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Abstract. (a) We prove that the convex hull of any k?+ 1 points of a d-dimensional
lattice contains k + 1 collinear lattice points. (b) For a convex polyhedron we consider
the numbers of its lattice points in consecutive parallel lattice hyperplanes (levels).
We prove that if a polyhedron spans no more than 2471 levels, then this string of
numbers may be arbitrary. On the other hand, we give an example of a string of
2"+ 1 numbers to which no convex polyhedron corresponds in RY.

1. Preliminaries

Problems of counting lattice points in polytopes have gained considerable atten-
tion (see, e.g., [GW] and [S]) due to their relevance to integer programming and
computer algebra. This paper gives some insight into possible arrangements of
lattice points in linear and hyperplanar cross-sections of convex polyhedra. Earlier
considerations of the problems discussed may be found in [KM].

Consider the space R? with its unit vectors ¢!, ..., e’. Z is the common notation
for the set of integers. For a set S of R? define Z(S) to be the set of its integer points.

A lattice L in R* is a discrete subset of R? such that there exists a basis
{v',...,v'} of R* and

d
L=<% k' ky.. . keZp

i=1

In what follows, we consider the lattice to be fixed and lattice point coordinates
will be given with respect to the corresponding basis.

Conv(S) denotes the convex hull of S. The point set S is said to be convexly
independent if all points of S are distinct extremal points (vertices) of conv(S).
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2. Collinear Lattice Points in Convex Hulls of Lattice Point Sets

We start with a theorem which is Just a special case of Theorem 2, but we would
like to consider it separately due to its simple elegancy and for other reasons stated
below.

Theorem 1. The convex hull of 2+ 1 distinct lattice points in R* contains at least
three distinct collinear lattice points,

Proof. For a lattice point X = (*15-.., x,) consider its coordinates modulo 2,
ie, let (iy,...,i) be a (0, 1)-valued vector such that Xj=ij(mod 2),j=1,...,d
Clearly, there are only 27 such distinct (0, 1)-vectors. By the pigeonhole principle,
among the 2+ 1 given points there are two of them, say, P and Q, with coinciding
modulo 2 coordinates. The midpoint M = (P+ 0)/2 has integer coordinates, and
the points P, M, and Q are the required collinear ones. 0O

Corollary 1. The convex hull of 2°+1 convexly independent lattice points in R
contains at least 2*+ 2 distinct lattice points.

There are two possible extensions of Theorem 1.

Theorem 2. The convex hull of k*+ 1 distinct lattice points in R? contains at least
k+1 distinct collinear lattice points.

Proof. Consider lattice point coordinates modulo k and proceed as in the proof
of Theorem 1: There are only k“ possibilities, hence, there exist two given points
P and Q such that Q=P+k+T, where Tis a nonzero lattice vector. Hence, P,
P+T, P+2T,... P+kxT are the required collinear lattice points. 0

Similarly to Corollary 1, we might state

Corollary 2. The convex hull of k'+1 convexly independent lattice points in R
contains at least k* +k distinct lattice points.

However, Corollary 2 gives a rather weak estimate in contrast to Corollary 1
and this is the first reason to consider Theorem 1 separately. The second reason
is that Theorem 1 seems to admit another way of extension.

Hypothesis 1. For any positive k < d, the convex hull of 2°+1 distinct lattice
points in R* contains at least 2+ 1 distinct lattice points in some k-dimensional
plane.

Note. Theorem 1 isin a sense the best possible, for there do exist 2¢ lattice points
(namely, the vertices of the unit hypercube) with no three on a common line. The
same is true for Theorem 2.
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A less graceful but more tight extension of Corollary 1 is

. . . . . d o A
Corollary 3. The convex hull of k*+1 distinct lattice points in R? with no k of
them on a common line contains at least k* +k distinct lattice points.

3. Lattice Points in Consecutive Levels of a Convex Polyhedron

The exposition in this section is in terms of the integer lattice, for convenience.
However, all arguments are of mw affine character, therefore the results remain
i an arbitrary lattice in R%
<m~mun”. W_.cm a co::anm convex polyhedron in R%. Consider the mmn_cnsm.m of s::.&Ma
of integer points in the cross-sections of Z(P) by hyperplanes x! = i for all m Mﬂ
{a,,...,a,> be its contiguous substring such that a and a, are the maﬂ.m: the
last nonzero elements. The corresponding cross-sections are called the levels oﬂ P.
The strings {a,,...,a,> have been oosmam.nma in [M] and [KM] for defining
equivalence classes on the set of all integer linear programs. . .
A string of nonnegative integers is called &.-v&._sm&x& if there is a convex
polyhedron in R? generating it in the way described above. . ~
A natural problem is to characterize the set of d-polyhedral strings. We give a

partial answer here.

Lemma 1. If strings a=<{a,,...,a) and b=<b,,..., b, are d-polyhedral,
then their concatenation

AQT...«Q—C @T...«@S_V

is (d+ V)-polyhedral.

in R? ing d b, respectively, and
Proof. Let polyhedra 4 and B in R? generate mSa.nm a and b, .
R mm\mcmﬁoga to be naturally embedded in R**!. Now we construct the desired
(d+1)-polyhedron. Let xy, be the largest x'-coordinate of Z(4), and let x, be the
smallest x'-coordinate of Z(B). Define Shift = x, — x,, and

Ushige = (Shift + 1, 0,...,0)e R4,

i i / i lane x*! = 1.
Then B' = B+vg,;,+€**! is the shifted copy of B in the hyperp
Consider the Uo_w&mano: C = Conv(4 u B'). Note that NAO = Z{4)u Z(B")
because C lies entirely in the slab 0 < x*! < 1. Now it is easily seen that the

polyhedron C generates the required concatenated string. 7

Theorem 3. Let d > 2 and k < 2°7'. Then each string of nonnegatice integers of
length k is d-polyhedral.

Proof. By induction. For d =2 the statement is evident. If k <2972 then
Theorem 3 holds by the induction hypothesis if we observe thata d — 1-polyhedral



........ SUsev anu v v velelsky

“H_.sm \_.M&mo a m-vo_v&naam_ one. Otherwise, if 2772 < k < 241 then & k1 +ki2
= - &I. 1 . St i N
e _oMMmEm \M m:M:MN»NaM umn ~.~. ~_b~ Mm mv~_~: the original string into two mcdminmm.
) clvely. By the induction hypothesi
d — 1-polyhedral, hence the claim of Theorem 3 follows WMVB PMM,MM“. e comg

We may readily suspect that so i
me sufficiently long stri
polyhedral. (Actually, as we shall see below, the length N,Tm_ + _=“<mm_ M“Vmwmco cver.
counterexamples are not so evident as may seem. From the cases d = 2 .u e et
conclude that sufficiently long strings of type T oo e misht

{Largel, 1, 1,...,1, Large2)

MMMM%M MM:MOMW:%M_. However, this is not the case. In fact, all of them are
~potyhedrall Actually, the consecutive substrin _

gs {Largel), (1, 1, .
and {Large2) are clearly 2-polyhedral. Now we apply the Bo_,m_.ﬂm _W:M:.m_ .ﬁ.m.:..%vm

H- ﬁor—Oﬂ no O—UnNh: z-a w ﬁou :0&—”— str n N\NSQmH H R — :m t N.:Q
v~
m A 3 Ay, v S HTO—,— 970

{Largei, 1,1, ..., 1, Large2),
Thi . ,
his example, however, gives a hint of the possible structure of an unfavorable

m. W
m-:.~ 1t 18 not €nou : —O_ 1t to GO ::: =~m~Qﬂ» 1t must N~mo UQ concave

Definition. A function U(x) i
: - s defined , . . .
any integor x1, 2 from ) ned to be strongly concave in domain D if, for

Ux1+x2)/2) < (Ux1) + Ux2))2 — 1.
For example, Uj(x) = K,x>3,k>2is strongly concave.

Denote 7= 241,41,

Theorem 4. Let Ui) be an inte

Let ger strongly concave ti inter
TM .:.: .3&@@:@ the conditions U2) < U(T — 1), QA“WSHQ M\QAMgoM M\\_ M, SRWEN
an QSNNLHM,..;HN.\RS the string =T

S={UY+1, UQ2), U3),..., UT - 1), (U +1)
is nonpolyhedral for d > 2.
(For example, function 7= satisfies the conditions.)
Mh.mﬂe_\mﬁ_OWmmEQ z:_w contrary and let P be the polyhedron generating S, with its
eing at x* = 1. By Theorem 2, U1) integer points on a no::.do: line

can be found in level 1, the same hold
, s for level T ing li
segments by L. g 1., Fespectnty (J Denote the corresponding line
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(a) First we prove that L, is parallel to L;, and, what is more, at each
intermediate level of P the integer points lie on a line parallel to L,.

Assume the contrary: at level i, 3 < i < T, some two (U(i) = 2!) integer points
lie on a line not parallel to L,. (The case { = 2 may be considered afterward in a
symmetric way, with respect to Lz) The shortest segment of this line with
endpoints in Z(P) is denoted by L.

Consider the three-dimensional integer sublattice whose basis consists of e, I
(the directional vector of L), and /' (the shortest lattice vector of L,). Consider
the projection of the tetrahedron determined by L, and L; on a plane normal to
L,. The area of the resulting triangle (measured in the basis {e',F}) is not less
than one unit (because we have taken i > 3). Therefore, this triangle contains at
least one lattice point at level i — 1 of P. Hence, in the tetrahedron this point

corresponds to a segment in direction /' of length at least
ILyl/i = |L)/T = U(L)/T > U(Q)

lattice units. However, by strong concavity of function U and the conditions of
Theorem 4 no intermediate level of P may contain more than U(2) integer points.

(b) Now we know that at all levels of P, integer points must lie on lines paraliel
to L,. Denote the corresponding line segments similarly by L,, ..., Lr_,. Consider
the projection M: R? — H, where H is a hyperplane normal to all these L,. This
projection maps the lattice Z¢ onto a lattice Z in H. The segments L; are mapped
into the points Q; of Z,,.

As in the proof of Theorem 1, among T =2¢*'+1 points {Q;} in a (d — 1)-
dimensional lattice Z, there exist two points @, and @, such that
Q0 = (Qx+ 0n)/2€ Zy. The lines M~*(Q,) and M~ '(Q,) contain Uk) and U(m)
integer points of P, respectively. By convexity, M ~(Q) must contain at least
(Utk)+ U(m))/2 — 1 integer points of P, but this contradicts the strong concavity

of U, hence, Theorem 4 is proven. d
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