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ABSTRACT. A polytope P of 3-space, which meets a given lattice L. only in its vertices, is called
l-clementary. Aun i~elementary tetrahedron has volume > (1/6).det(L), ir case equality holds
it is called i-primitive. A result of Knudsen, Mumford and Waterman, tells us that any convex
polytope P admits a linear simplicial subdivision into tetrahedra which are primitive with respect
to the bigger lattice (1/2)f .1, for some t depending on P. Iinproving this, we show that in fact
the lattice (174).0. always suffices. To this end, we first characterize all L-elementary tetrahedra
for which even the intermediate lattice (1/2).1 suffices.
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t1.Introduction

Following Danilov [Dal, a polytope will be called ELEMENTARY with respect to
a given lattice L (or [-elementary, or Just elementary) iff it meets the lattice L

only mn its vertices. For example, 1t is easy to see that a parallelepiped with vertices
i a lattice L © B3 ig elementary with respect to L if and only if its volume equals
l(l('tlLl .

lA, t<—\t;rah(—*dron will be called PRIMITIVE(*) with respect to a lattice L. (or L-
primitive, or just primitive) iff its vertices are in L and its volume is % ‘detlLl. A
primative tetrahedron is elementary hecause it is one of the 6 tetrahedra of a volume

l(letllJ parallelepiped with vertices in . The converse is false. One obtains a Z3-

clementary tetrahedron ABCD whenever a line segment AB, lying in the plane
7= 0, and having no integral points except A and B, is joined to an analogous
general position line segment CD lying in the “adjacent” parallel plane z = 1, and
such tetrahedra can have volume bigger than any given number.
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Figure 1

A theorem of White [Wh] assures us that, upto an ISOMORPHISM, i.e. upto
an affine linear transformation which maps Z* onto itself, the above construction

Usage varies a lot, e.g. primitive is “elementary” in [GKZ], and “basic” and “minimal” have also
been used; likewise, elementary is “fundamental” in [Re, Rez], “admissible” in [Wh], “lattice

free” in [Ka2], etc.



viells all Z'-elementary tetrahedra. It follows (by an argument similar to the proof
of Lemma 2 of § 2) that, with respect to a suitable origin and basis, we can assunie
the forr vertices to be A = (0,0,0), B = (1,0,0), C = (0,0,1) and D = (p,q,1), where
O - p < qwith ged. (p,q) = 1. These STANDARD MODELS of elementary
tetrahedra Figure 1 will be denoted T(p,q). Note that the tetrahedron T(p,q)
s volmme /6 so, for all > 2, it is non-primitive ; the primitive case corresponds
top O land g - 1o otherwise |2 p « q.

We aote here that in the two dimensional case. the analogues of the above two
notions would coincide © an L-elementary triangle must have area é cetLl. For,
by djoining an isomorphic triangle, one can make a parallelogram which is
clementary, and so has arca i(l(*tL’.

Iy some avithmetical questions one uses convex cell complexes in R" having
mtegral vertices. These admit an ELEMENTARY SUBDIVISION with respect
to the lattice 227 jie. can be linearly subdivided. e.g.. by using the method of
Hudson [Huj. p. 110 into simplicial complexes having ouly Z"-clementary simplices.
However. for n» 3, as above examples of non-primitive clementary tetrahedra
alveady show, not always into primitive simplices. So, to obtain a PRIMITIVE
SUBDIVISION, it is necessary to consider, instead of Z", a bigger lattice, say that
of ali half-integral points, for which we have the following result.

Theorem 1. 4 T(p.q). < 1, admits a linear simplicial subdivision, primitive
t { ;

7

with respect to i Thoiffo=1orp=q—1.

It is easily seen thar T'(1.q) and T(q-1,q) arc isomorphic, so this theorem tells us
that. for each ¢ > 2, there is, upto isomorphisin. just one non-primitive elementary
tetrahedron which can be primitively subdivided by using half-integral points. The
situation changes dramatically when we are allowed to use quarter-integral points.

Theorem 2. Any T(p,q) admits a linear simplicial subdivision, primitive with
respect to the lattice ]1 Z.

Morcover, one can ensure here, as one passes from 73 to % 72, and then from % z3
to ; Z7. that the faces of the tetrahedron are always subdivided in a “standard
way” (cach triangular face is ent up into four smaller triangles by joining the
mid-points of its three sides to each other). This important finesse ensures that
the subdivisions of the constituent elementary simplices of a complex fit together,
Le. that a conver cell complex with vertices in 73 always admits a %Zg’—pm’mitive
subdivision. This thus improves on a result of Knudsen, Mumford and Waterman —
given in Kempf-Knudsen-Mumford-St.Donat [KKMS] — which asserts the existence
of w o L)' Z5primitive subdivision for some mteger t depending on the given cell
('()1]11)15){. However, we note that these anthors prove their result for any R", and
that they check that their lincar subdivisions are “projective” — see IKKMS] for
the definition  an aspect of the matter which we iguore in this paper; also (see
i 31 this weaker result generalizes to poiyhedral non-convez cells, while convexity
of the cells is needed if one wants to use only quarter-integral points.

We remark thar Theoren: 2 was claimed about five years ago by Gunter Ziegler,
who mentioned some of his (still unpublished) ideas to the first author. The method
of this paper was worked out completely, without any knowledge of Ziegler’s ideas,
by the second author.
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Briefly. this method runs as follows. In §2, we show that if T(p,q) has a %ZB-
primitive subdivision, then, after a preliminary normalization, this subdivision
st contain two special edge paths, X, X5... X, ) and Xa(yXn(2)--Xr(g—1), which
we call "maximal chains”. Here, the X;’s denote, in a certain specific order, the q-1
points of the lattice 1 Z* which lie in the interior of the “central parallelogram”
(see Figure 2) of "T'(p, q), and 7 s a certain permutation of {1, 2, ..., g-1} depending
only on p and (. So, it is necessary that the intersection of the twc maximal chains
be a common subcomplex. The “only if” part of Theorem 1 follows by checking
that this obstruction is non-trivial unless p = 1 or g-1. In 5;'3 we complete the proof
of Thmnvm 1 by constructing, using maximal chains, a -1 Z3-primitive subdivision
Tl = T(g-1.q).
Fturns out that the same construction gives a % Z3-elementary subdivision of any
Lipag). if we nse instead any two “chains”, ie. edge paths determined by vertex
subsequences X X, X, and XWU”XW(D) .X7(j,)» but again such that their
mtersection is a common subcomplex. This gives a simple proof of the result of
Kuudsen, Mumford and Waterman, after which we insert an example of a non-
convex polytope with six integral vertices which does not admit a Z3-elementary
simplicial subdivision, to show exactly where convexity was used. If an “almost
mu\'imal" (sce §3 for the definition) pair of chains is used, each non-primitive
—I— -clementary tetrahedron of this subdivision is isomorphic to a 1 5 T(1,t), and
mng Theorem 1 we can subdivide again to obtain a t Z3 prlmltlve subdivision.
So. the rest of §3 is devoted to constructing various pcurs of almost maximal chains
whose intersection is a common subcomplex. First, the special but quite interesting
constructions of Proposition 7, and the ensuing Remarks 7, which already give
nmerous instances of 4 i Z S_primitive subdivisions, and then the general “quadrant
construction” which ymlds Theorem 2.
Our problem belongs to 3-dimeusional affine geometry, and fittingly, the solution
we have given below is also pleasingly geometrical; ezcept for the fact that we
make an essential use of the theorem of White, and all proofs of this purely
geometrical result seem to involve some number theory ; also, no satisfactory higher
diniensional analogue of this result is known. Before starting work we recall below
some standard simplicial definitions (for more see e.g. [Hul).

Notations. The convex hull of a finite set of points is called a convez cell, the
extreme points being its vertices. If these happen to be affinely independent the
cell becomes a simplex, ie., since we work in 3-space, a point, edge, triangle or
tetrahedron. A finite set K of simplices (likewise of cells) with pairwise disjoint
iteriors, constitutes a complex if the faces of each ¢ € K are also in K. Then

we say that K is a linear triangulation of the space lK) obtained by taking the

won of these ¢’s. A simplicial complex L with ’L‘ K| is a linear simplicial

subdivision of K if each simplex of L is contained in a simplex of K. An edge path
is a one-dimensional simplicial complex, with edges oriented and totally ordered
m such a way that the initial vertex of each coincides with the final vertex of the
preceding. The open star Sty (o) of a simplex o € K consists of all open simplices
of K having o as a face, and the link Lkk (o) of o consists of all simplices disjoint
from o which join with o to form simplices of K. We sometimes identify a simplex
with the complex obtained by adjoining all its faces, and a simplicial complex with
the space it triangulates.



£2.0bstruction

[ this section we analyze linear —1) Z*-primitive subdivisions of T(p,q) and thereby
prove the “only if” part of Theorem 1. Since this is obviously true for ¢ < 4, we can
assume that - 5. The strategy roughly is to reduce the 3-dimensional problem
concerning the join AB*CD to a 2-dimensional problem concerning the cartesian
product AB < C'D.

Figure 2

thin the fom vertices A, B, C. D. and the six midpoints P, Q, R, S, U, V - see
Fipure 2 - of the edges AC, BC, BD, AD, AB, CD respectively, must all be located
m the interior of the parallelogram PQRS, i.e. the section of the tetrahedron T(p,q)
by the plane z = 1/2. Note that this parallelograin has area q/4.

CENTRAL PARALLELOGRAM. In T'(p.q). the points of the lattice %Z:}, other

THE LATTICE POINTS ON THE PARALLELOGRAM. If we draw lines (Figure
3 shows the case p = 3, = 5) parallel to PQ in the plane z = 1/2, at equal distances
12 from each other, then lengths 1/2 of ¢-1 of these lines pass through the interior
ol vur parallelogram, so it follows that there qre q-1 points of %Z3 wn the interior
of the parallelogram., one on each of these -1 lines (which will sometimes be called
HORIZANTALS). We denote these points by Xy, ... | X,4—1 In increasing order
of rheir distance from PQ. So, X is the pomt nearest to PQ, while Xg-1 18 the
farthest, i.e. the one nearest to RS.

Likewise, we can subdivide PQRS into g parallelograms, each of area 1/4, by
drawing -1 lines parallel to SP, and at equal distances from each other, and
precisely one of these points is found on each of these q-1 parallels (these will
sometimes be called VERTICALS). We will sometimes denote the same set of g-1
points (of £ Z7 in the interior of PQRS) by Y1, ..., Y,_, in increasing order of their
cistance from SP. So, now Y] is the point nearest to SP, while Y,_1 is the farthest,
Le. the one nearest to QR. We define the PERMUTATION 7 — m(p,q) of {1, 2,

L Q-1 by Y = X (;)- and, as mentioned already in §1, it is this permutation
which will play the leading role in the following.



Figure 3

NORMALIZATION. We begin by showing that we may consider only subdivisions
well-hehaved with respect to the parallelogram.

Proposition 1. If the elementary tetrahedron T = T(p,a), q > 5, admits a linear
stmplicial subdivision K = K(p,q) which is primitive with respect to %ZB’, then it

also admits another in which the central section occurs as the space ’P(p,q)l of a

subcompler P(p,q) € K(p,q).

Proof. A simplicial subdivision of our tetrahedron fails to have the parallelogram
as (the space of) a subcomplex iff it contains an edge having one vertex below it
and the other above it. On the boundary of the tetrahedron there are only four
possibilities for such an edge, namely UC, UD, VA, VB (e.g. AC is not a possibility
because it has P on its interior). In case some or all of these four edges occur in
K we will first get rid of them as follows. :

Suppose. e.g., that UC is an edge of K. Then its two incident boundary triangles,
which have to be UPC and UQC, must be triangles of K. The two elementary
tetrahedra UPCX, and UQCX; both have volume 1/48, so are primitive with
respect to % Z*, and all other possible tetrahedra UPCZ,UQCZ,Z=V,S,R, X,
1 > 2, have bigger volumes. So these two tetrahedra must also be in K. We now
modify K by replacing these two tetrahedra, and their common face UCX;, by
the two primitive tetrahedra CPQX; and UPQX, and their common face PQX].
This retriangulation of the open star in K of the edge UC leaves the triangulations
on the other 3 faces of our tetrahedron unaltered. Likewise, if say, BV € K, then
BVQY,- € K and BVRY, | € K, and we can get rid of BV by replacing these
two tetrahedra and their common face by the primitive tetrahedra QRY,_B,
QRY,. 1V and their common face, etc.



Ii case  q (and so also p+1) is even, our modified K, which now contains none
of the four edges UC, UD, VA, VB, has no edge joining a vertex below the
parallelogram to one above, and so must contain a subcomplex P of the required
lind. To sec this note that UV is not a possible edge of K, hecause its mid-point M
I, (p+1..2) ¢ 11 Z* - ic.the BARYCENTRE M of T'(p,q), i.c., the intersection
ol the diagonals of the central section PQRS - Delongs to the lattice L 73 in this
Case, i
i case (is odd, the barycentre M is not contained in £ Z3 and UV remains a
possible edge of K joining a vertex below the parallolografn to one above. We now
deseribe a procedure for getting rid of UV,
First. note that if UV & K, and UVIJ is any tetrahedron of K incident to this
edge. then Tand J must be hoth on the parallelogram. Indeed, neither I nor J can
be CD, A or B, for otherwise, one of the 4 already excluded edges UC, UD. VA,
VI3 would be in K. The wuion M of all such edges 1J. i.e. the link of UV in L,
beunds a polygonal region M namely the union of all the triangles ML - of
the parallelogram, which meets Q‘—Z"‘ ounly in its vertices. We equip M with any
triangulation which is clementary (so with triangles of area 1/8) with respect to
the half integral lattice of the plane z = 1/2 (see Lemma 1 below). We then modify
K by replacing the tetrahedra UVLI, and their common faces, by all the simplices
obtained by coning the triangulated M over U and V.
‘This primitive retriangulation of the open star of UV serves to get rid of the edge
UV Since the new K has now no edge joining a vertex helow the parallelogram
to one above, it will have a subcomplex P which covers this parallelogram. ¢.e.d.

Remark 1. We can further modify K(p,q) so thot its restriction to each bounding
Jace 1s STANDARD (sce Fig. 4) ti.e, that it is cut up into four smaller triangles
by joining the mid-points of its sides to each other. (While subdividing simplicial
complexes, as in §3, this finesse is useful, because the subdivisions of two tetrahedra
sharing a common face will now match on this common face.) For example, if
PBX,Q and PBX,U arc in K(p,q), we retriangulate the open star of their common
face PBX by using QUX,P and QUX B and their common face QUX,.

Figure 4

We insert here a proof of the following which we use in quite a few arguments,
¢.g.. the one just made above. This is an essentially 2-dimensional result, its 3-
dimensional analogue is false (see § 3).

Lemma 1. Any (possibly 1on-convex) ZZ-elementary polygonal region M of R?
car be subdivided mnto 7.2 -elementary triangles.



Proof. We use induction on the number n of the vertices Vi 1ViVigq... of the
hounding polygon. If n = 3 there is nothing to do. If n > 4, the sum of the
n polygonal angles being (n-2)7, we can choose a vertex v; such that the angle
Vi 1ViViyr 18 less than . If the triangle v, yv,v;;1 is elementary, we just add it to
any elementary subdivision of the region bounded by the polygon ...v; _av;_;vii;...
having n-1 vertices. Otherwise, we take au € Z%, u # v,_1, vy, Vi in this triangle,
which is nearest to v;. Then u must be a vertex of M, with the interior of the edge
uv, contained in the interior of M. Now, using induction, we subdivide the 2
regions into which M is separated by this edge. ¢.¢.d.

BOTTOM HALF. We plan next to use the following lemma to derive some
conditions on the subcomplex P(p,q) of Proposition 1 which follow solely by using
the primitivity, with respect to é 73, of the tetrahedra of K(p,q) which cover the
portion z < 1/2 of our tetrahedron. This triangulation of the bottom half will be
denoted Ky (p,q).

Lemma 2. If HIJ is a iZﬁ elementary triangle on the central parallelogram,
the 3 % Z>-elementary z‘etrahedm AHLJ, UHLJ and BHLJ are all } Z3-primitive.
Purthmmmc if 1J is an %Z?’ elementary edge on the central pamlleogmm with
I= L@, 1),J=1 o, doy 1), jo > i, then the i Z3-elementary tetrahedm
AUU and UBLJ are Lsommph?c to each other, and have the standard model 1 5 T(j1-
i1,jo-12). So these tetrahedra are % Zg primative if and only if 1J is one of the q+2
edges :

PX], QXl; Xng, X2X3, ceey XquXq¥1; XqﬁlS, Xq_lR. (*)

Proof. Because the area of HLJ is 1/8, the volume of AHIJ, UHLJ or BHIJ is 1/3
> 1/8 % 1/2 = 1/48, which shows the first part.
Next note (cf Figure 3) that the first coordinate of Xy, is either the same as that
of X, or 5 more. Therefore, jo > iy always implies 0 < j; - i} < jy-ip. Further,
[J has no point of %Z3 other than its vertices, iff j; - i; and j3-i, are relatively
prime to each other.
For the second part we first give an affine linear transformation which preserves
7 Z3and maps AULJ onto UBIJ, viz., the SHEAR Wthh keeps all points of the
plano 7 == 1 fixed, and maps each parallel plane z = ( 1- k) onto itself by adding
1k to the h] st coordinate of its points. Likewise, the Z3 -preserving qheanng
tx ansformation which keeps the plane z = 0 fixed, and translates ItoP = (0,0,1),
moves the point J to % (J1-11,72-12,1), and thus images the tetrahedron AUIJ onto
the standard model %T(jl-il,jQ—ig).
It follows that the necessary and sufficent condition for primitivity of these
tetrahedra is jo-ip = 1, which happens if and only if 1J is one of the edges listed
as (*). g e.d.

Remark 2. Alternatively, the volume (AU x AJ).Al of AUILJ, and the volume
5 (UB x UJ).UI of UBIJ, are hoth equal to 1/48(j2-12), since

det (1,0,0; 1, jo. 1;d1, 42, 1) = det (1,0,0; 5, — 1,4 — 1,134y — 1,45 — 1,1) = jo—is.

So the necessary and sufficent condition for primitivity is jo-io = 1, which happens
iff IJ is one of the edges (*). This alone will be used in the present section ; however
in § 3 we use the fact that these elementary tetrahedra have “p” = j;-i; and “q”
= Jo-la.



MAXIMAL CHAIN. The edge path X = X, X, .. Xy-2X,_1 is called the maximal
X-chain (likewise Y = Y; Y, .. Y, 2Y,_ | will be called the maximal Y-chain) ; note
that (*) consists of its -2 X-EDGES X, X, together with four more : two each
stuck to each end Xy and X4 1. For small values of (p,q) one can quickly plot the
lattice points of the parallelogram on quadrille paper and then draw X : F igure
H shows this for the two cases (p,q) = (4,7) and (3.8). We will refer to PQX;
and X, RS as X-END TRIANGLES, and call the remaining two regions of the
parallelogram LEFT X-POLYGONAL and RIGHT X-POLYGONAL according
as 1t s to the left or right of the chain as we move on it from X, to X, ;. Other
usages of “left” and “right” will be compatible to the one just made:; also, the
suttix ~X-" which is used to distinguish these concepts from their obvious “Y-”
analogues will be often omitted.
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Figure 5

WEIGHT. An internal edge 1J of the subcomplex P(p,q) of Kx(p,q), a %ZB-
prunitive simplicial subdivision of the bottom half, will be said to have X-weight
0, 1 or 2, depending on whether none, one, or hoth of the tetrahedra AULJ and
UBLJ are in Kx(p,q). The following three facts about weight will be Important.

(Wt0) The weight of 1J is 0 iff its two incident triangles in P(p,q) cone over the
sarve vertex from {A, U, B} to give tetrahedra of K x (p,q). For “only if’ assume,
e.g., that IJU € K x(p,q). Since the weight of 1J is 0, the fourth vertices, of the two
tetrahedra of K x (p,q) incident to LJU, must be on the parallelogram, i.e., must
be the vertices H; and H,. respectively to the left and right of IJ  such that IJH,,
LJH, € P(p.q). The converse “if’ is obvious.

(Wtl). The weight of 1J s 1, with say IJAU in Kx (p,q) (the statement for IJUB
< Ix(p.q) is analogous), iff (with the same notation as before) IJH;A and IJH, U
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are in Kx(p,q). For “only if’ note that the open tetrahedron IJAU intersects
both IJH, A and IJH,U. So the fourth vertex of the other tetrahedron incident to
IJA has to be H;. Again, since weight of 1J is 1, the fourth vertex of the other
tetrahedron incident to IJU is also on P(p,q). and so must be H,. For the converse
“if” note that, for the fourth vertex of the other tetrahedron incident to IJA, there
15 only one choice, namely U.

(Wt2). The weight of 1) is 2 iff IJH, A and LJH,B are in K x(p,q). The verification
1s similar, so can be omitted.

Proposition 2. For any i Z*-primitive simplicial subdivision Kx(p.q) of the
bottom half. 2z < 1/2, of T(p.q), q > 5, the subcomplez P(p,q) covering the
parallelogram st contain all the q+2 edges (*). and each of the -2 edges X; X; 4
must have weight 2 in Ky (p,q).

Proof. Since the area of the triangle PQZ is bigger than 1/8 if Z = S, R, or X;,
1 > 2, the edge PQ € P(p,q) is incident to only one elementary triangle of the
parallelogram, namely the end triangle PQX;, and so we must have PQX, €
P(p,q). Likewise, Xq,-1RS € P(p,q).

The total weight of the edges must be 2q. To see this we note, since A, U, B are
collinear, that any tetrahedron of Kx(p,q) is either of the FIRST KIND, with
3 vertices on the parallelogram, or of the SECOND KIND, with just 2 on the
parallelogram, and the total weight is the same as the number of tetrahedra of the
second kind. The total volume of all tetrahedra of the first kind is the same as the
volumne of the pyramid of PQRS over B, i.e. q/24. (Thus the number of tetrahedra
of the first kind, i.e. the number of triangles of P(p,q), is also q/24 + 1/48 = 2q.)
The remaining volume, i.e. the volume of all tetrahedra of the second kind, is the
same as that of the tetrahedron PABS, which is also q/24. This shows that the
total number of tetrahedra of the second kind is q/24 + 1/48 = 2q.

By Lemma 2 we know all edges which could occur with weight > 1. So we know
(see Fig. 5) that, if one of the edges X; X,y is not in Ky (p,q), or else, even if
all these edges are in Ky (p,q), but one of them. X;Xiy1, has weight 0, then we
can “jom* any 2 triangles of P(p,q), other than the 2 end triangles, by means of a
sequence of triangles, such that each shares a weight zero edge with the previous
one. Using (Wt0), these triangles must all join to the same vertex from {A, U, B}
and so there are at most 4 edges (of the end triangles) of positive weight. Since g
- 5 the total weight would be less than 2q. The entire X-chain must thus be in
the subcomplex P(p,q) and all its edges must have positive weight in K x(p,q)-
In case one of its edges XiX;41 is only of weight 1, say with AUX; X411 € Kx(p,q),
then, by (Wtl1), the left triangle of P(p,q) incident to X;X;41 joins with A, and the
right triangle with U, to form tetrahedra of Kx(p,q). Using again the argument
of the previous paragraph, it follows that all triangles of the left polygonal region
must join with A to give tetrahedra of Kx (p,q), and likewise, all triangles of the
right polygonal region must join with U to form tetrahedra of Kx(p,q). Using the
converse part of (Wt1) all edges of the chain must have weight 1. Since the 2 edges
stuck at each end can now contribute at most weight 3, we see that total weight
18 at most (q-2)+2.3 = q+4 which is less than the required 2q because q > 5. It
follows that all edges X, X, have weight 2. g.e.d.



Remark 3. In Ky (p.g) the end triangle PQX,, respectively X, RS, is
incident to one of the tetrahedra from {APQX,, UPQX,, BPQX;}, respectively
{ANX, RS, UX, RS, BX,_RS}. In case the boundary faces are subdivided
i the standard way (see Remark 1) these clearly must be given by the second
alternative, i.e. UPQX, € Kx(p,q) and UX, 1RS € Kx(p,q). Also, using (Wt2)
and (Wt0), all triangles of the left polygonal region of P(p,q) must -one over A,
and all those of the right polygonal region over B. Note that now each of the
miternal edges of an end triangle has weight 1 (if boundary subdivision of that face
is not standard one of them will have weight 2 and the other weight 0,. Thus, with
boundary subdivision standard, the triangulation Kx(p,q) s unique, the possible
ambiguity being only as to how one chooses to elementarily subdivide the left
and right polygonal regions of the parallelograny. [In fact the parallelogram has a
utique triangulation with X a subcomplex, thus there is no ambiguity.|

Remark 4. The above arguments made only a very mild use of the half-integrality
of the vertices X,. They show in fact that all the conclusions of Proposition 1 hold
crenaf the q-1 vertices X, are any interior points of PQRS, one on each horizantal,
provided all the tetrahedra of the subdivision have volume 1/48.

UPPER HALF. The next result gives the analogous conditions, imposed solely by
the primitivity, with respect to %Z3, of the tetrahedra of K(p,q) which cover the
portion z > 1/2 of our tetrahedron, and can be established by mimicking the proof
of Proposition 2. However we give below another proof, in the course of which we

will define and use an mteresting SYMMETRY ¢ between the two halves.

Proposition 3. For any %Z3—pri7nz’ti1,’e sitmplictal subdivision Ky(p,q) of the
upper half. 2 > 1/2, of Tpq), q > 5, the subcomplex P(p,q) covering the
parallelogram must contain all the q+2 edges :

PYM S}rl; )/]}/2, Y2Y3, ceey Yq—2yq~1; Y(;_IQ, Yq—lR . (**)

Furthermore, each of the -2 Y-edges VY11 € Y has Y -weight 2, i.e. CVY.Y 1
and VDY, Y, | must both be in Ky(p,q).

For example, for the same values of (p,a) as were used to draw Figure 5, the
maximal Y-chains Y are as shown in F igure 6 below.

Proof. The aforementioned ¢ will be the linear transformation of 3-space, having
the barycentre M as its fixed point, and mapping A, B and C respectively to C, D
and B. Since MA, MB, MC and MD add up to the zero vector, it follows that 0]
also maps D to A. Since ¢ preserves the tetrahedron, it must be volume preserving.
Moreover, it switches the upper and hottom halves, interchanging the point V with
U and “rotates” the parallelogram, mapping P, Q,RandS respectively to Q, R, S
and P. Its restriction to this parallelogram being area preserving, it follows that ¢
must map the straight line through Y; parallel to SP onto the straight line through
X parallel to PQ (however we note that ¢ need not map the point ¥; to the point
X,
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Figure 6

Applying ¢ to the given Ky (p,q) we obtain a linear subdivision of the bottom half,
having P, Q, R, S, A, U, B and ¢(Y;), 1 <1i < g-1, as its vertices, with areas of all
triangles on the parallelogram 1/8, and volumes of all tetrahedra 1/48. The result
now follows by Remark 4 which tells us that all the conclusions of Proposition 1
apply to this combinatorially isomorphic subdivision of the bottom half. g.e.d.

THE OBSTRUCTION. As Figures 5 and 6 suggest, the set theoretic intersection
X (Y is seldom a subcomplex, and so, it is rarely the case that both X and ) are
subcomplexes of P(p,q). More precisely, the following concludes the proof of the
“only if” part of Theorem 1.

Proposition 4. An X-edge of the parallelogram is a Y-edge iff p = 1 or g-1 and
then all X-edges are Y-edges. In all other cases there is a pair (X-edge, Y-edge)

with intersection a non half-integral point.

Proof. All points being now on the parallelogram, their omitted third coordinate
will always be 1/2. The segment with end points [ = %(il, i), J = %(jl, J2)
€ 577 is an X-edge iff their second coordinates differ by one, say jo-is = 1. Note
that the line through X, parallel to SP has equation ¢x - py = k where 1 < k <
(-1 1Is the integer such that X; = Y},. So 1J is also a Y-edge iff (qj1-pj2) - (qi1-piz)
= 1 or -1. Because 1 < p < q, the first case, q(j1-i1) = p+1, occurs iff ¢ = p+1
and ji-i; = 1, and the second case, q(j1-1;) = p-1, happens iff p = 1 and j;-i; =
0. In case p = -1 one has X; = %(t,t) =Y,1<t<qg1, and in case p = 1 one
has X; = £ (1,t) = Y,_, : s0 in either of these cases the X -chain and Y -chain
coincide and are straight lines. As we will see, in all other cases, both the chains
are crooked.

Case 2p < q. The slope of the line SP being q/p — see Figure 7 — we will have
Xy = 3i(11). Xo = §(1,2), ..., Xy = L(1t), where t denotes the largest integer



such that tp < ¢, and then, since (t+1)p > ¢ (as g.c.d of P# 1and qis 1 we
cannot have (t+1)p = () the next Xir1 = §(2,t+1). So the X-chain is crooked
with “first hend” at X,. Just after this “ﬁfst bend” of the X-chain, there is a
non half-integral intersection with a Y-edge. To see this note that X; = (1,1) =
¥, -, is neither Y, nor Y, 1, so the Y-chain too is crooked with a bend at this
vertex. Also X, = % (2,t+1) = Y2 p(e41) comes after this vertex in the Y-chain
because ¢2-p(t+1) > ¢-p is the same as q > pt, and Xs = % (1.2) = ¥, _ 2 comes
bhefore Y, -1 because g-p2 < ¢-p-11s the same as p > 1. So Y,—p-1 is trapped in
the indicated shaded region and Y, p—1Y,_, must intersect X X¢y1 av an interior
point.

'X(l
/|7
o
/ o
/}”
il
‘/’I
//
Ll
i
Xy
/
—_——
P Q

Figure 7

Cuse 2p > q.(*) The slope of QR being ¢/p we now have X; = %(1,1), X; =
$(2.2), ., X, = 3 (t,t), where t is the largest integer such that t/(t-1) > q/p. We
can have (t-+1)/t = q/p, ie. p(t+1) = qt, only if p = t = -1, which we ruled out:
S0 (t+1)/t > ¢/p and the next X,,, = % (t,54+1). Again, there is an intersection
with a Y-edge just after this “first bend” of the X-chain. This time it is Y,_,
which is trapped in the shaded region, and so Yq_qu_p+1 mtersects X; X, ,. This
because X, = % (t,t+1) = Yyt —p(t+1) comes before X; = Y,_, on the Y-chain
as qt-p(t+1) < g-p is the same as q(t-1) < pt, and Y,_,, is before X, as q-p+1
< 2¢-p2is the same as p < g-1. g.e.d.

Remark 5. In course of the above proof we obtained a more geometric way
of stating Theorem 1 : an L-elementary tetrahedron admits a %]L—primitive
subdivision iff the points of %L lying in its interior are collinear. Note also that,
even though the order 4 volume preserving affine transformation ¢ is not lattice
preserving, the involution ¢? is (and is in general — see proof of Lemma 3, § 3

the sole non-identity automorphism of T(p,q)). It preserves both halves, and,

(*) This in fact follows from the case 2p < q because of Lemma 3 below.
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restricted to the central section, reflects it through M. The mazimal X- and Y-
chains are thus preserved by reflection through the barycentre M, which thus must
be on both chains. If ¢ is odd, M ¢ % 73, which gives, for this case, another proof
of the second part of Prop. 4.

§3.Construction

The analysis of § 2 already indicates - see Remark 3 — what a + Z3-pr11111t1ve
subdivision of either half should look like. We now constr uct such subdlvmons It
tur ns out that the same construction also gives analogous 3 ! Z3-elementary, but not

L Z3 primitive, subdivisions if we employ non-maximal chams These are defined
as follows.

C'HAINS. By an X-chain ¢ we will mean an edge path X; X;,... X;., 1 =1 <
L < ... <1, = ¢1, such that each of its edges, X letv has no half-integral
points in its interior. Its vertices will usudlly be denoted X; = X;,, note that the
first vertex X is always X1, and the last X, always X,_1. The end triangles and
the left /right polygonal regions of C are defined as for the case of the maximal
X-chain. and Y-chains D are defined analogously.

SLICING. Using segments P;Q,, parallel to PQ, through the vertices X, of the
given chain C. the bottom half becomes the union of r-1 inner slices, i.e., those
between the planar sections P,Q; AB and P,HQ,HAB 1 <t <r, and two end
slices, hetween PQAB and PiQ, AB, and between P.Q, AB and SRAB. As Figure
8 shows, an inner slice subdivides as the union of the tetrahedron XtXH-l x AB
(which subdivides further into two by means of the triangle XX, 1U) and the
pyramids of two quadrilaterals over A and B. From the first end slice we will carve
out the tetrahedron PQX,U, leaving us with the pyramid of the quadrilateral
AUX | P, over P, and of UBQ, X, over Q, which we will further cut into two parts
each by means of the triangles APX; and BQX,, respectively. The second end
slice is subdivided similarly.

Figure 8

Proposition 5. For any X-chain C there is a linear simplicial 123 -elementary
subdivision Kc(p,q) of the bottom half with tetrahedra



(1) cones over A and B, respectively, of triangles of some elementary subdivisions
of the left and right polygonal regions of C,

(n) joins of edges of C with AU and UB, and

(1) PAUX,, PQUX,, QUBX, and Xq-15AU, X, ,SRU, X,-1RUB.

Proof. Putting the slices of Fig. 8 back together we see that the entire bottom half
i~ the union of (ii)" the join of ¢ with AB. (i)" cones over A and B respectively
of the left and right polygonal regions of C, and the six tetrahedra (iii). The
triangles X; X, U subdivide (i1)” into the tetrahedra (ii). Using Lemma 1 we now
elementarily subdivide the left and right polygonal regions, and by coning these
over A and B, subdivide (i) into the tetrahedra (i). q.e.d.

Conclusion of proof of Theorem 1. Using Lenuna 2 we sce that the above
retrahedra (3) and (i) are primitive, but the tetrahedra of the second kind (ii) are
all primitive if and only if C = A, the marimal X-chain. Likewise for the upper
half by virtue of the symmetry ¢, thus one always has primitive % Z3-subdivisions
Kiip.q) and Ky(p,a) for the two halves separately. However, Proposition 4 tells
us that, unless p = 1 or -1, X (Y is not a subcomplex, thus Kx(p,q) and Ky (p,q)
camot have the same P(p.,q), and so cannot be put together to obtain a %Zs-
primitive subdivision of T'(p.q). If p = 1 or -1, X = Y (except for a change of
direction in the p = 1 case). The subdivisions of the two halves can therefore be
chosen with the same P(p.q), and then fit together to show the remaining “if’
part of Theorem 1. ¢.e.d.

For the sake of completeness we note here that, for the trivial primitive case
¢ = 1 (now there are no X;, so no C) we can subdivide the bottom into two
tetrahedra, and a pyramid over the central section, as in Figure 9, and cutting the
parallelogram into two using either PR or QS, obhtain a % Z3-subdivision.

S
q=1

Figure 9

(C.D)-SUBDIVISIONS. Given a pair (X-chain C, Y-chain D), with COD a
coramon: subcomplex of both C and D (note C (D # 0 always) we can, using Lemma
L find elementary subdivisions P (p,a) of the parallelogram containing both C
anc D as subcomplexes. Then, using Proposition 5, we can construct an %23-
elementary subdivision Kc(p,q) 2 P(p,q) of the bottom half, and analogously,
K7 (p.q) 2 P(p,q) of the top half. The resultant %Zs—elementary subdivision
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Ke(paa) U Ko (p,q) of T(p,q) will be called a (C,D)-subdivision and denoted by
Ke p(p.q). Such pairs (C,D) always exist, as we show in the course of the following
shple proof of the (3-dimensional non-projective) Knudsen-Mumford-Waterman
theorem.

Proposition 6. Given any finite convex cell compler in R® with all vertices

mntegral. one can find a t so large that the complex admits a linear stmplicial
Lyt 3 “mitive subdivisiol

( 5 )27 primitive subdivision.

Proof. Because of the convexity of its cells, such a complex can be subdivided
simplicially into Z%-elementary simplices. It suffices thus to stipulate an iterative
process of elementarily subdividing these simplices (with boundary always to be
subdivided in the standard way) which will eventually give, for some t depending
onpand ¢, a (2 )4-Z2 primitive subdivision (simplices already primitive will always
be further subdivided as in Fig. 9).

We assume X, Y,-1. X,-1, Y7 are distinct, for otherwise, p = 1 or g-1 and we can
attain primitivity in just one step. We join these four points in cyclic order, and
then further subdivide this “rhombus” - see F ig. 10 - by half-integral points, if
any, which lie on the interiors of its edges. The subdivided edge path XY, 1 X,
will be our C, and the subdivided edge path Y1.X,Y,_; our D, so C\D, i.e. the
subdivided edge X, Y,_1, is a subcomplex of hoth. Using Lemma 1 we choose
clementary subdivisions of the components of the complement of the “rhombus”
and extend this to a subdivision Ke(p, )UKo (p.q).

S

Figure 10

As Xy and X1, respectively Y7 and Y,_, lie on the first and (g-1)th parallels to
PQ, respectively SP, using Lemma 2 and the symmetry ¢ we see that the new “q”,



ol any tetrahedron of this subdivision, is less than ¢-2. So all tetrahedra eventually
hecome primitive. ¢.e.d.

We show next that, without convexity, the first step of the last proof - i.e. the
3-dimensional analogue of Lemma 1 - is false.

A NON-CONVEX 3-CELL. There is a region Q@ of R*, whose boundary is
uniquely triangulable as a linearly embedded 6-verter simplicial 2-sphere, which
noects 77 only in these six vertices, and which cannot be simplicially subdivided
o clementary tetrahedra.

Two of the eight houndary triangles, abe and ABC. of this non-convex 3-cell, will
Lic. respectively, on the horizantal planes z = 0 and z = 1. while the remaining six,
{abB, aAB}, {beC, bBC} and {caA, cCA}, will form three sloping quadrilaterals,
abAB, heBC and caCA, all flexed inwards along the diagonals aB, bC and cA. In
other words. these three diagonals are on the boundary of €2, but the remaining
three diagonals, Ab, Be and Ca, are all outside Q. This rules out an elementary
simplicial subdivision, because no tetrahedron of such a subdivision could be
mcident to the face ABC of ).

B(prr-tyars) bp+T,4+5)

(0,0}

Lo \

Figure 11

o arrange this, let the (x,y) projections of the vertices be as in Figure 11, which
this is € viewed from the top. More precisely, let ¢ = (0,0,0),C=(0,-1,1), a
= poa. 0). A = (p,q, 1), b = (p+r. q+s, 0), B = (p+1-1, ¢+s, 1), for any four

positive integers p, (, 1, s, satisfying

=landr=qg+1 (eg. p =7, q =4,
rs

p qg+1 |pr J 1
r—1 s | qs B
and these equations also ensure that ab slopes more than ca, and AB more than
CA. That the quadrilaterals are flexed inwards on the asserted diagonals follows
by viewing them from outside along the indicated arrows.

I 5.s = 3. The primitivity of ABC follows from }

) -

Note that the above example has the least number of vertices. A simplicial 4-vertex
2-sphere is the boundary of a tetrahedron, and a 5-vertex simplicial 2-sphere either
the boundary of 2 tetrahedra on a common triangle, or 3 tetrahedra around a
common edge.

Remark 6. Nevertheless, we emphasize that Proposition 6 itself is true even
tf the cells of the complex are not conver. To see this note that all planes, which
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pass through three affinely independent vertices of the complex, give us a canonical
subdiviston into smaller convex cells with vertices in a bigger lattice %Z?’. We choose
a simplicial subdivision of this canonical subdivision with vertices in the same
lattice %Zj If / contains primes other than 2, we now move the new vertices slightly
to get a combinatorially isomorphic linear simplicial subdivision with vertices in
some ( i )'-Z3, and then proceed to a primitive subdivision just as before.

To choose moere efficient chain pairs (C,D), we need some more facts regarding the
disposition of the -1 points of the lattice %Zg within the centra. parallelogram.

LATITUDES AND LONGITUDES. The lattice point X, lies either on QX
produced (this happens iff ¢/p > 2) or on PX, produced; accordingly we will
refer to the straight portions of the maximal X-chain parallel to QX; or PX; as
latitudes. Likewise, Y5 lies on PY| produced or on SY) produced, and accordingly,
straight portions of the maximal Y-chain parallel to PY; or SY,will be called
longitudes. Their slopes can be easily computed by using the fact that (besides z

% ) the coordinates of the end points are X; = % (1,1), X1 = % (pya-1),Y; =

to—

5 (rs)and Y,y = %(p+1—r,q—s), where } ;2 ' = 1 (because PY;S and RY, ;S
are congruent elementary triangles). Note that 1 < r < p represents the element
q 'of (Z/p)*, and 1 < s < qis given by s = -p~! € (Z/q)*.

This is the number s of Lemma 3 below, a known(*) classification of the standard
wodels. Then Lemma 4 gives a geometrical reformulation of Lemma 2 and its
Y-analogue in terms of (latitudes, horizantals) and (longitudes, verticals). Here,
lat(LJ) = 0 if the latitudes through I and J coincide, and otherwise lat(1J) is one
more than the number of intervening latitudes, and the other three non-negative

mumbers hor(LJ), long(1J) and ver(1J) are defined analogously.

Lemma 3. T(p,q) is isomorphic to T(p’,q") iff ¢ = q and p’ is one of the four
numbers {p, ¢-p, s, ¢-s}.

Lemma 4. If 1J is an %Z‘B—elementary edge of the parallelogram then AULJ
and UBL) are isomorphic to L T(lat(LJ), hor(1J)), while CVIJ and VDLJ are

b4

isomorphic to 1 T(long(1J), ver(1J)).

Proof. For the “if” part of Lemma 3 note that the affine transformation (x,y,2)
—= (-x+y-z+1y,2) maps Z* onto Z* and T(p,q) onto T(q-p,q). Again, if we use
q—S —p+r
q —-P

and then reflect in the central plane z = L1, we get the Z3-preserving affine
transformation W(x,y,2) = (x(q-s)+y(-p+r), xq-yp, 1-z), which maps 1'(p,q) onto
T(q-s.q).

For the converse note that an affine transformation ¥ will map T'(p,q) onto
T(p.q') iff (U(A),¥(B),¥(C),¥(D)) is one of the 4! = 24 permutations of the
vertices (A’,B’,C’,D’) of the second tetrahedra. Here we use primes to denote
corresponding points of second tetrahedron, so A’ = A, B’ =B, (" = Cand D’ =
(p’. q’, 1). We have q’ = ¢ because the two tetrahedra have the same volume; so

the unimodular matrix [ to transform each plane z = constant,

Lemma 3 is a particular case of Theorem 5.6 of Reznick [Rez]; in [Ka], Prop. 8, two of the 4

possibilities were overlooked.



Wis volume preserving, and ¥(Z3) = 72 iff (0,1,0) = (p/a+ DA -(p/q)B -(1/q)C
= (1/q)D is mapped to an integral point ¥(0,1,0) = (p/q + 1)¥(A) -(p/q)¥(B)
AW (C) - (1/¢q)¥ (D). Checking this for each of the 24 cases (cf. Reznick [Rez])
one sees that such a W exists only if p* = p, ¢-p, S Or (-s.

For the isomorphism ¥ :T'(p,q) = T(g-s,q) defined in the first paragraph
(W {A)¥(B),¥(C), (D)) = (C" DA’ B’), so ¥ maps (P,Q.R,S,U,V) in order onto
(P,STR.Q" V" U"). From this it follows that it maps the verticals, resp. longitudes,
of T(p.q) onto the horizantals, resp. latitudes, of T(q-s,q), with the ¢-1 points Y}
of the central section of T'(p,q) mapping in order on the ¢-1 points X, of T(q-s,q).
This last observation shows that it is enough to prove only the first part of Lemma
4. For this note that, by Lemma 2, both AULJ and UBLJ are isomorphic to 1 T(:-

2
a1 ), but hor(LJ) = jo-is, and lat(LJ) is either the same as j;-i; (this when q >

21 for then the latitudes have equations x = constant) or equal to (jo-ip)-(ji-i1)
(this when ¢ < 2p and the latitudes have equations y-x = constant). ¢.e.d.

For somewhat higher values of (p,q). than those used in Figures 5 and 6, it is
Lelpful to plot the above four kinds of lines using the following device, because
it avolds the congestion of longitudes and verticals, and gives a more balanced
picture.

SQUARING. Our problem belongs to three dimensional affine geometry, i.e., all
that we are saying about T and Z? applies equally well to 1(T) and u(Z3), where
pr 15 any affine transformation of 3-space. For instance, by applying the linear p :
R — R® having matrix

g —p 0
0 1 0f,
0 0 1

we obtain a p('I') having edges AB and CD of the same length, and its section z
5 is a square. the new or “squared” x- and y- coordinates of the various points
being & times the numbers indicated in Figure 12.
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Figure 12
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Note that the -1 equally spaced verticals, being parallel to SP, are now in
fact “vertical”, and the spacing between them is the same as between the q-1
horizantals. There is one and only point of the lattice u(Z3) on each horizantal
and vertical, and these points can be found by starting from any end point and
making some obvious MOVES. For example, we start from X 1 1n the direction
PX, because PX, < QX in Fig. 12, in case PX; > QX start in the direction
QX5 - till we meet the second horizantal in Xo, and so on, as long as we stay in
the square. Having thus obtained the first latitnde X, X,..X;, we then make one
move from X; parallel to QX to find X, on the next horizantal, after which we
again make moves parallel to PX; and obtain the second latitude, etc. In some
higures below, we will only draw the smaller square passing through the four end
points. The “crossword” symmetry of these figures reflects that A < B, C < D
1s an automorphism of T(p,q), and the fact that the end points (Xq-1, X1, Y1,
Y, 1) have non-trivial squared coordinate (p. ¢-p, s, g-s) is related to Lemma
3 ¢ the symmetries of the square PQRS induce the four isomorphisms T(p,q) =
T(p'.q). Note that if p = s or ¢-s, then one has only two nuinbers, and so only
two 1somorphic tetrahedra; but nevertheless, Lemma 3 shows that one may always
assume p < /2, as we will do in the next proposition.

ALMOST MAXIMAL CHAINS. An X-chain C = X1X5..X, is called almost
maximal if its edges X; Xz+l Jom vertices on the same or adjacent latitudes,
e iff lat(X;X, ;1) = 0 or 1. Thus, besides &, there are many other almost
maximal chains; for any such C, Lemma 4 tells us that the §Z3 elementary
tetrahedra )LZXIH*AU and XXIH*UB are either §Z3-pr1m1t1ve or ;ZB’—
ALMOST PRIMITIVE, i.e., isomorphic to 5 T(1,t) for some t. Almost maximal
Y'-chains are defined analogously. So, if (C,D) is a pair of almost mazimal chains,
with C(\D o subcomplex, then, by using the “if” part of Theorem 1 to further
subdivide the 5 Z3-elementary subdivision Ken(p, q), we obtain a iZB'-pm'miti’ue
subdivision of T (p,a). As a warm-up for the proof of Theorem 2, we first show
that often one of these chains (C,D) can be chosen arbitrarily.

Proposition 7. The two X-chains, which run from Xy to X,_, on the boundary
of the convex hull, of the -1 points Of 73 lying in the interior of the section z
= 7- of T(p,q). p < q/2, arc almost maa:zmal if and only if p divides g-1 or q+1.

For any such (p.,q), we obtain a Zr‘—prlmxtlve subdivision of T(p,q) by subdivi-
ding K¢ p(p,q), where C is one of these two chains, and D is any almost maximal
Y-chain. This follows because, C being on their convex hull, no edge path D,
having as vertices some or all of the -1 lattice points can cross it. Thus C N D is a
subcomplex for any D. If D is maximal the top half of K¢ p(p,q) is already 5 L 73.
primitive, and the bigger lattice 1 Z 1s used only to make the bottom primitive.

Proof. We assert that, for q/p > 2, the mazimai X-chain has p latitudes, the
Jirst having t = [q/p] vertices, and all others having either t or else t+1 vertices.
This centrally symmerric partition into p parts of size t or t+1 will be called the
X-PARTITION of g-1.

To sec this note that in this case the latitudes are configured as for the (3,8)
picturized in Figure 5, i.e., they lie on p equally spaced “verticals” (not to be
confused with verticals (!) Whl(‘h are parallel to PS). The first of these “verticals”
passes through Q, and the last through S. Since PS has slope q/p, the first has
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exactly (41, ¢ = [q/p], points of the lattice 173, of which one, Q, is on the
houndary.(*) Since the parallelogram intercepts the same length of each “vertical”
it follows that all have either t or t+1 points of % YAS

Next, consider the X-GON Px, ie., the undirected simple closed edge path
consisting of the first and the last latitude, and the two edge paths obtained
by joining the initial, respectively final, vertex of each latitude, to the initial,
respectively final, vertex of the next latitude. Thus the two chains C which run on
Py from X, to X,_; are both almost maximal, and each of the -1 Hoints X; is
etther a vertex of Py, or is enclosed within it.

So. it only remains to check that Py is conves iff p divides -1 or q+1. Convexity
I~ cquivalent to saying that the internal angle at each vertex v of Py is at most
1807 By central symmetry we need to consider only the initial vertices v of the
latitudes. At the initial vertices of the first and pth latitudes the angle is clearly
less than 180°. However, at an initial vertex v of any other latitude the internal
angle of Py exceeds 180° iff the preceding latitude has more vertices (i.e. iff, of
the edges of Py meeting in v, the one on the left has slope, t+1, one more than
the one on the right). Thus, either all the parts of the X -partition have the same
size t, or only the initial and final parts are of size t, and all others are of size t+1.
So.cither g-1 = pt, or -1 = 2t + (D-2)(t+1), Le. q+1 = p(t+1). q.e.d.

Remarks 7. We thus have 1 Z%primitive subdivisions of many elementary
tetrahedra, e.g., all those isomorphic to a T'(p,q) with p < 4, and, using Lemma 3,
this covers all having q < 11. The case (p,q) = (5,12) is the smallest which escapes
Prop. 7. and now, not only is the X -gon Py non-convex, its intersection with the
waximal ¥-chain - shown dotted in Figure 13 - is not a subcomplex. So, if C is
on Py, the almost maximal Y-chain D cannot be arbitrary. But, in an amazingly
large number of cases, including all with < 20, the intersection Px Py of the
X-gon and the Y-gon is o subcomplex, e.g., as Figure 13 shows, if (p,q) = (7,19),
then Py [Py consists of 6 edges and their 10 vertices. In all these cases, we obtain
a %sz—primitive subdivision by choosing the complementary D on Py. However,
PPy is not always a subcomplez Figure 14 shows that for the case (p,q)
= (12,31), Py and Py have no common edge, but Py [Py contains, besides 22
vertices, 4 other isolated points. Now, for a pair (C,D) with C C Px and D C Py,
C{)D is not a subcomplex (but, using a small detour in one of the 2 chains, one
agaln gets a pair of almost maximal chains with intersection a subcomplex).

&,12)

Figure 13a

For the same reason, the ith “vertical“ has lia/p] - [(i-1)q/p] points.
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Figure 13b

Figure 14

@,19)

2,21




We do not need Proposition 7, or any of the constructions just mentioned, in
the proof of Theorem 2. However they are of independent interest, and are what
first convineed us about the truth of this theoremw. In all these constructions,
we stayed away from the barycenter M, thinking that this was needed to avoid
bad intersections. However, somewhat, surprisingly, “moving towards M” is exactly
what gave us a general construction of the required chain pairs.

QUADRANTS. Choosing M as “origin” we draw - see Figure 12 - through M two
“axes” i the directions parallel to the latitudes and the longitudes. If ¢ is even, M
- 27 and each “axis” is itself a latitude or longitude : however, for ¢ odd, when
\ g —j, 271t may or may not be one. We adopt the usual terminolbgy for the
four parts of the parallelogram, e.g., the “first quadrant”™ is that which contains
K. The idea now is to (essentially) confine C and D to distinct pairs of opposite
quadrants : since then M € C)D, this idea works best only for q even, so this is
the case which we will treat first.

Proposition 8. For all ¢ even, there is pair (C, D) of centrally symmetric almost
mazremal chains, with C(\D = {M}.

S0, by the same argument as before, all T(p,q) with ¢ even must have a %ZB-
prbuitive subdivision. We note that in the following we will argue from the squared
representation of the central section.

Proof. First, suppose that the slopes of the “axes” have opposite signs, say, the
latitudes have positive slope and the longitudes negative (the opposite case is
similar). This is the case q-p < /2 < s, and is the one that was shown in Figure
12. Note that the open third quadrant (ie. that containing P) intercepts a length
bigger than P X from all latitudes, starting with the first, and before that through
M. S0 we can choose, on each of these intercepts, one point of the lattice w(Z3).
Using these chosen points, the barycenter M, and the symmetric points of the first
quadrant (i.e. that containing R), we obtain a vertex subsequence of the maximal
X-chain X, X 2...X g1, which determines an almost maximal X-chain C , which,
but for M, is contained in the interior of the third and first quadrants. Likewise,
because the longitudinal intercepts contained in the open second quadrant have
length bigger SY;, we can define a centrally symmetric almost maximal Y-chain D,
which, but for M, is contained in the interior of the second and fourth quadrants.
So CD = {M}.

Now suppose that both latitudes and longitudes have positive slope (the opposite
case when both slopes are negative is similar), i.e. that both q-p and s are less than
;2. As shown in Figure 15, now X; and Y; may both be in the third quadrant, or
one of them may be instead in the neighbouring, i.e. fourth or second respectively,
quadrant, but

we assert that one cannot have X, in the fourth quadrant and Yy in the second
quadrant. For this to happen, the slope of M X, i.e. (@/2-1) + (q/2- (q-p)), must
exceed the slope s of a longitude, and the slope of MY, i.e. (4/2-s) + (q/2 - 1),
must be less than the slope 1/(q-p) of a latitude. So q/2 - 1 has to be bigger than
both s(q/2 - (q-p)) and (q/2 - s)(q-p). If s < q-p the second number is bigger, if
5 = q-p both are equal, and if s > ¢-p the first number is bigger. In any case the
bigger of the numbers exceeds the minimum (q/4)? of x(q/2-x),0 <x <q/2. So
/2 -1 > g°/16, ie. (q-4)® < 0, which is absurd.
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Figure 15

If say Y| is in the second quadrant, then, noting that the longitudinal intercept
contained in this quadrant have a length bigger than PY;, we choose as above an
almost maximal and symmetric D through the interiors of the second and fourth
(uadrants, except for the one point M. Also. the latitudinal intercepts in the third
(uadrant being of length at least PX |, there is an analogous C through the third
and first quadrant. The case when X is in the fourth, and Y7 in the third quadrant,
is exactly similar, only the quadrant pairs of the chains are now switched. So, in
all these cases, C(\D = {M}.

There remains only the case of Figure 15, when of course ¢ and D cannot be
completely (but for M) in distinct pairs of opposite quadrants. Now choose one of
the chains. say D, just as before, so it runs through the third and first quadrants.
Moreover, since the portion of the third quadrant lying above PX; produced also
has longitudinal intercepts of length bigger than PY;, we can arrange that D is
strictly above the first latitude, and so also strictly below the last latitude. For
C, we choose an “initial portion” on the first latitude till we are in the fourth
quadrant. The “middle portion” of C runs between this and the symmetric “final
portion”, through the fourth and second quadrants, and is defined just as before
using the fact that the latitudinal intercepts in the fourth quadrant have length
exceeding PX;. This gives again a symmetric almost maximal pair with C(D =
{M}. q.e.d.

To finish the proof of Theorem 2 we will use, firstly, the fact that an analogous
conclusion is valuable even if q is odd.

Lemma 5. Any T'(p,q) having a pair (C,D) of almost mazximal chains with C ND
= {M} admits a %23—primitive subdivision.

More generally, a similar construction shows that the same is true if C’ND’ is a
subcomplex of C’ and D’ the subdivisions of C and D obtained by considering
middle points of edges as new vertices.
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Proof. For the remaining case  odd, we will describe a modification of the previous
construction, which only uses the fact that M & iZ'ﬁi, We begin by constructing
the :1) Z3-elementary subdivisions Ke(p,q) and KD(p,q), of the bottom and the
top half, just as before, but take the following extra care in choosing the sub-
triangulations P (p.q) and Pp(p.q), of the parallelogram P, used in defining
them.

Let XX and YY denote, respectively, the edges of C and D of which M is the
middle point. We choose a 5 Z’-clementary centrally symmetric polygonal region
R 2 P, such that four of its vertices are X, ¥, X, and Y. Note that this R can
have other vertex pairs {E, E' }, and can be non-convex, we only demand that if
a segment having M as its middle point has one end point in R, then the entire
segment be in R Tt is easily seen that such a polygon R can always be found.
The extra care we now take is that the boundary of R be a subcomplex of both
Po(p.q) € Ke(p.q) and Prp,q) c K p(p,q), and that P¢(p,q) and Pp(p,q) differ
only ou the interior of the polygonal region R.

The triangulations Re(p,q) and Rop(p,q) of this region have to he different,
because X X is in the former, and YV in the latter. We nevertheless go ahead and
subdivide K¢ (p,q) just as before to obtain a ﬁ Z7?-elementary primitive Ke¢'(p,q)
of the bottom half. Recall that in this step the tetrahedra of the second kind
are subdivided using Theorem 1, and the remalning tetrahedra, all primitive, are
subdivided further by the method of Figure 9. The edge X X separates the interior
of R into two parts, one contained in the left poygonal region of C, and the other
in the right polygonal region. Removing all simplices of K¢'(p,q) incident to the
lett part creates a TROUGH - see Figure 16 - whose

Figure 16

bottom carries a triangulation similar to the left half of Re(p,q), and all walls of
this trough are triangulated in the standard way. In particular, the triangulation
of the wall of XX is a cone over M. So we can re-fill this trough by coning the
remaining walls and bottom over M. We similarly create and re-fill a trough on the
right side. This gives us a i Z3-primitive subdivision K¢” (p,q) of the bottom half,
which matches with the similarly modified iZB—primitive subdivision Kp” (p,q)
of the top half, because, in both cases, the polygonal region R has now been
retriangulated as the cone of its boundary over M. g.e.d.

Another point which we will use in the following is that we can employ chains
shghtly more general than almost maximal chains, namely, we can often SKIP a
latitude (or longitude) provided it contains only two lattice points. For instance, if
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(/P = 2 and X s the last vertex of the previous latitude, then the first vertex of
the next latitude is X, 5, and using Lemma 2 we know that the Join X; X, 5x(AU
1

or UB) is isomorphic to £ T(2,3), and so adinits a 1 Z?-primitive subdivision.

Conclusion of proof of Theorem 2. For the remaining case q odd, the argument
of Proposition 8 applies verbatimn, to yield a centrally symmetric almost maximal
pair (€, D) with C(D = {M}, provided the numbers of latitudes and longitudes
are both even (e.g. if ¢-p and s are even and less than q/2). Using Lemma 5 we
obtain the subdivision.

Ly all other cases, at least one of the “axes” has lattice points, the lattice points
nearest 10 M on such an “axis” being {X,;, X;,,} or {Y:, Yiq1}, where t = (g-
1)/2. We still need to make only a trifling change in the construction of C or D,
as described in the proof of Proposition 8, provided the slopes of the two “axes”
have different signs. The trifling change being that we choose both {X,, X1}
or {Yy, Yiy1} from this central latitude or longitude. This again gives a centrally
svnetric almost maximal pair (C,D) with CD = {M}.

Tlus is however not permissible, for one of the two chains, when the slopes of the
two “axes” are the same, say, positive as in Figure 15 (case negative is similar).
Now, in the construction used to prove Proposition 8, one of the two chains, say C,
had either not started from the third quadrant, or else had been diverted from it,
by means of an “initial portion” on the first latitude, into the neighbouring fourth
(uadrant, and then C had remained, till M, in this quadrant. This entails choosing
Xi41 before X,, which is not allowed.

This difficulty is easily overcome if {X:. X1} happen to be the only lattice points
of the central latitude. Now, while defining C, we choose the last vertex X:_ 1 of
the previous latitude, which is in the fourth quadrant, then skip both {X;, X,,},
and move on to the synunetric first vertex X+o of the next latitude, which is in
the second quadrant. Once again we obtain a pair (C,D) of centrally symmetric
chains with C(\D = {M}, and, using the remark made above, one can still use
these chains as before to make a %Z‘(i -primitive subdivision. In case it is only the
central longitude which has two lattice points, and one of the two chains needs to
be diverted, we take care to divert D, not C.

I the number of lattice points on each “axis” is more than two, i.e. four or more,
we give up central symmetry, and overcome the above difficulty by SHIFTING
THE ORIGIN from M to the lattice point X, (or Y;) the new “quadrants” being
now those which are determined by the latitude and longitude through X;. Because
there are at least 4 lattice points on the central latitude, the distance from X; to Z,
the point where this latitude intersects PS, is bigger than PX, thus guaranteeing
that all latitudinal intercepts contained in the (now smaller) second quadrant still
have length bigger than PX;. Thus C can be defined like before : an initial diversion
on the first latitude into the fourth quadrant, then a lattice point from each latitude
in this (now bigger) quadrant till the point X,, after which we can continue like
this in the third quadrant, thanks to the observation Just made, till we meet the
final latitude, along which we finaily go to Xg¢-1. The other chain D is in the new
third and first quadrants, and definable just as before, because the longitudinal
mtercepts contained in them, and between the first and final latitudes, have lengths
bigger than PY7]. This gives a (non-symmetric) pair of almost maximal chains C
and D, whose intersection is the subcomplex consisting of the single lattice point
X+. So once again a %Z‘g—primitive subdivision exists. g.e.d.
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