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ABSTRACT The combinatorial properties of cyclic polytopes

- C(n,d)
view. A simple characterization of the alternating
oriented matroids, which constitute the geometrical

is given. As a corollary, we charac-

are surveyed from the matroidal point of

type of C(n,d)
terize cyclic curves. The geometrical type of cyclic
polytopes of even dimension is proved to be unique.
For the odd dimensions, the geometrical types are
characterized. The generalization of the Dehn-Sommer-
ville equations to simplicial matroid polytopes is

proved.
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3.
INTRODUCTION
The cyclic polytope C(n,d}) was discovered by
Caratheodory [8,9) and many times rediscovered; C(n,d)
is bmcmw~< defined as the convex hull in wm of n,
n>d4+1 , different points xﬁwuv....sxAn:v of the moment
curve whose parametric equation is x(t) = An~aw~....nmv ’

t €ER . The polytope C(n,d) constitutes the simplest-

example of a mm_lbmwm:UOCMHM simplicial d-polytope :

every subset of HWH points of the vertex set of C(n,d)

is the set of vertices of a proper face of C(n,d) and every
facet is a simplex (for other examples see [24], q.mrpv.

The Hmulswnuruocﬁww simplicial d-polytopes play a central
role in the theory of polytopes since, for every k ,0<k<d,
the number of their faces of dimension k , which depends
onlyon kX , n and 4 , is the maximum possible, among

all d-polytopes with n vertices. This mﬁnn~ conjectured

by Motzkin {33} and proved by McMullen [31,32], is known

as the Upper Bound theorem.

Various authors had remarked that many other curves can
rlay the role of the moment curve for defining a "cyclic
polytope”, Although the vﬂodwma mm characterization of
such cyclic curves is implicit in Griinbaum [24], it seens
that :ocoaw,UOnwnmm the sufficiency of the obvious simple
condition : every d+1 pointy of the curve are affinely

independent (see Corollary 4.7). Of course, the classical

determination of the facial structure of C(n,d) , that
yields the Gale's evenness condition, may be extended to

all cyclic curves. But a geometrical proof, using oriented

matrolids, is much simpler; indeed the mmosmnnuoww type

(see § 2) of C(n,d8) 1is independent of a particular choice
of points on the moment curve (see § 4). The consideration
of geometrical types of finite sets of points in 5& is

a recent progress in the theory of uow<novmw, and has

been introduced in various ways : oriented matroids for

Bland [3}, Folkman and Lawrence [20), Las Vergnas [27] or

Mandel ([30]; Radon types for Eckhoff {15]; configuration

of points for Goodman and Pollack ([22].

The point of view or oriented matroids is the most
general. The interest of this point of view is underlined
by the two following facts : 1) the Upper Bound theorem
is mn»ww true for matroid polytopes [30]; 2) the Dehn Sommer-
ville equations on the =cEUmH,0m faces are valid for simplicial

matroid polytopes (see § 6).

After some preliminaries on polytopes and oriented
matroids (§ 2),+we present the principal properties of the
cyclic polytopes with matroidal proofs. A description of

the alternating oriented free matroid which constitutes

the geometry of C(n,d) 1is given in § 3. The facial structure
and the geometrical type of C{(n,d) are investigated in § 4.

The geometrical types of all polytopes combinatorially equi-

valent to C(n,d) (i. e. polytopes with the facial structure



of C(n,d) ) are determined in § 5. We count the faces

for'matroid polytopes in § 6 and for cyclic polytopes

in § 7.

For a short history and additional informations
about cyclic polytopes and neighbourly polytopes, the
reader should consuvl* [24,32]. For a recent investigation

on cyclic polytopes see [1,2].

The reader is supposed to be familiar with the
general properties of matroids [40], oriented matroids (4,20]
and polytopes [24]. Bland and Las Vergnas' notations [4,28]

are followed, with minor changes; we briefly describe what

we use in § 2. The integer part of a real x 1is denoted by
[x] , the deletion of sets by ~ , the ordinary convex hull

of a set S in Euclidian spaces by conv(S) .

The proof of Theorem 5.3 uses the notion of a simple
graph G on a set of vertices V : it is a collection of

2-element subsets of V , called edges of G . An automorphism

of G 1s a one-to-one correspondence a:V+V such that

{a(x),a(y)} 1is an edoe of G 1f and only if (x,y} 1is an

edge of G .

2.

ORIENTED MATROIDS AND POLYTOPES

The notion of oriented matroids, suggested by
Rockafellar ([34] was independently introduced by Bland [3],
Las Vergnas [27], Folkman and Lawrence [20,29]. See also

Bland and Las Vergnas [4] and Mandel [30].

Let S be a finite set. A signed set in S is an

ordered pair X = x¥,x7)  with x+mm , X cS and xt ax”

The set X = X' UX~ is called the support of X . We say

that X contains a if a€X and that a and b appear
in X with the same sign (resp. opposite sign) if a,b€X
or a,b €X (resp. a€x’ and be€ex , or a€x and
b mx+v . The set x' (resp. X ) is called the set of

positive (resp. negative) elements of X . The opposite

of X is the signed set -X = " ,xh .

The pair M = Am.ms is an oriented matroid on S

if mw is a collection of signed sets in S , called signed

circuits (or shortly circuits) satisfying :

©01) x €U implies X # # and -x€0;

X, X, €0 and X, cX, dmply X, =X, or X; = -X, ;
(02) (Signed elimination property) for all xh.xwmwﬁw.
+ - + -
x € x~ n xw and y¢€ X ~ X, there is X, €U such that

u
+ + + -~ - -
y€Xy , x £X; and Xy (X UXy) ., xumﬁxpcxmv .



The =ign of an element x €X in a signed circuit X

will be denoted by mmxﬁxv . By forgetting the orientation

of M , we obtain an unoriented matroid M defined by its

collection MWH {x :x€(’} of circuits. The cocircuits

of M, i. e. the circuits of the orthogonal matroid z.P

can be oriented (=signed) in an unique way such that the

collection &% of signed cocircuits of M satisfies

the orthogonality property :

(03) For all X€O and Ye&t such that |Xn¥l>2 , .

+ - - - -
both (X' nYHu(x“ny") and (x'nyYy) ux ny’) are

non-empty.

@F satisfies (01) and (02) and defines the

orthogonal oriented matroid mt .

A collection J of signed circuits of an oriented
matroid M is often called a signature of the underlying

unoriented matroid ¥ or of the collection O of its circuits.

Let S be a finite set of points in BQ

. The set
of affinely dependent subsets of S is the set of dependent
sets of a matroid AWMMAwV over S . The natural ordering
of R 1induces a canonical orientation & of JAff(S) -
OUmmw<m that if C 1is a circuit of ﬁmmﬁmv then a mapping

A:C~>R-{0} such that ¥ A(x).x =0 and % A(x) = 0 is
xeC XEC

unique up to multiplication by a non-zero real number.

Then (C,A) determines a signed set X = (X' = {xec
’
Mx) >0} , X = (x€C , ra(x) <0)) .
Aff(S) = (S,(h 1is called the oriented matroid of

affine dependencies of s over R [4]. ALE(S) {is also

called thé geometry of S . We will say that two finite

sets S and S' of Em are geometrically equivalent

when the oriented matroids MAf£(S) and MAEE(S') are
isomorphic oriented matroids : i, e. if there is a

bijection :5S+S' which preserves signed circuits. 0w®Wn~<~
the geometrical equivalence is an equivalence relation;

its representatives are called geometrical types. The

pair X = pr.xww is called a Radon partition in S

- provided it is a partition of a subset of S ‘and

oo:<Axuv~Joo:<Axmv # f . (The reader is referred to [14,15,1¢
for a discussion of Radon partitions). X 1is called a pri-

nmitive Radon partition in S if X is minimal, in the

sense that it does not extend any other partition in s f25].
It turns out that X is a signed circuit of Aff(s) if
and only if Ax+.x|w is a primitive Radon partition in § .

Thus the Radon types of finite sets of points in Em of

Eckhoff [16] coilncide with the geometrical type defined

above.

A signed circuit X of an oriented matroid is
called positive if X =0 or if X' = 0 . The oriented
matroid M 1is said to meOKOPHozrmr it has no positive

circuit. For any set A of elements of M , the oriented

matroid obtained by Hm<mﬁmH=@ signs over A [4] is denoted

by M The partitions {A,S~A} of the underlying set

mOmchosnswn mz Hmmn<owwnAOHmacw<me:ﬁ~< WMMZ
is acyclic) are called the non-Radon partitions of M [10].

Indeed, for a finite subset § of EQ , the matroid /Aff(S)

is acyclic and for every subset AS S , the matroid mﬁnm.mv



is acyclic 1if and only if conv(A) Nconv(B) = g ; if
both A and S~A are not empty, this condition is equi-

valent to the existence of a hyperplane that strictly

separates A and S~A . An oriented matroid is noavwmnmww

determined by its non-Radon partition [10], thus the

geometries of finite subsets of EQ are also characterized

by their non-Radon partitions. For a matroid theoretic

point of view on the (non-)Radon partitions see [7,10,12,30,41]).

Further informations are in {17,23]. Relevant is the work of

Mandel {30)] who takes as amproach to oriented matroids a

notion similar to non-Radon partitions.

A d-polytope is the ordinary convex hull of a
finite subset of Bm whose affine dimension. is d . The

classical notions of Convexity Theory

may be extended to acyclic oriented matroids (see Las Vergnas

{28)). For this reason, acyclic oriented matroids will be

called matroid polytopes. In general, a facet of an oriented

matroid M = (S, is a hyperplane H (of the unoriented

matroid M ) such that S~H supports a positive cocircuit

of M . A face is an intersection of facets, 1. e. a subset

F of S such that S~F 1is a union of positive cocircuits

of M . An extreme point of M (or a vertex) 1s a face of

rank 1 . A matroid polytope M has facets and any subset of

elements of M 1is the convex hull of its extreme points

(Las Vergnas {28]}). A matroid polytope M 1is sald to be

simplicial when every facet of M 1is an independent subset

of M . The faces of M ordered by inclusion form a

lattice Humu\omppmm the facial structure of M and denos
by ‘%sz . It should be remarked that a subset F of
elements of an oriented matroid M = (S,0) 1is a face of

M 1f and oanly if the contracted matroid M/F 1is acycl:

Let <H (resp. V, ) be the set of vertices of

2

a polytope mp (resp. MNV . The polytopes MH and wm

are combinatorially equivalent (resp. geometrically equi-

valent) when the lattices "N34 ~<~: and nEf A<Nv )
are isomorphic (resp. <H and <~ are geometrically
equivalent). The combinatorial (resp. geometrical)

eguivalence of polytopes is an equivalence memnwcsm its

representative are called, respectively, combinatorial

types and geometrical types.

With the language of primitive Radon partitions,

Breen [5] remarked :

PROPOSITION 2.1 {5]. The combinatorial type of a polytope

is determined by its geometrical type. o

Even for points in general position, combinatorial
equivalence of polytopes does not imply geometrical equi-

valences.

The next results extend to matroid polytopes simila

theorems of [5].
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PROPOSITION 2.2 . Let M = (S,0) be a matroid Conversely suppose that w M 1is acyclic for
; - +
polytope and let FcS . Then F is a face of M if every AcF . Then no circuit Ax....x ) can verify X c<F .
and only if, for every circuit X = §+,xnv of M, Hence F is a face of M by Proposition 2.2, o

x+mm. + implies X cF .
A central problem in the theory of polytopes is

Proof : the characterization of its combinatorial types. The

rk bo 1 t. i t
F is a face of M 1if and only if S~F is remarks above allow to think that the characterization of

th inatori i
a union of positive cocircuits. e combinatorial types of matroid polytopes should be

easier and perhaps more interesting. But certainly the

The intersection of a circuit and a cocircuit characterization of the geometrical types of polytopes
of M 1is either empty or contains at least two elements. « is a more fundamental question, raised by Eckhoff [16)
Then®if X = (X',X7) 1is a circuit of M and x'n(s~p =g under the form : characterize the Radon types of finite
by the orthogonality property (03) we also have sets of points in _wm .
X" N(S~F) =@ . a

We propose a related problem, that seems easier :

COROLLARY 2.3 . Let M = (5,8) be a simplicial

matroid polytope. Then FcS 1is a face of M if and only PROBLEM 2.4 . Characterize the different classes
if {A,S~A} 1s a nori-Radon partition of E of orientations of the free matroid of rank r on a set
AcF . of n elements.
Proof :
— We recall that the free matroid of rank r on a
The "only if" part results trivially of Proposition 2.2. set S has all (r+1) -element subsets of § as circuits.
+ -
Indeed if X = (X ,X) is a circuit of M and F 1is Two oriented matroids M and M' on the same set § ,
a face of M , we have X &F because M is simplicial. are in the same class of orientation when M' = o M for
+
Then, by Proposition 2.2 , we have also (S~F)NX # ¢ some AcCS
and (S~F) N X # # (considering the circuit -X ). But
in this case (F,S~F) is orthogonal to every circuit X

of M, and then is a non-Radon partition of M .
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13.

ALTERNATING ORIENTATIONS OF FREE MATROIDS

Let S be a n-element set, and suppose that

1 <r<n-1 . The free matroid of rank r on § , denoted

mnAmv , has as its bases all r-elements subsets of S .
Bland and Las Vergnas [4] have pointed out that an alter-

nating circuit signature nw\ of mnAmv can be associated

to every linear orderx 5, = 8 <. <8, of 5 : for every
signed circuit Xx€ & , with X = {s, <...<s }

- ..M “_y ’

1 r+l
m@xﬁm». VNImoxAmw.v . 3 =1,...,8~1, where mmxﬂmuv
j+1 J }

denotes the sign of mu in X . The oriented matroid (s,&")
is called here, shortly, the alternating free matroid of
rank r on mA and is denoted by _MHAwAv ; or by
R.HAmwAmNA. ..Awuv. .

THEOREM 3.1 . Let § = Amu....~m:y be an n-element

set. Suppose @ 1is a circuilt signature of wnAmv such

that, for every signed circuit X of (v (resp. signed

1
cocircuit Y of @~ ) and for all SyrSi41 €X (resp.

s €Y ) , we have mmxAmH+~vu..mmxAm»v (resp.

irSqe1 2

mm<Am»+pv = mmxAmMVv. Then (" 1is the alternating circuit

n

signature of MHAmV with respect to the order S <-..<5 .

Proof :

By the orthogonality property (03), the assertions
relative to circuits and to cocircuits are equivalent.
We establish the proposition for circuits, proving that,
for every signed circuit X , with X = {s <e..<sy Y,

Hw r+1
we have

(3.1.2)  sg,(s; ) = A-wvn-vmmxﬁmp ) .

o p
We use induction on »ﬂnpm . Hw »n = »m+~ . (3.1
the hypothesis. Suppose i -i_>1 and that (3.1.2) is t

p
for all integers .»v. and wn. such that 1< »a.lwv. <
X <

~e

If ptl<q , we have s, € and sy <8y s;

ptl P pt+l q
then the result follows by the induction hypothesis. No

suppose q = p+l . Let xu be some element of S~X

with 4 <j<i . Let X' (resp. X") be the signed

p p+1

circuit of _WHAmAV of support AM,/Am» wvcﬁmuv (resp.
»

x - AmH }) u{s.,} ) . By induction hypothesis
p+l J

sq,,(s.) = ~sqg_, (s ) and sg_a.(s, ) = -sg_.(s.) . Hen

X 3 X »v+~ X Hm X Jj
by the signed elinination prorerty (02), moxﬁm» ) =

p
= -sqg, (s ) . o
X H@+~

PROPOSITION 3.2 [4]. Let (& be the alternating

circuit signature of _MKAmHA...Amsv and E = ﬂwp i 1 e

1 <1i<n} . Then mQ.» is the alternating circuit signati

wm IF (s

<...<S .
n-r 1 :v

Proof :

Let Y be a signed cocircuit of _MnAmHA...Am:V
with support Y = {s, <...<s } . Applying (3.1.2)
= i i
1 n-r+1

and the definition of orthogonal orientation we obtain

(cf. Prop. 3.9 in [4]) :
p-gq+i -1
(3.2.1) sg (s ) = (-1) T P g (s. ) . The value of
g Yy



p-g+i_-i _
(-1) 9 P equals -(-1)P™9  if and only if exactly one of

the integers H@.w@ is even. Hence, for every mwwsma circuit
y' of =0t we have sg,,(s, ) = (-1)9Psg_,(s, ) . The
E Y va Y »@

proposition follows, by Prop. 3.1. o

PROPOSITION 3.3 . Let M H_WHAMHA...AMZV with
1<r<m ; for 1<i<m put 8§, = ﬁmu ; 1<j<n} . Then
we have :

M~s, =IF (s, AmNA...AmwwamH+HA...Am:v and

M \mH = m%ﬁnlwAmwAmMA...AmwupAmH+~A...Am:v .

The statement relative to z.rm» is clear. Put

E={s, ; jeven , 1<j<n} and E' ={s. ; j even , 1<j<i}u

{s, + § odéé i<j<n} . By a known property of the oriented

’

EmnnouamAmmmﬁpu.wnov.a.wV~ AZ\mka n z._../mH . Thus by

: iR
Prop. 3.2 , (M/s;)” = mmrlnampA...AmHIHAmH+~A...Am:v .

Applying Prop. 3.2 again, we obtain

M/s, = mA MiMﬁIMAwHA...AmH|HAm»+HA...Amsvv , which is the

.

i

required conclusion. o]

CYCLIC POLYTOPES : AN INTRODUCTION

The cyclic polytopes C(n,d) , defined as the convex
hull in Bm of m different points of the moment curve,
are combinatorially equivalent. This point is an immediate
consequence of the Gale's evenness condition (Theorem 4.2
below) that characterizes the facets (hence the lattice of
faces) of C(n,d). Thus we may speak about the combinatorial
type C(n,d) . In fact, the polytopes C(n,d) are geometrically
equivalent (Theorem 4.1 below). This property was discovered
by M. Breen [6], by the way of primitive Radon partitions.
The proof uses only very few of the properties of the moment
curve. As Griinbaum {24] noticed, it is not surprising .
that many other curves can take the place of the moment
ncn<w for developping the theory of cyclic polytopes : examples
can be found in [13, 19, 33,36]. A complete characterization
of these curves is possible, via a characterization of the

geometrical type of polytopes C(n,d) (Theorem 4.6 and

Corollary 4.7).

More surprising is the phenomenon that happens in

even dimension ; every polytope which is combinatorially

equivalent to C(n,2k) is geometrically equivalent to c{n,2k) .
In other words, an alternating free matroid of odd rank

(1. e. the geometry of n points on the moment curve of even
dimension) is uniquely determined by its lattice of faces.

This result and the characterization of the geometries combina-

torially equivalent to C(n,2k+1l) will be settled in Section 5.
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THEOREM 4.1 (f6] and [4] Corollary 3.9.1).

Let x, = x (t;) , 12 i<n , be n points on the

moment curve x(t) = n.nw....~n&v in _xm‘a with

ﬁw AnMA...An: . Then the oriented matroid of affine
dependencies of ~x-...~x:~ over R , is the alternating

free matroid _ﬂa+wa~A...Ax=v .

Proof :

Breen's proof [6] uses Gale's evenness condition.
In fact, as suggested in [4], an effective simple calculus
using Vandermonde's determinants suffices : it is clear

that QAff A~x-....x:~v is a free matroid of rank d+1 .

Let {x, ,...,x } be a circuit of Aff(xX,,...,x_ ) ,1<i<.
4 ig+2 — 1 n’ Stz
The calculus of the coefficients »H‘..q.>a+w of an
affine combination, M A.X = 0 and M A. = 0 , shows
b s 73
J 3 3
that A and A have opposite signs for i=1,...,d+1 .

i+l i

Hence, by definition of §>mmﬁx~....,x:v and of ~!m+~AxHA...Ax:V ,

the conclusion follows. o

Let V be the set of the vertices of a polytope

We emphasize the fact that the determination of faces of

only depends of the mmoamﬁw< of V by presenting a matroidal

version of Gale's evenness condition :

THEOREM 4.2 (Gale's evenness condition [24] for

alternating free matroids). Let V = ﬁ<~....\<:y be a

set with n elements and let V_,cV be a d-element subse

P

P

t

d =<

is a facet of _!Q+HA<~A...A<3V if and

of V . Then <Q

only if every two points of </,<Q are separated (for the

order <HA...A<:V by an even number of points of <a .

:Aw+N

-

18.

Proof :

Put Y = V-V, = {v, ,v, ,...,V } o,
L4, in-a

HHA HNA...AHDlQ . The number of elements of <m between

<Hv m:a <Mn »m »m:»mm»a . <m HmmmmnmnOm

A<HA...A<:V if and only if Y supports a positive

Fasl

cocircuit Y . By (3.2.1) vy and <»

P g

sign in Y if and only if ©|Q+Hn|»© is even. Hence

have the same

the theorem follows. o

Every polytope combinatorially equivalent to

C{n,d) will be called a cyclic d-polytope (or shortly a

cyclic polvtope). Note that the set V of the vertices

of a cyclic polytope P can be ordered in such a way
that the Gale's evenness condition holds for the facets
of P . Every order of V that satisfies the Gale's

criterion will be called an admissible order for P .

The characterization of all admissible orders for a

cyclic polytope will be given in Section 5 (Theorem 5.3).

Shephard [37) gives an extension of Gale's criterio

to faces of any dimension of cyclic polytopes. Let

<n A<HA...A<:V Umm:onamhmawmnmsawmnzn”<.>

subset XcW will be called a contiguous subset of W

if for some 1<i<j<n , X = A<H~<»+~.....<uw .
<Mrpn W and <u.+H g§W . X is said to be even (resp. odd)
when |X| 1is even (resp. odd).
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We may formulate the characterization of the

COROLLARY 4.3 [37]. Let P be a cyclic d-polytope

sith vertex set V and an admissible order v <...<v . geometrical type of polytopes C(n,d) as follows :

Let WeV . Then conv W is a face of dimension k of P

THEOREM 4.6 . Let Vv , veR® , d>2 , be a

if and only if W has k+1 elements and admits at most

n-element set. Then P = conv(V)  is geometrically equi-

Q|XIH‘ odd contiguous subsets (with respect to the admissible

valent to C{(n,d) if and only if V satisfies both

order)
the conditions :
Proof :
The corollary is a straightforward constquence of (4.6.1) the points of V are in general position in 5& ;
Gale's evenness condition and .of the following simple {4.6.2) there is mm order v.< <v of V such that
: ) . 1SSy, of
remark that results from definitions : . no hyperplane determined by d points of V separates
strictly Vi from Viel for every k=1,...,n-1 .
REMARK 4.4 . Let W be a k-element subset of an ’
ordered set V = ~<~A...A<:w . Let m be the number of ‘VHOON :
odd contiguous subsets of W ; then there is a (k+m)-element The polytope conv(V) 1is geometrically equivalent
subset F of V containing W and such that every to C(n,d) if and only if /EE(V) is the alternating free
contiguous subset of F is even. matroid IF (v.<...<v_) for some order Vv ,<...<v. of V
a+1' "1 n 1 n
The remaining of the proof is left to the reader. o (Theorem 4.1). If, for every k=1,...,n-1 , no hyperplane
determined by d points of V separates strictly Vi
from Viel * then for every signed cocircuit Y of
A polytope P is said to be k-neighbourly if every /AEEf (V) , such that <x~<x+~m Y the elements Vi and
subset of 'k points of the vertex-set V of P is the v,,, appear wn Y with the same sign. Then Theorem 4.6
set of vertices of a proper face of P [24]. An immediate follows from Theorem 3.1 o
consequence of Corollary 4.3 is :
. ; s d
COROLLARY 4.5 (Motzkin [33])) A cyclic d-polytope is A curve (i. e. a continuous mapping x : R+R" )
a_ simplicial Hmul:own:vo:N~< polvtope, a is said a cyclic d-curve when oo:<AxAn~v....~xAn:v is
combinatorially equivalent to C(n,d) for any different
Remark that Corollary 4.5 is also a simple consequence
reals n-...~n: . A straightforward consequence of the

of Corollary 2.3 and Theorem 4.1.
previous theorem yields :
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COROLLARY 4.7 . A curve Xx ; B.»B& is a cyclic

d-curve if and only if xAnwvs....xAﬂn+~v are in general

position for any different reals nu....~nn+~ . o

Let v be a vertex of a polytope P and let H
be a hyperplane that separates strictly v from the other
vertices of P . Then the combinatorial type of HNP does
not depend on the choice of 'H , and is called the vertex-

figure of P at v [24]; it should be :onma.nvmn the

vertex-figure of a polytope does not depend on the geometrical

type, but-only on its combinatorial type, since the lattice
of faces of the vertex-figure of P at v is HmOEOHern

to the »:ﬁmn<ﬁw {v,P] 4in the lattice of faces of P .

PROPOSITION 4.8 . Let P be a cvclic d-polytope,

1 n

d>3 , with vertex set V and admissible order v <...<v_ .

Then if d 'is odd (resp. m<m:V the vertex-fiqure of P

at v, or <:‘AHmmm. at Vi for 1<1i<n) 1is combina-

torially equivalent to C{n-1,d-1) .

Proof :

It suffices to prove the proposition when P
ig C(n,d) . It is not difficult to see that the lattice
of faces of the vertex-figure of a polytope P = conv{(V)
at veV 1is isomorphic to the lattice of faces of the
matroid polytope /AFE(V)/v . Thus the proposition is a
consequence of Proposition 3.3 and Theorem 4.1, remarking
that the matroid w.ﬁmA*<~A <NA...A<H|~A<»+~A...A<:VV '

1

with mH = ﬁ<u ;7 1<3 m:w , coincides, when 4 1is even,

with .m.m? ce <V _<V_<...<V, ) .
n i-

141° 1 1

Proposition 3.8 shows the strong regularity of
the cyclic polytopes of even dimensions. The special
role of two vertices in the case of odd QHEQSNM0l will
be illustrated by the construction of cyclic polytopes

of odd dimension proposed in the next section.

22.
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which is absurd. We conclude that for every signed
- circuit X of AEE(V) and for every consecutive
5. CYCL1C POLYTOPES : NEW RESULTS v
vertices vy and Viel ! i=1,...,n-1,
maxﬁ<wv = -38g A<»+~v : i.e. x’nmA<v is the alternating
THEOREM 5.1 . Let V be a n-element subset of X
) : free matroid IF (v,<...<v_) by Proposition 3.1. o
wa , where k>1 and n. >2k+l . Then conv(V) is a k+1°°1 n
cyclic 2k-polytope with n vertices if m:m only if
X Po-Y-0op Y For odd dimensions, a similar result does not
/AEE (V is an alternating free matroid of rank 2k+1 . .
v i hold, even if the points are supposed in general position :

Proof :

THEOREM 5.2 . Let V be a n-element subset on

We only prove the non trivial part of the theorem :

2k+1 . . ~
We suppose P = conv(V) is a cyclic polytope and we R , DN22k+2 . Suppose conv(V) is a Zk+l-polvtope
: with n vertices. Then conv(V) 1is a cyclic polytope if

prove that AFf(V) 1is an alternating free matroid. We

and only if there are two vertices v,,v, of Vv with

put F = {F : FcV , conv(F) 1is a face of P} and let
the following properties :

V<<V be an admissible order for P . The Gale's
criterion can be stated as follows (see Corollary 4.3) :
(5.2.1) Every hyperplane spanned by points of v =~ ~<-< }
. n
FE€ ¥ if and onlv if everv contiguous subset X separates strictly v, from v

of F is_even.
e (5.2.2) the vertex-fiqure of P at vy is a cyclic

As P 1is a simplicial polytope, no member of 2k-polytope.

a primitive Radon partition of V can be included in
Proof :

one of its facets (see Corollary 2.3). Since P 1is a
We begin with the "only if" part : we suppose

k-neighbourly polytore(see Corollary 4.5), every member
P = conv(V) s a cyclic (2k+1)-polytope and V) <V,y<. . o<V
. n

of a primitive Radon partition of V has at least k+l .
is an admissible order for P . Then ﬁ;MmA<v\<~ is a cyclic

elements {(hence has exactly k+1 elements) and /AEE£(V)
2k-polytope with n-1 vertices (see Provosition 4.8);

+ -

is a free matroid. Let X = (X ,X ) be a signed circuit
; hence 5.2.2 follows . To see 5.2.1, note that if
of /AEE(V) . Suppose there are two consecutive vertices + -
X = (X ,X ) is a signed circuit of AEE(V) and v, € x+ ,
v and Vi (with respect to the admissible order of V) - + - !
i . <:m X , then we have X | >k+1 and [X | >k+1 which is
contained in X . Then the number of odd contiguous + ~

. . absurd. Indeed if we had |X | < k+1 (resp. X | <k+1l )
subsets of X is at most IX 1-2 = k-1 and, by - -

+
Remark 4.4 , X nust be contained in a member of ¥
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and admissible order <NA...A<=..H . By an affine trans-

then x+ B m<~w (resp. X - A<:u ) would be a face formation, we may choose the origine O not in wo but
of mwmmﬁ<v\<~ (resp. \>mmA<v\<= ) » by Corollaries 4.5 very close to a facet mo of mo , so that the hyperplane
and 4.8; consequently X' (resp. X ) would also be . m@m::mw by .mo is the only hyperplane spanned by a facet
a face of the simplicial polytope /Af£(V) , a contradiction of wo. that separates strictly O from the interior of
with Corollary 2.3. P, . Considering the immersion I : Ealy.wEQ , I(x) = (x,0),

To prove the "if" part of the theorem, suppose we choose v, = (0,...,0,-1) and vy = (0,...,0,1) . It is
P = onv(V) 1is a (2k+l)-polytope with n vertices and not difficult to see that wy = no=<ﬁ<~‘....<bv is a cyclic
the vertices « v satisfying both the conditions 5.2.1 QWUOHKﬁowm with admissible order Vi<iee<v Since mw

1
and 5.2.2. Then for every facet F of MAf€(V) ,

n
is simplicial, some positive real exists such that if n

FN A<H‘<Dv # @ and |IF| =4 , by condition 5.2.1. Thus points Wyse--,w  are choosen respectively in the balls
P is a mw!@~pnwm~ polvtope. Since every face of dimension of radius ¢ and centers VieeseaVy s then P = no:<A£~‘...~s:
2k-1 1is contained into two facets, if <~m”m and <s~ F is combinatorially equivalent to mp . The reader may
mwmmwmon»<mw< v _€F and v, €F ) then AM/A<HWV c~<:w verify that every geometrical type of the cyclic d-polytopes

n

{resp. (F\{v_} cA<Hv ) 1s also a facet of Aff(V) . We with n vertices canbe represented by some polytope P
- n

i=2,...,n , the vertex of >mmA<v\<~ obtained by this way. Theorems 5.1 and 5.2 explain that a

denote by «u ,
complete description of admissible orders of cyclic

corresponding to the line vivy joining Vi and vy - 4
polytopes is possible :

Then there is an admissible order v, A...A«H of
1 n-1

the vertices of Aff(V)/v, such that «» = «: . But

n-1 THEOREM 5.3 : Let P be a cyclic d-polytope with
in this case it is easy to see that the facets of AEf(V) vertex set V and admissible order v <y
verify the Gale's criterion relatively to the order

(5.3.1) If d. is odd and n>d+2 , P admits exactly four
V. <V, <,..<V <v and the theorem follows. o
1 i i, 0 admissible orders: VISV gV,
<~A<:|HA<:INA...A<MA<: and their reversals.
We now indicate a simple construction of all
geometrical types of cyclic polytopes P of odd dimension (5.3.2) If d = 2m+l and n = di2 , P admits exactly
d . Assuming n >d+2 , we choose a cyclic polytope vo of mi(m+1) ! admissible orders which are the orders
, d-1 )
tvpe Ci(n-2,d-1) in R , with vertices v,,...,v__, of th
2 n e form <Q:VA<4ANVA,\QCVA...A,\AE+:A<Qa+Nv

where o (resp. 1) is any permutation of the
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odd (resp. even) numbers of {1,2,...,d+2} .

(5.3.3) If 4 1is even and m>d+2 , P admits exactly

2n admissible orders which are orders

“en he: eversals.
ViV 1S SV SV Vo< a2yy o and wrmun rev

(5.3.4) If d=2m and n = d+2 , P admits exactly

Aa:w

admissible orders of the form

<0.AHVA<4AwVA<QvaA<._.AAVA...A<QAQ+HVA<A (d+2)

where o (resp. T ) is any permutation of the

odd (resp. even) numbers of {1,2,...,d+2} .

(5.3.5) If n=4d4+1 , P is a simplex and any total

order of V 1is an admissible order.

Proof :

The proof relies upon the fact that a cyclic
polytope has a specilal type of facets, whose vertices

constitute a circular interval of the circular order

associated to an admissible order. (The circular order

is :.HH.APN.A. . ...AH:.)\HH.\:V .

determined by the order »HAHNA...Aws

Let ¥ be the set of all d-element subsets of V
that determine a facet of P (i. e. mﬂ is the set of
facets of AfE(V) ). For every FE€ ¥ and xe€F , there
is a unique element vy € V-F such that (F~{x}) U {y} € ¥
(because P 1is simplicial and F-{x} determines a face
of dimension d-1 of P ). A vertex y€V-F such that

(F-{x1) cﬁ<vm.% for some x€F will be said adjacent

to F . A member F of mﬂ will be called a mmwowmw set

- when exactly two vertices of V-F are adjacent to F .

28.

Assume n >d+2 . For every admissible order { ,
the Gale's criterion for P implies : an element F
of ¥ is a special set if and only if one of the following

situations arises :

(i) F 1is a circular interval of the circular order
determined by £ .

(i1) @ is odd and F = {{(1),§(n-a+1),€(n-a+2),...,€(n-1)}

of F = {§(2),£(3),...8(d),E(n)} where (k) denotes

the k-th element of V , with respect to £ .

Two vertices a and b of P will be saild contiguous
when {a,b} 1is the intersection of all special sets containing
them. The contiguity relation defines a simple graph G on V
‘that depends only on the facial structure of P . But using (i)
and (1i) we may determine G by the way of an admissible
order £ . When € is even, G 1is a cycle of n elements;
two vertices are contiguous if and only if they are consecutive
in the circular order determined by £ . when 4 1is odd,

G 1is a cycle with edges

M, 8@, ... £, fx+D}, ... {&n-1) ,£(n)}  augmented

with the two edges {£(2),f(n)} and {E(1),f(n-1)} .

Every admissible order must produce the same graph G . Hence
.

to every admissible order corresponds an automorphism of G .

It is not difficult to see that conversely every automorphism

of G can be associated to an admissible order. Thus (5.3.1)

and (5.3.3) follow.

Whenever n =d+2 , V supports a signed circuit of
ALE (V) ; thus (5.3.2) and (5.3.4) follow (the details are

left to the reader). Finally (5.3.5) is trivial. o
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DEHN-SOMMERVILLE EQUATIONS

The Dehn-Sommerville equations for simplicial
polytopes [24, 26,32, 38] relate the numbers of faces
of given dimension. They constitute a good way 0m obtaining
the number of faces of dimension k , k<d , for every
kuxbm»msvocnw< simplicial d-polytope, hence for cyclic

polytopes (see Section 7).

In [11] it is stated, without proof, that a suggestion
mm Stanley in {39) can be used to prove that Dehn-Sommerville
equations are valid for simplicial matroid polytopes. For the
sake of completeness we give here a complete proof of this

result.

Let M be a matroid polytope of rand r . mwﬁzv or
simply £, will denote the number of faces of rank k of M

Let C be the number of chains 0 = MOA mwA e.. < mx =M

k
in the lattice L of the faces of M . The zeta polynomial

Z{n) of L 1is defined by :

[ ne Iad

Z(n) = Mec, .
oo K Ok

The zeta polynomial was first explicitely defined by
Stanley [39] in an equivalent form. (For more details and
recent results of the theory of zeta polynomial see [18]).
lie remark that the zeta polynomial is usually defined by the

n

identity 2Z(n) = n:Ao.pv , where ¢ denotes the nth

power of the zeta function on the incidence algebra of L .
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From the definition of multiplication it is easy to deduce

that nwﬁﬂ~nv = the number of multichains F = MOM m~ <. .. <

n

Observe that u"(F,G) = ¢ "(F,G) where u™ denotes

the nth power of the MObius function. From the Euler relat

for the matroid polytope M we have u(F,G) = (-1)Tank F-ra

(see [11], Corollary 3.2). Thus we have proved the followinc

theorem :

THEOREM 6.1 ([{11], Corollary 3.4) . Let M be a

matroid of rank r . Let Z(n) denote the number of multich

0 = Mo Mmﬁ m...mm: of faces of M between 0 and M .

Then Z(n)

is a nolynomial in n , of degree r , satisfyin

z(-n) = (-1)%z(n) . a

As Stanley has vpointed out in the case of simplicial
polytopes ([39], Proposition 3.3) Theorem 6.1 may be viewed

as a generalization of the Dehn-Sommerville equations :

COROLLARY 6.2 (Dehn-Sommerville:equations) Let M

be a simplicial matroid polytope of rank r > 2 . Then for

every k, 0<k<r-2, we have :

i=xr-1
(-nF*lg = 1 ~nthE .
. i=k
Proof :
Let F be a face of M of rank 1 = |F| . Hence the
number of multichains
0 = mO <. MMu = mAHMu+~ = ﬂu+m = ... w: =M
n-1
of faces of M 1is uMouH . (Note that the multichain
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0 = wOA... <F. = F determines uniquely an application '
- J " 7. NUMBER OF FACES OF CYCLIC POLYTOPES
: . -1 i-1
¢ : F»{1,2,...,3} , where o (i) = FA\J F,). From
1=1 .
this observation we derive In the sequel mxA=~mv will denote the number of
Jwg faces of dimension k of C(n,d) . It should be noted
_ i .4 13 1 . )
z2(n) = 1=0 mwﬁo T o+ (n=D)T) that the Dehn-Sommerville equations may be used to determine
d
all the £ 's from f_ ,f ,...,f where m = [x] .
In this case ) k 0771 m-1 2
-1 Explicit formula may be found in [24] or [32] (McDonald
Z(n+l) - 2(n) = mH :H and also formulas). Hence the number of faces of dimension k 1is
i=0
r-1 the same for every simplicial nwulsmwaruocuw< d-polytope
_ oy 1
z(-n-1) - Z(-n) = 1=0 mHA n-1)" . By Theorem 6.1 we have , with n vertices. Another way of obtaining mxﬁz.av is by
using the generalized Gale's evenness condition (Corollary 4.3)
r-1 -1 introduced by Shephards (32, 37].
(6.2.1) 1 £, (n-1t = (T I £,0 .
i=0 i=0 Here we will determine malwﬁ:~av by a simple
" matroidal argument. The calculus of other mxA:~QV becomes
As for every k, 0g kgr-2 , the coefficlent of n in
simpler when we know f {n,d) , by a direct use of Dehn-
r-1l-k d-1 !
the first member of (6.2.1) is ) Alpvx+quMuvmw+u , Sommerville equations (for details on this point see
=0 .
Griinbaum [24]).
the corollary follows . o
LEMMA 7.1
- - H -
(7.1.1) mwsgsws.v: = mwslw:. -NEV+.MHN=_§ 1,2n+1) ,
for. n2z 2m+2 .
(7.1.2) :a+:mx::w5v = :mx..w;lw.w;l: , for n>2m+l .,
Proof :
We prove (7.1.1). Let V)<V, < ey be an admissible
order of the vertex set V of Ci(n,2m+l) . Then «\>nm2v
n
equals _M.N=_+N 7\:A<H ACRERE A<:Lv . Thus the number f
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of facets F of C(n,2mtl) such that v is not a vertex
of F is half of the number of the facets of ;?mmA<v/,<: .
on the other hand, by the definitions, the number of facets
of Ci(n,2m+1) such that Vo is a vertex of F , equals
n:m‘:cscmn of facets of the <mHnmx figure of C(m,2n+l)

at A By Proposition 4.8, this number is mwalpAnl_.NBv .

(7.1.2) is an immediate consequence of Proposition 4.8

since :

It

:me|FA=|~p~5-Hv
* vEV

= Ar+wvmrﬁz~wav .

PROPOSITION 7.2 {(Motzkin [33))

n A_J.IB
n-m m

Y

]

(7.2.1) £, (n,2m)

"
N
-~
.

(7.2.2) mNSA:-B+~V

Proof

By Lemma 7.1 we have :

2

(7.2.2), by an easy induction. Then (7.2.1) results of (7.2.2)

and (7.1.2). D

The result of the calculus of mxA:,QV using (7.2.1.),

(7.2.2) and Dehn-Sommerville equations is :

) |{F:F is a k-face of C(n,2m) containing v}!

_ n-=1 _ - 1 - , .
f BAS.N3+~V = MMImNEINAs 2,2m ~v+~m~sA: 1,2m+1) . This yields

THEOREM 7.3

(7.3.1)

(7.3.2)

{(Motzkin (331,

[24])

34.
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