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Abstract. Every polytope whose facet normals are in general position can be written as a
signed sum of simplices determined by the hyperplanes of the facets.

Introduction. Every convex ¢-gon — except for the parallelograms — can be obtained
from a triangle by deleting £ — 3 smaller triangles so that the sides of the triangles lie
on the same lines as those of the polygon. We wish to investigate here a possible
generalization of this observation, namely, whether a convex polytope K in the d-
dimensional Euclidean space can be decomposed to the signed sum of simplices having
facets parallel to those of K.

We show the existence of such a decomposition for every K with faces in “general
position” and also for the general case if we allow an auxiliary hyperplane with which
the facets of the simplices may be parallel. We also make some observations on the
number of the simplices needed for such a decomposition. The question is motivated
by results of J. Beck (1988) in geometric discrepancy theory. Applications of our new
results can be found in Kérolyi (1992).

Another way of puttmg our results is the following. An arrangement of hyperplanes
dissects the space IR? into a number of bounded and unbounded regions. Every simplex
bounded by some of these hyperplanes is the “sum” of bounded regions contained in
it. We show that, inversely, every bounded region occurs in the lattice generated by
the simplices.

1. Polytopes. To avoid the discussion of how to handle boundary points, we introduce
the following terminology.

Definition 1. Let K, K1, ..., K, C R?. We call K the signed sum of the K if there exist
*1 signs €1, ..., n and K" K!|,..K! C IRd such that KAK' C 0K, K;AK! C OK;
and g = E €iXk;- In notation: K = Z &K

=1 =1
(Here 04 and x 4 denote the boundary and the characteristic function of A, respectively,
AAB is the symmetric difference of A and B.)

For a convex d-polytope K, we will denote by Sk the set of the hyperplanes
determined by the facets ((d — 1)-faces) of K. We call the convex d-polytope L a K-
polytope if all the facets of L lie in elements of Si. We say that the normals of a set H
of hyperplanes in R? are in general position if the normal vectors of any d elements of
‘H are linearly independent over IR. We say that H is in general position if its normals
are and in addition no d + 1 members of H go through the same point.
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Theorem 1. Let K be a convez d-polytope. If the normals of Sk are in general
position, then K is the signed sum of K -simplices.

Proof. For a convex d-polyhedron L, let f;(L) denote the number of i-faces of L
(0 <1< d—1) and let ¢(L) be the greatest integer ¢ < f4—1 (L) for which every c facets
of L have a common point.

Proposition 1. For a convez d-polytope L we have ¢(L) < d. Equality holds if and
only if L i3 a simplez.

Proof. The first statement is obvious from Helly’s theorem. To prove the second,
assume that F}, ..., Fg4; are non-intersecting facets of L but every d of them have a point
in common. Let P; € Njx;Fj. If all the P;’s are in the same hyperplane, then by Radon’s
theorem there exists a partition {Py,...,Ps41} = X3 U* X3, convX;NconvX, # 0.
Having X; C Np,gx; F; we obtain convX;NconvX,; C ﬂ;’:lle, a contradiction. Hence
the points Py, ..., P44, are the vertices of a simplex wich must be identical with L.

Choose c¢(K)+1 facets of K wich have no common point: F, ..., Fk)4+1. Deleting
one of them, say F;, the hyperplanes of the remaining facets determine a polyhedron
K; containing K. Then K = K;\L; with a polyhedron L; determined by the same
hyperplanes as K, more exactly, L; is the intersection of the same |Sk| halfspaces as
K except one, supported by F;, which we replace by its complement.

Proposition 2. fi_;(K;) < fa—1(K), fa—1(L:i) < fa—1(K) and if equality holds, then
c(L,') < C(K)

Proof. The first inequality is obvious. Suppose, by way of contradiction, that
fa—1(Li) = f4—1(K) and the facets of L;, lying in the hyperplanes Hy, ..., Hi_y, Hiy1, ...,
H (k)41 containing Fi,..., Fi_1, Fiy1, ..., F(k)41, Tespectively, have a common point.
Then Hy,...,Hi—y, Hiy1, ..., Hy(k)+1 have a common point on both sides of the hyper-
plane H;, hence they have a common point in H; too, a contradiction.

We will prove that if K is not a simplex, then there exists an i for which K; (and
so L;) is bounded, i.e., K; and L; are K-polytopes. Then repeating the procedure to
K; and L;, and so on, in view of Proposition 2 we obtain a decomposition of K into

a signed sum of K-simplices. In the light of Proposition 1, we can finish the proof by
verifying

Proposition 3. If the normals of Sk are in general position and Fi,...,Fry; (k < d)
are facets of K without a common point, then there ezists and i-€ {1,....,k + 1} for
which K; is bounded.

To work with vertices rather than facets it is reasonable to consider the polar of
K. Using the polar terminology is also a natural way of dealing with boundedness. Let
us recall as much as we need here, for the details see any textbook, e.g. Griinbaum
(1967).

For a subset A of IR? the polar of A is A* = {z € R? |zy < 1Vye A}, HK is
a convex polyhedron having the origin 0 in its interior, then K* is a convex polytope
(possibly degenerate) containing the origin. K- is bounded if and only if 0 € intK™;
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in this case K and K* are dual polytopes. If the facets of K are F,...,F, then
the corresponding vertices of K* can be denoted by vy, ...,v,. If K; is the polyhedron
obtained from K by deleting Fj, then K; D K, 0 € intK; and K} is the convex polytope
having vertices v1, ..., vi—1,vi41,...,vn and — if 0 & conv{v1, ..., Vi—1,Vi41,...,Un} — the
origin. The facets F;,,..., F;, of K have a common point if and only if the points
Viy, .., Vs, are vertices of the same facet of K*. Finally we make the observation that
the normals of Sk are in general position if and only if 0 ¢ aff{v;,,...,v;,} for every

k k
d-element subset of the vertices of K*, here aff{z1,...,zx} = {3} aizi|ai € R, Y a; =
=1 i=1
1} denotes the affine hull of the z;’s.
Now Proposition 3 follows immediately from the next lemma.

Lemma. Let K be a convez d-polytope which is not a simplez, and let p € K. If the
vertices p1, ..., pr do not lie on the same facet of K then one of them can be deleted so
that the convex hull of the remaining vertices of K contains p.

Proof. Let {p,...,pk,v1,...,vs} be the set of the vertices of K. If £ = 0 then k > d+ 2
and the assertion follows by Carathéodory’s theorem. So suppose that £ > 0.

We show that aff{p,, ..., px JNconv{vy, ...,ve} # 0. Thisis obviousif aff{py, ..., ps} =
IR%. Otherwise, there exists a hyperplane separating aff{p,, ..., px } from conv{vi, ..., v¢}.
This hyperplane must be parallel to aff{pi,...,pr}, and so we can translate it so
that it contains aff{p,,...,px}. Now we get a supporting hyperplane of K contain-
ing aff{p;, ..., px}, which contradicts the assumption that the points p; are not on the
same facet. |

Let w € aff{p1, ..., px } N conv{vs,...,v,}. Writing p as a convex linear combination

k £
of the vertices of K, there exist au,...,ax,%1,..,9¢ > 0, i+ 3 9; =1, p =
i=1 j=1 '

k 4
Y aipi + Y Y55
f=1 =1

If o; = 0 for some 1 < i < k, then we can delete p; and the convex hull of the
remaining vertices still contains p. Suppose that a; > 0 for all 5. Since the p; do not
lie on the same facet of K, this implies that p € intK. But then we may assume that
¥; > 0 for all j. Hence we have

k
2 aip;
u= '=i € conv{py,...,pr}
2. ai
=1
¢
> Ujv;
W= ¢ conv{vy, ..., v}

£
J;

1
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The line connecting u and w lies in aff{pi, ..., pr} so it intersects aconv{pl, Dk} (in
the relative topology) at two points s and s’. We may assume that u € conv{w, s}.
Since k > 2, there exists an ¢ for which s € conv{p, ..., pi—1, Pi+1, ..., Px }. Hence

U € CONV{P1, ..oy Pim1, Dit1s ey Py V1, oy Ve }

and

p= (Z a! u+ (Zﬁ )u € conv{u u } Cc conv{pl, - Pi—=1,Pi+1,---y Pk, V1, .. 7”1}
i=1 J=1

proving the lemma.

Remark. This lemma can be generalized to oriented matroids as follows: If E is the
underlying set of an acyclic oriented matroid of rank r, having at least r + 1 extremal
points, ¢ € E is a non-extremal point, and P C E is a set meeting every directed
cocycle, then there exists a p € P such that ¢ is a non-extremal point of E \ {p}. This
can be proved translating our proof to oriented matroid arguments

The condition that the normals of Sk are in general pos1t10n is not the exact
condition for Threorem 1 although the assertion is not true in general and the coun-

terexamples are not only parallelopipeds. To formulate a result valid for all d-polytopes
we need the following

Definition 2. A hyperplane H is in general position with respect to a set of hyperplanes
S if the normal vector of H is linearly independent of any d — 1 of the normal vectors
of elements of S. Of course, if H is in general position with respeét to S then it is in
general position with respect to every subset of S.

Let K be a d-polytope and H, a hyperplane in general position with respect to Sk.
The elements of Sk determine finitely many intersection points. Choose a hyperplane
H' parallel to H, disjoint from the convex hull of these points. A convex d-polyhedron
is called a Kpg:-polyhedron if its facets lie in elements of Sk U {H'}.

Theorem 2. Let K be a convez d-polytope, and H, a hyperplane in general position

with respect to Si. Then K is the signed sum of suitable Kpgi-simplices for arbitrary
H' satisfying the condition above.

Proof. Let S be a halfspace containing K and H' in its interior, then 8S = Hg is
a hyperplane parallel to H’. The proof will be similar to the previous one. The main
difference is that we allow unbounded polyhedra to appear and the procedure ends
with a decomposition to simplicial K-cones. If all the cones are contained in S then
cutting them with H' we obtain a desired decomposition to K- simplices.

If L C S is a K-polyhedron then H' N L = { if and only if L is bounded. If not,
then H' cuts from L a Kp/-polyhedron L’. We will consider only K-polyhedra L C S
with bounded L'. If all the facets of L have a common point (i.e. L is a cone) then
¢(L) = fa—1(L) and we cannot choose ¢(L) + 1 different facets of L. Hence we need
to modify the definition of ¢(L). To have simple analogues of Proposition 1 and 2, the
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most suitable way seems to be the following. Let ¢/(L) = ¢(L) if ¢(L) < f4—1(L) and
d(L) = ¢(L') if ¢(L) = fa—1(L). Using Helly’s theorem and Proposition 1 we obtain

Proposition 1’. For a conver K-polyhedron L C S we have ¢'(L) < d and equality
holds if and only if L is a simplez or a simplicial cone. '

Now we can describe a step of the decomposition algorithm starting with K and
ending with simplicial cones contained in S. If L C S is a K-polyhedron, suppose first
that ¢(L) < fa—1(L), then /(L) = ¢(L). Choose ¢/(L) + 1 non- intersecting facets of
L. Using the notation of Theorem 1 with the convention that L; and M; play the role
of K; and L;, respectively, we can prove the following analogue of Proposition 3.

Proposition 3’. There ezists an i € {1,...,¢'(L) + 1} for which L; C S.

Proof. Note first that for a K-polyhedron M, M C S is equivalent to M C intS
because of K C intS. Hence, assuming 0 € intL, S* is a segment 0s with s € intL*.
If L is not a simplex then the Lemma can be applied to the point s in L*. If L is a
simplex then L* is a simplex which is the union of d 4 1 simplices based on the facets
of L* with apex 0. These are the polars of the possible L;’s, one of them contains s in
its interior, because H, is in general position respect to Sk, and hence respect to S,
too.

If¢(L) = fa—1(L), the situation is a bit different. First, choose ¢/(L)+1 = ¢(L')+1
non-intersecting facets of L' : FY,..., F’,( L)+1- We may assume that Fc’,( n+1 CH " and

c

F} is contained in a corresponding facet F; of L for 1 < i < ¢'(L).

Proposition 3”. There ezists and 1 € {1,...,c'(L)} for which L' C S, assuming that
L is not a simplicial cone.

Proof. We would like to apply the lemma again. Let the vertices of L'* be denoted by

P1y -y Pe'(L)+1> V1, -+, V¢ Where p; belongs to F}. The problem is that P1y--s Pe/(L) BT

on the same facet of L'*. Consider L*, its vertices are py, ..., Pe'(L)s V1, -+, V¢ and 0, the

first ¢/(L) + £ lying on a facet of L*. Applying the Lemma to L*, the point s and the

vertices pi, ..., Per(1), 0, Observe that 0 cannot be the deleted vertex, hence it is some p;

(1 < < ¢'(L)). Deleting the vertex p; of L'* and adding a new vertex 0 if necessary
/

we get L}*, for which L, = L}* satisfies the desired property.

Now deleting the facet F; of L we have L = L;\M; with L; D L}, M; D M! and
L;cS. L; and M; are K-polyhedra.
We can finish the proof of the theorem by proving

Proposition 2°. fy_3(L;) < fa-1(L), fa—1(M;) < fa—1(L) and if equality holds, then
c'(M;) < ¢'(L).

Proof. Suppose fq_1(M;) = fd;l (L). The proof is identical to that of Proposition
2 if neither L nor M; are cones. If L is not a cone but M; is then the same proof

yields d < ¢(M;) < ¢(L), a contradiction. Finally if L is a cone then so is M; and
c(M;) = e(M]) < ¢(L') = (L).

2. The number of terms. The algorithm described in Theorems 1-2 gives an
exponential upper bound cd*~+(¥) for the number of K- resp. Ky -simplices needed
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for a desired decomposition. In the 3-dimensional space this bound can be reduced to
a linear one.

Theorem 3. Let K be 4 convez 3-polytope. If the normals of Sk are in general
position, then K is the signed sum of at most ¢ f2(K) K-simplices. In the general case,
K s the signed sum of at most ¢ f2(K) Kyo-simplices.

Proof. We prove the first assertion, the proof of the second is similar. It follows
from Euler’s relation that the average number of the sides of a face of K is less than
6. Thus more than half of the faces have at most 8 sides. Our aim is to find a face
F; with at most 8 sides so that the corresponding polyhedron K; is bounded. Then
f2(Ki) < fo(K) and f, (Li) < 9. Repeating this procedure we can decompose K to the
signed sum of less than f2(K) K-polytopes having at most 9 faces. By the proof of
Theorem 1, there exists a constant ¢ such that every K -polytope with at most 9 faces
is the signed sum of at most ¢ K -simplices, and the theorem follows,

It remains only to prove that if f2(K) > 9, then there exists a face F; of K with
the desired properties. To see this, consider the polar of K again. By Carathéodory’s
theorem, the origin is contained in the interior of a tetrahedron determined by 4 suitable
vertices of K*. As K has at least 5 faces with at most 8 sides, we can delete one of the
corresponding vertices of K* so as to obtain a polytope K ; containing 0 in its interior,
yielding a bounded polytope K;.

. .
IfKisa d-polytope and K = o €;A; with suitable simplices Ay, ... yAp, then
i=1
each i-face of K must be contained in an i-face of some A, and no two of them can
be contained in the same, Hence the number of the simplices

fi(K)
> .
n= orig?gcd (‘”.’1)
' »
In particular, if K is the dual of a cyclic d-polytope L on ¢ vertices, then every |d/2]
vertices of L determine a (|d/ 2] —1)-face of L, hence the number of the (d—|d/2])-faces
of K is ([ df2 J)‘ Therefore the number of the simplices

(1a/2))
n> %_ > (faa(K))Ld/21,

B (r.zm)

Problem. Is it true that every d-polytope K can be decomposed to the signed sum of
at most ¢y Jax fi(K) Kg-simplices?
<i<

3. Hyperplane arrangements. Let 7 be an arrangement (i.e., set) of n hyperplanes
in R%; let Ry, ..., RN be the bounded connected components of le\U'H. LetTh,..., Ty
denote the simplices formed by d 4 1 of the given hyperplanes.

Each simplex T; is the union of those bounded regions R; contained in it. Let

{1’ if R] Cc fpia
Wi; =

0, otherwise.



Let W = (wi,j)f‘ilf’:l and w; = (wij)ﬁ__l. If the normal vectors of the hyperplanes in
‘H are in general position, then Theorem 1 (applied to each bounded region) implies
that the vectors w; generate the whole space. In fact, we get more:

Corollary. Let H be a hyperplane arrangement with normals in general position. Then
the lattice generated by the vectors w; is the whole lattice Z™.

This reformulation suggests an alternate proof of Theorem 1, which we only sketch.
Assume that not only the normals are in general position but also H is (the case when
more than d hyperplanes go through the same point can be reduced to this by a small
perturbation). Choose any H € H, this splits the space into two parts A (“above H”)
and B (“below H”). We show that any R; C A is a signed sum of those simplices T}
that are contained in A and have one facet contained in H.

Let, say, Ry, ..., Rm be those bounded regions contained in A and T3, ..., T}, those
simplices contained in A with one facet contained in H. If the hyperplanes in H are
in general position, then m = p. In fact, there is an easy bijection: every simplex T;
(1 <1 < p) contains a unique “highest” bounded region, namely, the region containing
the vertex of T; not on H. Conversely, every bounded region R; contained in A has a
unique vertex v farthest from H, and the hyperplanes of H containing v, together with
H, define a simplex T; in which R; is the highest region.

We may assume that we have labelled the R; so that the distance of their highest
points from H incréases with j, and the T; so that R; is the highest region in Tj.

Now if we consider the submatrix W’ of W corresponding to the first m = p rows
and columns, then this has 1’s in the main diagonal and 0’s above the diagonal. Hence
the determinant of W' is 1, which implies that W' is invertible and its inverse has
integral entries. This is equivalent to the Corollary (and also to Theorem 1).
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