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This paper considers parametric integer programming where the constraint matrix is fixed and we wish to solve the

problem repeatedly for different right hand side vectors. This arises in many contexts, for example, in production
planning, the constraint matrix may be determined by the technology etc. that generally remains fixed over a
long period of time, whereas the right hand side vector may vary depending upon the demands or availability
of resources both of which are more volatile. In these contexts, therefore, it makes sense to spend possibly a
large amount of time preprocessing the matrix A so that then as cach b comes in, we can rather quickly find the
optimal or a feasible solution to the {nteger Program. WWe show here the following result: Suppose we are given
the (m x n) constraint matrix A, an objective function ¢ and some affine set P in IR™ over which the right hand
side vector varies. Let 7 be the (affine) dimension of P. After “preproc ing” A and ¢ for time bounded by (a
polynomial in the length of the data)™ "7 we arc able to find the optimal solution to the Integer Program

maximize  ¢- 1

subject to Az < b

for cach input right hand side vector b in P by a parallel algorithm that uses (a polynomial in the data)”(“”)

processors and takes time O(n(log(length of data})). The parallel algorithm is derived from a structural result
for Integer Programming which is in some sense analogous to the existence of a basic feasible (optimal) solution

to a feasible (feasible and bounded) Linear Programming problem.
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1. Introduction

For linear programming, we know that if the constraint matrix is fixed, the optimal solution

E‘fiﬁi i,“,,%ﬂpif’rcqvisg linear fashion as the right hand side varies. This is s0 because, each basic
Iolulx?n can be expressed as a linear function of the right hand side vector and we know that if
lhcre_ s an optimal solution. there is a basic feasible one. Thus given a fixed constraint m x n
?:lnx A we can find matrices 77,5, ... T%. such that for all &, the optimal solution to the
uzzl;i);agra;‘n maxe - z : AI <b i? the one of T1b, Tab,. . Tkb, namely the one that is feasible
e b fofl\x-;(li © szvst objective function value. We also know that k is at most (7) and all the T}
In time at most poly(m"). (In fact, better upper bounds on k are available using

upper bound theorem.)
: n this paper. we show an analogous result for Integer Programming which is used to derive
}:‘gjﬁlioilgiznthm.s To state this result, we define a “(generalized) floor function” below.
S recursive.
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Definition.

* Any affine (linear + constant) function f:IR™ — IR™ is a floor function.

¢ A constant times a floor function is a floor function. The sum of two floor functions is
a floor function. )

e The floor of a floor function is floor function.

Definition. The depth of a floor function is the depth of nesting of floors in the function. The
size of the floor function is the length of its description, where all constants are written in binary.
The depth can be better understood by thinking of the floor function as a circuit with gates of
three types: sum gates (each with two inputs), multiplication by constant gates (each with one
input) and floor gates (one input). The depth of the function is the minimum over all circuits
that compute the function of the maximum number of floor gates on any path from an input to
an output in the circuit.

In this paper, we show that given A, ¢ which are fixed m % n and 1 X n matrices of integers
respectively, and a set P in IR™ of affine dimension J over which b, the right hand side vector can
vary, we can produce floor functions f;, f,, .. S :IR™ — Z" such that for all b € P, the optimal
solution to thgﬁ»lx}@ggew .z Az < b5

lutic +z: Az < bis the one among fi(b), fo(b),. .. fi(b) that

is feasible nd attains the best objectivé function value; each floor function is of depth at most

n T 1. Further the algorithm runs in time (poly(length of data))™*+1) Of course this means

that k is also bounded by this amount. Further, the size of each fioor function is bounded above
by (poly(n))™x (length of input). Clearly, then the optimal solution value as a function of b can

be expressed as max{c- f;(b): Afi(b) ;b} Once we have these floor functions, it will be seen

{ that using known techniques, we can get the parallel algorithms claimed.

There are earlier results of Blair and Jeroslow [2] (and many other authors - see for example
(12]), that study the optimal solution value as a function b. [2] shows that the value function
Is the minimum of a finite number of floor functions each of finite depth and size; their proofs
use cutting plane techniques and the floor functions that arise are called Gomery functions.
Unfortunately, however, the actual bound on their number is exponential in the length of the
data even for fixed n; one of the main contributions of this paper is to get bounds that are
polynomial for fixed n. While our results have this superficial similarity with those of [2], the
techniques are quite different and in a sense also the results: their results essentially get a hold of
all the facets of the convex hull of the integral feasible points and then apply linear programming
duality. (Hence we get the value function as a minimum.) Ours on the other hand, produce
what we may cdll a “test set” for the integer program, i.e., a set of candidate solutions for the
optimum, so that one of them (of course the best feasible one) is guaranteed to be an optimal
solution. (Chvatal [3] defined the rank of a polytope to be (essentially) the minimum d such
that all facets of the convex hull of the integer points in the polytope can be defined by floor
functions of depth at most d. His main result in [3] was to show that all polytopes have finite
rank. In a sense, here we are arguing that the rank is at most n+1; but where we are interested
in a test set rather than the entire convex hull of the integer points.)

The arguments in this paper follow the lines of two papers—(6] and [7). Many ideas are similar
to these papers, but the emphasis there was a uniform description of the test set as b varied
over P. To get this, those papers had to partition P into doubly exponential (in »,7) number of
pieces and further the description of each piece was not amenable to be processed by a parallel
algorithm. Here, the task is simpler - rather than a uniform description, we are looking for
something which will work for each given right hand side in P. Thus we are able to get rid of
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the double exponential dependence; also we are able to get a closed form description with floor
functions whercas there the descriptions were implicit with extra integer variables.
It would be interesting to use these results to do some sensitivity analysis - i.e..figuring out

what “local” crl}gx‘x}g_eshtqjl_):lzé;\'/-éTfle (feasible) optimal function f; unchanged, so that a new
optimal solution can be easily computed. This line of investigation will be pursued.

Tools from the geomelry of numbers

Here, we introduce some tools needed.
Suppose K is a closed bounded convex set in IR™ and v is an element of R™. The width of K
along v is

max{v-z:2 € K} —min{v-z:2 € K}.

The width of K (with respect to the lattice Z™ ) is defined to be the minimum width of A" along
any nonzero integer vector. Note that this differs from the usual definition of the geometric
width of K, where the minimum is over all vectors v of length 1, rather than all nonzero integer
vectors. The width as defined here is greater than or equal to the geometric width since nonzero
integer vectors have length at least one. The following theorem will be used.

E Flatness Theorem [8]. There is a untversal constant ¢, such that any closed bounded convex
set K in R™ of width at least c,n® contains a point of Z™.

Remark. The constant ¢, will be used throughout the paper. By looking at the case n = 1, we
see that ¢, must be at least 1, a fact that we will use.

In [9] it is shown that for any fixed m x n matrix A satisfying some nondegeneracy condition,
there is a small finite set V of nonzero integer vectors such that for any “right hand side™ b, there
is some v(b) belonging to V such that the polytope Ky = {z: Az < b} has approximately the
smallest width along v(b); more precisely, the width of &' along v(b) is at most twice the width
of K, along any nonzero integer vector. Section 2 of this paper proves from first principles a
result in the same spirit. There are two differences - here, we do not assume any nondegeneracy
condition. Secondly, in the result here, b is allowed to vary over some subset of R™ and the
upper bound on the cardinality of V is in terms of the dimension of the affine hull of this subset.
~ Letting the subset be the whole of R™, we can recover a result similar to [9].

‘Notation

R™ is Euclidean n space. The lattice of all integer vectors in IR™ is denoted Z". For any two
sets 5. T C R", we denote by S + T the set {s+t:s€ S;t € T}. For any positive real, A, we
denote by AS. the set {As:s € S}
By a' .“rational polyhedron”, we mean a polyhedron that can be described by a system of
tnequalities that have rational coefficients; the inequalities may have irrational right hand sides.
I:exntlu;h of the paper A will be a fixed m x n matrix. If the meaning of A is clear from the
\ for any bin IR™, the polyhedron {z € R™: Az < b} will be denoted by K. In much of
::;;;;,nl; \;-.111 var.y ov?r some'g polyhedron in IR™. S.0me bounds in the paper will be in terms
meedon tOlr;'un_rwlon.]o of.th1s polyhedron.' The “size” of.a ra.t'iona.l matrix is the number of
e M) | xPress‘ it. It is assumed .that integers are written in binary notation, so it takes
> ength string to express an integer of magnitude M.
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If A,b,care mxn,mx1,1xn matrices respectively, then we denote by LP(A,L, c)the linear
program

maxc -z subject to Az < b.

We denote by I P(A,b,c) the integer program obtained by adding the restriction that all z; be
integers to the above linear program.

In talking about certain bounds (on running times or sizes), we will say the bound is
poly(s,t,u) etc. This is abbreviation for saying that there-gxists a polynomial p(-,-,-) such
that the bound is at most p(s,t,u) where s,¢,u are certain parameters associated with the
problem.

2. Vectors along which K; have small width

For each fixed b, there is a nonzero integer direction that achieves the minimum width of K.
The main result of this section is Lemma 2.1 which says that we can compute, given A, a small
number of nonzero integer directions such that as b varies over a bounded set, for each K, one
of our directions achieves close to minimum width.

Lemma 2.1. Suppose A is an m x n matriz of integers of size ¢. For each b € R™, we denote
by Ky the polyhedron {z: Az < b}. Let P be a polytope in R™ of affine dimension Jo such that
for allb € P, Ky is nonempty and bounded. Let M be max{|b|: b € P}. There is an algorithm
that finds nonzero integer vectors vy, vy,. .., v,, each of size at most poly(n)(log M + ¢) where r
is at most poly(m,n,¢,log M)"t¥o such that for all b € P, we have 3i,1 < i < r such that one
of the following is true:

Width,, (K) < 1
or

Yu # 0,u € Z", Width,, (Ky) < 2 Width,(K}).
Further, the algorithm works in time bounded by

poly(m, n, ¢, log M)("+j°)".

Proof. The first m of the v;’s will be the rows of A. We note that every Ky of zero volume has
width 0 along one of these m vectors. Also, if a K} has width at most 1 along one of these m
directions, it is “taken care of” by that direction. So we only need the rest of the vectors to
take care of full-dimensional K, with width at least il:@‘l_igigggh"qf the m rf;‘c_'edt"di;egtionsfww
~ Since K} is bounded, we have that K is contained in a ball of radius M247°¢ ({13], Theo-
rem 10.2) around the origin. Also, K, has a centroid—say—z,,. (The centroid z, is the unique
point such that fh-b(z — Zo)dx = 0. ) Consider Ky — z,. Let this be {z: Az < b'}. Note that
b belongs to P! = P+( column space of A ) which is a set of affine dimension at most n + Jo-
By the above, 0 < b} < M2y, By a property of the centroid (namely, if y, is the centroid
of a bounded convex set K in R™, then for any z € K, we have {1+ Ly, - %z € K.), and the

n
lower bound of 1 on the width of A} in any of the facet directions, we have that

< bl < M5y

(n+1)
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Let R C IR™ be the rectangular solid {y : (—nj‘H—) <y < M‘25”24’V1’,}. Applying Lemma (2.2)
with Q = the affine hull of P’, we get a linite set V' in R™ such that for each y € RN P/,
there is a y' € V' with ¢/ < y < 2y/. Also, by that lemma, the size of each ' € V' is at most
n{log M + 5n2¢ + log(n + 1)) < poly(n)(log M + ¢). (Note that by that lemma, the set V' can
be found in time poly(m,n, ¢, log M)"“"’.) For each y' in V! such that Ky is full dimensional,
we find the nonzero integer vector that attains the width-of K. This set of nonzero integer
vectors suffices as our set of v; ’s. This is so becanse y’ <y < 2y implies that Iy C K, C Ky
which implies that for any nonzero vector v, Width, (/) £ Wi(thU(I\"y)k‘g:\'\’idthv(h'zy:). (The
nonzero integer vector along which the width of a polyhedron is minimised, can be found in time
bounded by poly®(™—see [8] (1986 version).) We note that the bound on r follows easily {rom
Lemma 2.2.

We also need to argue a bound on the sizes of the v;. To this end, suppose y is some element
of V' and w is the integer vector that achieves the width of Ky. Suppose w - z is maximized
at a vertex p of K,. Then, by linear programming duality theory, there is a nonsingular n x n
submatrix A, of A (whose rows form tight constraints at p) such that wAj! is a nonnegative
vector and wAT 'y is the maximum value of w-x over K. Similarly, there is a nonsingular n X n
submatrix A2 of A such that —wAj " is a nonnegative vector and wAy 'y is the minimum value
of w-z over I,. So w is the (an) optimal solution to the Integer Program

1
H

min w - (Al'1 - A;l Yy - u;Al'l >0; u‘:lgl < 0; w integers .

Al"1 , A;l have size at most poly(n)¢ and so by standard results, w has size at most poly(n)(log M
+ ¢). (The results only tell us that there exists a w with these size bounds; we take such a w as

our v;.) O

Lemma 2.2. Let R C IR™ be the rectangle {y: o < y; < BYi} where 0 < o < 3 are arbitrary
rationals. Let Q be any affine subspace of R™ with dimension say t. Then there exist a finite
set V! in R™ with |V'] < (2m(1og2 g + 1))t such that for each y € RN Q. there isay € V'
with y' < y < 2y'. Further, for each y' in V', each coordinate of y' is « times an integral power
of 2.

Further, given R, Q, the set V' can be found in time poly(m,logg)’.

Proof. Divide R into sub-rectangles each of the form
{z:a2P < z; <a2P*lfori=1,2....,m}

where py,py. .. p.. are natural numbers between 0 and ! = log,(8/a). 1 will show by induction
:0n the pair ¢, that Q N R is contained in the union of some

2mtl+ 1)

brectangles of R which clearly proves the lemma.
The case t = 0 s clear for all m. The case m = 0 is trivial. For higher ¢, note that if @
ersects a subrectangle, it intersects the boundary of the subrectangle. For each 7,1 < i< m
i :iafh‘ PO S Pi < I, consider the (m — 1)-dimensional rectangle R’ = RN {z: 2z = 2Pa} and
Q,\lsmn of it into subrectangles “induced” by the division of R. Also, let QN {z:z = 2P'a}
. If for any ¢ and any p;, such a Q' cquals (J, we have the lemma by induction on m.
.::easlhls is not the case. Then, Q' is a (¢ — 1)-dimensional affine space. Applying the
ISUm?txon, we know that there are (2(m — 1){{ + 1))'! subrectangles whose union
Q"7 R Each such subrectangle is a facet of 2 subrectangles of R. Thus there are
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2.(2(m — 1)1+ 1))~ m (I + 1) subrectangles of R whose union contains Q N R.

"To get the required algorithm, note that in the case where some Q' equals (. we get one
“problem of size ” ¢,m — 1 and in the other case, we get m(/ + 1) problems cach of “size”
t—1,m— 1. The time bound follows by routine analysis of the recursive algorithm. O

Lemma 2.3. Suppose K is a rational polyhedron in R™ and v € Z™ \ {0} salisfies
either Width,(K) < 1

or B
Vu # 0,u € Z", Width,(K') < 2Width,(K).

Suppose also that y is in K. Let s = 2c,n® + 1 (where ¢, is the constant from the Flatness
Theorem of Section 1). Then, K NZ™ is nonempty iff there exists z € K NZ™ with jv-(z-y)| < s.

Proof. Suppose z belongs to K NZ" and {v-(z — y)| > s. Then of course the width of K along
v is greater than s. Let K’ be obtained by shrinking K about y by a factor of Width,(K')/s,
ie., ...

!

s .

Then, Width,(K') = s and also, Width,(K’) < 2Width,(K’) for all nonzero integer u. This
implies that K/ N Z" is nonempty by the Flatness Theorem. O

3. The main result for bounded right hand sides

Theorem 3.1. Let A be an m x n matriz and ¢ en 1 X n matriz of integers, with size of (j)
equal to ¢. Let ) be a set in R™ of affine dimension j, such that for all b € Q, the set Ky = {z:
Az < b} is nonempty and bounded. ' Let M = (maxpeq(|b] + 1)). There is an algorithm that
yields floor functions f;:IR™ — Z",1 < i < r each of depth n and size {poly(n))*(¢d+log M) with
7 < poly(m,n, é,log M)*"+ie) such that for all b € Q, the best feasible solution to IP(A,b,c)
among fy(b), fa(b), ... f+(b) is the optimal solution to I[P(A,b,c). Further, the size of each
floor function is at most poly(m,n, $,log M). The running time of the algorithm is bounded by
poly(m, n, ¢,log M )m{vtie) [In particular, if none of the fi(b) is feasible to IP(A,b,¢c), then the
integer program is infeasible.]

Proof. We use induction on n. For n = I, it is easy to see that we can assume without loss
of generality that all A; are nonzero. We can take r = 2m and define for 1 < t < m, functions
J2i = [(bi/As)] and fainq = [(bi/A;)] + 1. Tt is easy to see that the theorem-is true with these
functions.

Now we go to general n. We apply Lemma 2.1 with the matrix (fc) and P in R™*! defined
by P = {(b,c.):b € Q,c, € R}. This gives us nonzero integer vectors vy, vs,...v, with
p < poly(m,n,¢,log M)"7 such that for all (b,¢,) in P, the polytope K.y = {z: Az <
b; ¢ 2> —¢,} has small width (i.e., width at most 1 or at most twice the minimum width) in

! From linear programming theory, we know of course that the property that K is bounded is independent of

b.
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one of the directions vy, vs,...v,. Now suppose for some b € @, the integer program IP(AbC)

is feasible and so it has an optimal solution whose value is sav. —¢,. Then the polytope N,
is free of interior lattice points, and has a lattice point on its boundary. mamely the optimal
- - . solution to IP(A,b,c). The width of this polytope is at most s/2 by the Flatness Theorem

(where s = 2¢,n? 4+ 1) and so its width along one of the v; is at most s. This shows that for
any optimal solution y to the linear program L P(A.b,c¢), there is some optimal solution = to
IP(A,b,c)that we have |v; - (z—y)| < s for some 1 (since, of course y belongs to Ky, . y). There
are at most m™ matrices Tk, k = 1,2,...such that for cach b, an optimal solution to LL(A,0b,c)
is Teb for some k. (In linear programming terminology, these are the bdsis inverse matrices
suitably augmented by 0 columns.)

Now consider the p.(2s + 1).m™ choices of 4,j,k such that 1 < ¢ < p, —¢ < j < s and
1 < k < m™. For each choice consider the integer program:

maxc-z:Az <b; vi-I:[vi-kaJ%—j x integers.

Also, we have that the size of v; is at most poly(n)(logM + ¢). Bach of these is an n — 1
dimensional problem. First, we will rewrite them with n — 1 variables. To this end, first we
remark that the algorithm of [8] gives us actually a basis containing the vector v; as the first
vector. Writing the basis vectors as the rows of a unimodular matrix U (whose size is bounded
by poly(n)(log M + ¢)) and making the substitution y = Uz into the Integer Program, we get
the following IP:

max el Y AUy <byy = bm+1 yintegers

where we have let by,p1 = [v; - Tkb] + 7. Making the substitution y; = binqq, we get an Integer
program in n — 1 variables y2,¥a,. ..y, where it is easy to see that the sizes of all coefficients
(including the right hand sides) is at most poly(n)(log M + ¢). Further, the right hand side
varies over an affine space of dimension at most j, + 1. (The extra 1 is because of the parameter
b1 which is not expressible as an affine function of 4,65, ...5,,. ) Now we apply the inductive
assumption on the n — 1 dimensional problem to get the floor functions each of depth n — 1 in
the parameters by, by, . . .byy1; thus they are of depth at most n in the parameters by, ba, .. .bpm.
e Also, the size of the floor functions is at most (poly(n — 1)) poly(n)(log M + ¢) which is at
xmost. (poly(n))*(log M + ¢) as claimed. The bound on the number of floor functions follows
O

The case of unbounded right hand sides

N this section, we will prove the theorem of the last section as b varies over an unbounded set.
d_o so. we will show that for any b € P, the optimal solution to IP(A,b,c) can be easily
Rained from the optimal solution to IP(A, d, ¢) where d has all its components of size bounded
F poly (size of A). Further, we will show that d is a “piecewise affine” function of b ; i.e., that
€an be partitioned into polynomially many pieces such that for each piece in the partltlon
is an affine function that maps b to d. This proof will use Lemma 4.2. First, we state the

:‘ ‘;-1 Let A be an m x n matric and ¢ an 1 X n malriz of integers, with size of( )
. €t Q be a set in R™ of affine dimension Jo, such that for allb € Q, the set Ky = {z
nonempty and bounded. There is an algorithm that yields floor functions f; : R™ —
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Z", 1 <1 <1 each of depth n+ 1 with v < (poly(mn, n, ¢))*("130) and size poly(m,n, $) such that
Jor all b € Q, the best feasible solution to TP(A.b,c) among fi(b), f2(b), .. S+ (b) is the optimal
solution to IP(A,b,¢). The running tone of the algorithn is bounded by poly(m, n, p)n{rtio) [In
particular, if none of the fi(b) is feasible to IP(A,b,¢), then the integer program is infeasible.]

First, we need some general results. Suppose vz = v, is a hyperplane in Euclidean space.
It partitions space into two “regions” - {z:v -z <wv,} and {z:v-z > v, ). Similarly, a set of
hyperplanes in IR™ partition IR™ into (at most) 2! “regions”-dach region being determined by
which side of each hyperplane it is on. There is another well-known upper bound on the number
of regions - it is

()

For | < m, the sum is 2 and the result is obvious. For [ > m, we proceed by induction. The
number of regions formed by the first -1 of the hyperplanes is at most 37, (1?) by induction.
Now imagine adding the ! th hyperplane. we claim that the number of existing regions that
the [ th hyperplane intersects is at most Z;C”:“Ol (121) - to see this, note that the intersections of
the existing regions with the { th hyperplane form a partition of the I th hyperplane (an m — 1
dimensional affine space). Each region intersected by the [ th hyperplane is divided into two by
it. So we get the total number of regions formed by all the { hyperplanes is at most

2. LN U ED DY § N +1
k=0 ( k k=0 k = \\k -1 k
which proves the claim. The lemma below follows immediately.

Lemma 4.2. Suppose V is a J dimensional affine subspace of R™. For any set of | hyperplanes
in R™, the number of regions in the partition of R™ by the | hyperplanes that V intersects is

at most
j .
£()er
k=0
Further, we can find the regions intersected by V in time bounded by O(stze of dataj).

Proof. The first part is already proved. For the algorithm, we go again to the first part of
the proof and see that a problem with parameters [,j is reduced to two problems one with
parameters [ — 1,7 and the other { — 1,7 — 1. If the running time of the algorithm is T'(Z, 7).

we get the recurrence T(l,7) < T(I ~ 1,7) + T(1 — 1, — 1) + O(1) which solves to T(l,7) is in
o). O

Suppose P is a set of affine dimension j, in IR™. Consider each of the (at most m™) nonsingular
n X n submatrices B of A. For each of these we can define an n x m matrix T by augmenting
B~! with 0 columns so that the possible corners of any K are of the form Tb for such T. For
each such T', and each 4, 1 < i < m, consider the hyperplane {b:a()T} = b;} in R™. (Reminder:
a' is the i th row of A.) There are at most m™*! such hyperplanes and so by Lemma 4.2, we
have that P intersects at most m{"+1)i of the regions that these hyperplanes partition IR™ into-
It is not difficult to see that we can find these regions in time bounded by poly("). For each
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such region U, there is a Ty such that for all b € U, T/b belongs to Ky and maximizes ¢ -z over
all o in Ky, Let

b = b ATy

Then A7 is a transtate of £ by —[Tib) and so the optimal sotution to IP(A,b,¢) is given by
[Tryb] plus the optimal solution to [P(A,V,¢). We will argue below that any component of
b' exceeding a certain bound can be reduced without changing the optimal solution value to
TP(A, b, ¢), then we will have bounded b and we can appeal to the previous,section. We use the
following theorem ({1], quoted in Theorem 17.2 of [13]) to argue that the b7 exceeding a certain
value can be reduced.

k

' Theorem 4.3 ([4]). Let A be an inlegral matriz such that each subdeterminant of A is at most
A in absolute value and suppose both LP(A,b,c) and IP(A,b,c) have finite optimal solutions.

3 Then for any optimal solution y to the linear program, there is an optimal solution z to the

4 integer program such that |z — ylee < nA. (n is the number of columns of A.)

Consider the m hyperplanes (b — ATyb); = n?2% + 2n2% for i = 1,2,...m. By applying
Lemma 4.2, we see that U intersects at most m’e of the regions that these m hyperplanes
partition space into. We partition U into these m7° or less parts. Thus we have found a partition
of P into polyhedra Py, P,,... P (each P; is one of the parts of some U/) with t < m(**t2)e and
associated with polyhedron Py in the above partition, we have an affine transformation T'(P)
and an J(P) C {1,2,...m} such that for all b € Py,

0 < (b— AT(Py)b); < n*2% 4 2n2%Vi € I( )

and
(b— AT(Pi)b); > n*2%° 4 2n2%Vi ¢ I(Py).

For each b € Py, let b’ be b — A|T(Pr)b], let b be defined by b = b for i € I(P;) and

= n22%% 4 n2% for other i.

. Note that for i ¢ I(Py), since (b— AT(Py)); > n?23% +2n2%, we have that (b—A|T(Pe)b])i >

1234 4 122 and so b” < b which implies that Ky C Ky. Now, T(Pu)b— |[T(P)b] = y (say) is

ve optimal solution to LP(A,¥,c). By Theorem 4.3, we know that ITP(A,V,c) has an optimal

ofution = with |z - y|, < nA. Since lyloo < 1, we have then |z]e < (nA +1). Thus, we

BAve that | Az < n2%(nA + 1) < n22%% + n2¢ (since we have A < 224 for example from ([13],
orem 3.2)). This implies that z belongs to Ky« and so we have that any optimal solution to

AE(A, D" ¢)is an optimal solution to I P(A,¥,¢).

© apply the theorem of the last section, observe that all 0" we get in the above process

3ty the following three conditions:

* I8 < n®2% 4 gnoyi € 1(py)
b0 =n2% 4 nodvi ¢ I(py)
® 3b€ Pi.y ¢ R" such that u; = (b4 Ay)Vi € 1(F)}

P be the polyto

the £ pe consisting of all vectors 6" in IR™ satisfying the above three conditions.

. rst l“’f) conditions imply that P is contained in a sphere of radius n223¢ + 3n2% and
> 'Woumply that the affine dimension of P{ is at most j,+n. We will apply the theorem (of
¥ection) with this P, with M = n223%4.3n2% and with the given A and c¢. That theorem
floor functions that it promises. Note that the arguments to the floor functions are
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actually b — A{T(Pr)b], but clearly, these can be looked as floor functions with only b as the
argument at the cost of increasing the depth by 1. Finally, we do this process for each Py,
k= 1,2,...1 and take all the floor function so obtained.

5. The parallel algorithm

To get the parallel algorithm, we recall that arithmetic operatidns (additions, subtractions, mul-
tiplications and divisions) can all be done with poly(operand size) processors and O{log(operand
size)) time by standard algorithms [1]. The floor functions are all evaluated in parallel. Each
floor function is evaluated sequentially except for the arithmetic operations in it which are each
done in parallel. Since we have a bound of (poly(n))*(log M 4+ ¢) on the size of the fioor function,
we can evaluate it in parallel time n(log(length of data)) as claimed.

One of the more interesting open problems in parallel complexity seems to be the question of
whether the greatest common divisor of two integers can be found by a parallel algorithm that
runs in polylogarithmic time with a polynomial number of processors. An even simpler question
is the following: given an integer a, after preprocessing it for time bounded by a polynomial in
the number of bits of @, can one then find the greatest common divisor of @ and any given b in
polylogarithmic time with a polynomial number of processors? [Note if we are allowed to factor
a into its prime factors, the problem would be trivial.] It is possible that we can write a set of
linear constraints involving a polynomial number of variables where the coefficients depend in
some (possibly nonlinear) way on a and the right hand side vector depends linearly on b such
that the solution to the IP gives us the greatest common divisor of @ and b. If this is so, then
the results of this paper obviously solve the second problem.
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