DIMACS Technical Report 96-05 February 1996

Subpolytopes of Cyclic Polytopes

by

Tibor Bisztriczky¹
Department of Mathematics
University of Calgary
Calgary, Alta. T2N 1N4
Canada
tbisztri@math.ucalgary.ca

and

Gyula Károlyi^{2,3}
School of Mathematics
Institute for Advanced Study
Princeton, NJ 08540
U.S.A.
karolyi@math.ias.edu

DIMACS is a cooperative project of Rutgers University, Princeton University, AT&T Bell Laboratories and Bellcore.

DIMACS is an NSF Science and Technology Center, funded under contract STC-91-19999; and also receives support from the New Jersey Commission on Science and Technology.

¹Supported by the Natural Sciences and Engineering Research Council of Canada.

²DIMACS Postdoctoral Fellow.

³Supported by the Alfred Sloan Foundation and by NSF grant DMS-9304580.

1 Introduction

Let P be a (convex) d-polytope in \mathbb{E}^d . The combinatorial structure, or face lattice, of P is the collection of all faces of P ordered by inclusion. We recall that the face lattice of P is completely determined by the set of facets of P, and that two polytopes are combinatorially equivalent if their face lattices are isomorphic. Next, a facet system of P is a pair (\mathcal{F}, X) where X is a finite set, $\mathcal{F} \subseteq 2^X$ and there is a bijection $f: X \longrightarrow \text{vert}(P)$ such that

$$\{\operatorname{conv}(\{f(v) \mid v \in X'\}) \mid X' \in \mathcal{F}\}\$$

is the set of facets of P. A subpolytope of P is the convex hull of a subset of its vertex set. For other elementary properties of P, we refer to [2].

A d-polytope P is neighbourly if every $\lfloor d/2 \rfloor$ vertices of P determine a face of P. A well known family of neighbourly d-polytopes are the cyclic d-polytopes.

Let C(n,d) denote the convex hull of n points on the moment curve $x(t) = (t, t^2, \ldots, t^d)$ in \mathbb{E}^d , say,

$$C(n,d) = \text{conv}(\{x(t_i) \mid t_1 < t_2 < \dots < t_n \text{ in } \mathbb{E}^1, n \ge d+1\})$$
.

A polytope that is combinatorally equivalent to some C(n, d) is called a cyclic d-polytope.

Let C be a cyclic d-polytope with the vertex set $V = \{v_1, v_2, \ldots, v_n\}$. From the combinatorial equivalence to C(n, d), we obtain (see [1]) that C is simplicial and that there is a total ordering of V, say, $v_1 < v_2 < \ldots < v_n$ and called a vertex array, that satisfies Gale's Evenness Condition (GEC): a d element subset Y of V determines a facet of C if and only if any two vertices of $V \setminus Y$ are separated in the vertex array by an even number of elements of Y. We note that if d is even (odd) then $v_i < v_{i+1} < \ldots < v_n < v_1 < \ldots < v_{i-1}$ $(v_n < v_{n-1} < \ldots < v_1)$ also satisfies GEC for any $2 \le i \le n$.

For the sake of simplicity, we say that C is cyclic with $v_1 < v_2 < \ldots < v_n$ if that vertex array of C satisfies GEC. Let $C' = \operatorname{conv}(V')$, $V' \subset V$, be a subpolytope of C. We say that C' is cyclic with $v_1 < v_2 < \ldots < v_n$ if that vertex array induces one of C' that satisfies GEC. Finally, we say that v_i and v_{i+1} are successive vertices in $v_1 < v_2 < \ldots < v_n$.

As noted above, we wish to present a direct proof of the following result.

Theorem. Let C be a cyclic d-polytope with the vertex array $v_1 < v_2 < \ldots < v_n$, $n \ge d+1 \ge 4$. If d is even (odd) then every subpolytope of C (that contains v_1 and v_n) is cyclic with $v_1 < v_2 < \ldots < v_n$.

Proof. By way of contradiction, we suppose that there is a point $p \in H \cap \text{conv}(\{v_k, v_l\})$. Since W is a (d-3)-flat and aff(F) is a (d-1)-flat, we conclude that $p \notin W$.

We note that $\operatorname{aff}(Y_j) = H \cap \operatorname{aff}(F_j)$ and that $\operatorname{aff}(F_j)$ is a supporting hyperplane of C for $j \in \{i-1,i+1\}$. Thus, it follows that $H \cap C$ is contained in a closed quarterspace S of H bounded by $\operatorname{aff}(Y_{i-1})$ and $\operatorname{aff}(Y_{i+1})$. Then $p \in S$ and either the (d-2)-flat $\operatorname{aff}(W \cup \{p\})$ strictly separates v_{i-1} and v_{i+1} in H or $p \in \operatorname{aff}(Y_{i-1}) \cup \operatorname{aff}(Y_{i+1})$. Since the former yields that $\operatorname{aff}(F)$ strictly separates v_{i-1} and v_{i+1} , and so F is not a facet of C, it follows that $p \in \operatorname{aff}(Y_{i-1})$, say. But then $v_{i-1} \in \operatorname{aff}(W \cup \{p\}) \subset \operatorname{aff}(F)$ and $v_{i-1} \in F$, a contradiction.

Returning to the Theorem, we assume first that d is even. Next, because of the cyclic nature of the vertex array, we assume without loss of generality that i=n. Then $Z=\cup_{j=1}^m Z_j\subset \{v_1,\ldots,v_{n-1}\}$ where $m\geq 2$ and each Z_j is a maximal set of successive vertices of C in Z. With $v_k< v_l$ for $v_k\in Z_k,\,v_l\in Z_l$ and k< l, we note that $|Z_1|$ and $|Z_m|$ are odd, and $|Z_j|$ is even for 1< j< m. As $v_1\in Z_1,\,v_{n-1}\in Z_m$ and $W=Z\setminus \{v_1,v_{n-1}\}$, it is clear that $\mathrm{conv}(W\cup \{v_k,v_{k+1}\})$ is a facet of C whenever $W\cap \{v_k,v_{k+1}\}=\emptyset$. Next, if $Z_j=\{v\in V\mid v_k< v< v_l\}$ for some 1< j< m then it is also clear that $\mathrm{conv}(W\cup \{v_k,v_l\})$ is a facet of C. A repeated application of the Lemma now yields that $\{v_1,\ldots,v_{n-1}\}$ is contained in one of the closed half-spaces of \mathbb{E}^d bounded by H. Thus, H supports C_n and $\mathrm{conv}(Z)$ is indeed a facet of C.

We argue similarly when d is odd.

Remark 1. Let $d \geq 3$ be odd and let $n \geq d+3$. Then there exists a cyclic d-polytope with vertex array $v_1 < v_2 < \ldots < v_n$ such that for every $V' \subset \{v_1, \ldots, v_n\}, \{v_1, v_2\} \not\subset V'$ and $|V'| \geq d+2$, conv(V') is a non-cyclic d-polytope. Such polytopes are easy to construct.

Remark 2. A slightly different argument can be used to show that certain deformations of cyclic polytopes do not affect the cyclic property. In fact, our Theorem can be regarded as a 'limit version' of the following result, when u tends to v_{i+1} .

Theorem'. Suppose that the vertex array $v_1 < v_2 < \ldots < v_n$ satisfies GEC in \mathbb{E}^d , $d \geq 3$. If u is an inner point of $\operatorname{conv}(\{v_i, v_{i+1}\})$ for some $1 \leq i < n$ ($2 \leq i < n$ when d is odd) then the vertex array $v_1 < \ldots v_{i-1} < u < v_{i+1} < \ldots < v_n$ also satisfies GEC in \mathbb{E}^d .

Proof (sketch). Let $V = \{v_1, \ldots, v_n\}$, $V' = V \setminus \{v_i\} \cup \{u\}$, and $C' = \operatorname{conv}(V') \subset \operatorname{conv}(V) = C$. Let $Z \subset V'$ be a d element set that satisfies the evenness part of GEC with $v_1 < \ldots < v_{i-1} < u < v_{i+1} < \ldots < v_n$. As in the previous proof, we need only to show that $\operatorname{conv}(Z)$ is a facet of C'. Since this is immediate if $\operatorname{conv}(Z)$ is a facet of C, we assume that $u \in Z$.