1 + €)L(bg) for all by € T, so we can set L = _MM @W L(bg) w_cm
U= Mugm%Q;ov. The following proposition, which is similar to w%%o&ac: 2.13
of Kannan {12, indicates how to generate the subset T

NH.M&MQHSMEMLNGQ:@%Q% »an Zj4l:-- - 2 are fixed integers for some j > i. Then
er Z; such that for all integers Yt,.--,Yj—1 and z; for which

j— .
Il 305 wkbe + ke 2k br — pll2 < n%/2, we must have

oz < 208
= %] < —m—-
ello71l2
Proof. Since by,..., b; jecti
ince by,...,b;_1 are orthogonal to the vector owx. projecting the vector

Muwaww yrby + MMHu 2 by, — p along the direction @w, we obtain the vector (z; —%,)b%
where Z; w is the projection of the vector p — anui zi by, along the &nMoSom vﬁ
We must have |z; - MN.___vw__w < n3/2 50 that ’
O D PO T T
(6512~ 201165112 = ellbll2
This can be used as ﬁ_c basis of a recursive procedure which generates the values of
Zys ... 2n corresponding to by € T.

N

IN

l2j — %]

Proposition 3.5. At the end of the procedure.

m Aiu:@w:m . Amzvizll.:\w

Tzl T

T

IN

j=

INTEGER POINTS IN POLYHEDRA
Proof. The first part follows from Proposition 3.4. For the second part,

. PP —it1
] (Al ) o 0 I
AT I VR L

j=i
Then because by, ..., by is a Korkhine-Zolotoreff reduced basis, [16; 112 1s the les
of the shortest non-zero vector in the lattice which is the projection of £ orthog
to the subspace spanned by bj,...,b;_1. Since Ewuw __vw__m is the determinar
this lattice, Minkowski’s convex body theorem implies that
Am:vuA:IH{T:AS\ — i+ :A:II.C\M Aw\;vi:ls..*.:\w
T} < en—it1 TS M

Proposition 3.6. For any fixed integer n 2 1, the running time of the algorith
polynomial in m, ¢ and 1/e.

Proof. The proof is by induction on n, the case n =1 being trivial. By Coroll
5.3b and 15.6a of Schrijver [19], the preprocessing can be done in time polyno
in m and y; therefore vj,..., v, P and p must be of size polynomial in m an
Theorems 2.16 and 3.9 of Kannan [12] ensure that the algorithm SHORTEST
in time polynomial in m and .

In Case 1, the numbers L and U can be computed in time polynomial in m
. In Case 2, we first note that the numbers Z; from Proposition 3.4 can be comy
in time polynomial in rn and ¢, since the vectors vw themselves are computed in
polynomial in m and ¢, and the vectors bjy1,. .., b,, and p are all of size polync
in m and . By Proposition 3.5, we have to estimate the number of integer poirn
m:vizlis\mml?ilc polytopes in Ri~! and by the induction hypot

at most (
this can be done in time polynomial in m, ¢ and 1/e. since the polytopes P(by

be described by inequalities of size polynomial in m and .

Remarks: (3.7) As in Kannan [12], a more careful analysis of the running
shows it to be O((2n)™2e™™).

(3.8) This algorithmn can be modified to estimate the number of integer poi
any bounded convex body K given by a well-guaranteed (strong) separation o
First of all, if K is well-rounded, then for any 0 < p <1 the volume of K c:
estimated by p"|K N pl™| using Propositions 3.2 and 3.3, which can be comj
in O(p~™) calls to the oracle when n is fixed. It is also an easy matter to cons
a separation oracle for the intersection of K with an affine space. The only
difficulty is in obtaining a guarantee, but the ellipsoid method can be used tog
with simultaneous diophantine approximation (as described in Grotschel, Lovas
Schrijver [8]) to find a maximal set of affinely independent points which lie in t
the convex hull of those lattice points contained in the intersection.

(3.9) For any integer-valued polynomial p(n), the following problem is NP-

BOUNDS: Given a polytope P = {z: Az < b}, find integers L and U suc
that L < |[PNZ" +1<U and U <2PML

First note that this problem is easier than the corresponding problem with
27| 4 1 replaced by |P N Z™|, for which there is a trivial reduction from INTE

PROGRAMMING FEASIBILITY.
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The reduction will be from SUBSET SUM, which is known to be NP-complete
(see Gary and Johnson [7]). Let non-negative integers ag,...,an and b give any
instance of SUBSET SUM (i.e., decide if there is a set [ C {1,...,n} such that
Ms.mx a; = b). Without loss of generality, assume that ay,...,a, and b are all
positive. Let P C R™2 consist of those (z1,...,Zn,y, 2z) for which 0 <z; <1 for
t=1,...,n,y>0,2>0,y+2< M-1, and Yo Moz, +y+2=Mb+ M — 1,
where M = 2P(") 4 1. 1t is casy to see that _NuDN:+w* = MN, where N is the number
of solutions to the instance of SUBSET SUM, so that L > 1 if and only if N > 0.
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