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1 Introduction

Let P be a (convex) d-polytope in IEY. The combinatorial structure, or face lattice,
of P is the collection of all faces of P ordered by inclusion. We recall that the face
lattice of P is completely determined by the set of facets of P, and that two polytopes are
combinatorially equivalent if their face lattices are isomorphic. Next, a facet system of P
is a pair (F, X) where X is a finite set, 7 C 2% and there is a bijection f : X — vert(P)
such that

{conv({f(v) |ve X'} | X' € F}

is the set of facets of P. A subpolytope of P is the convex hull of a subset of its vertex
set. For other elementary properties of P, we refer to [2].

A d-polytope P is neighbourly if every [d/2] vertices of P determine a face of P. A
well known family of neighbourly d-polytopes are the cyclic d-polytopes.

Let C(n,d) denote the convex hull of n points on the moment curve z(t) =
(t,12,...,t%) in [E%, say,

C(n,d) = conv({z(t;) | t1 <ta <...<tpin [E',n >d+1}).

A polytope that is combinatorally equivalent to some C(n,d) is called a cyclic d-polytope.

Let C be a cyclic d-polytope with the vertex set V = {v1,vs,...,v,}. From the
combinatorial equivalence to C(n, d), we obtain (see [1]) that C is simplicial and that there
is a total ordering of V, say, v; < v2 < ... < v, and called a vertex array, that satisfies
Gale’s Evenness Condition (GEC): a d element subset ¥ of V' determines a facet of C' if
and only if any two vertices of V'\ Y are separated in the vertex array by an even number of
elements of Y. We note that if d is even (odd) then v; < vi41 < ... < vy, <v1 <... < i1
(vn < Up—1 < ... < vp) also satisfies GEC for any 2 < i < n.

For the sake of simplicity, we say that C is cyclic with v; < vy < ... < v, if that vertex
array of C satisfies GEC. Let C' = conv(V'), V! C V, be a subpolytope of C. We say that
C' is cyclic with vy < vg < ... < v, if that vertex array induces one of C' that satisfies
GEC. Finally, we say that v; and v;4+, are successive vertices in v; < vz < ... < Uy.

As noted above, we wish to present a direct proof of the following result.

Theorem. Let C be a cyclic d-polytope with the vertex array vi < v2 < ... < Up,
n>d+1>4. Ifd is even (odd) then every subpolytope of C (that contains vy and vy ) is
cyclic with vi < vg < ... < v,.



Proof. By way of contradiction, we suppose that there is a point p € H N conv({vg, vi}).
Since W is a (d — 3)-flat and aff(F) is a (d — 1)-flat, we conclude that p & W.

We note that aff(Y;) = H N aff(F}) and that aff(F}) is a supporting hyperplane of C
for j € {i—1,141}. Thus, it follows that H N C is contained in a closed quarterspace S of
H bounded by aff(Y;_;) and aff(Y;41). Then p € S and either the (d — 2)-flat aff(W U {p})
strictly separates v;—; and v;4; in H or p € aff(Y;—;) U aff(Yiy1). Since the former yields
that aff(F') strictly separates v;—; and vit+1, and so F is not a facet of C, it follows that
p € aff(Y;—1), say. But then v;—, € aff(W U {p}) C aff(F') and v;_1 € F, a contradiction.

Returning to the Theorem, we assume first that d is even. Next, because of the
cyclic nature of the vertex array, we assume without loss of generality that ¢ = n. Then
Z = Uj,Z;j C {v1,...,vn-1} where m > 2 and each Z; is a maximal set of successive
vertices of C'in Z. With vy < v for vi € Zx, v; € Z; and k < [, we note that |Z1| and | Z,,|
are odd, and |Z;| isevenfor 1 < j <m. As vy € Z1,vp—1 € Zpp and W = Z \ {v1,vn-1},
it is clear that conv(W U {vk, vk+1}) is a facet of C' whenever W N {vy,vk4+1} = 0. Next, if
Z;={veV|v <v<uy}forsomel < j< mthenitisalso clear that conv(WU{vg,vi})
is a facet of C. A repeated application of the Lemma now yields that {vy,...,vp,-1} is
contained in one of the closed half-spaces of IE¢ bounded by H. Thus, H supports C,, and
conv(Z) is indeed a facet of C.

We argue similarly when d is odd.

Remark 1. Let d > 3 be odd and let n > d+ 3. Then there exists a cyclic d-polytope with
vertex array v; < vg < ... < v, such that for every V' C {v1,...,vn}, {v1,v2} ¢ V' and
V'] > d+ 2, conv(V') is a non-cyclic d-polytope. Such polytopes are easy to construct.

Remark 2. A slightly different argument can be used to show that certain deformations
of cyclic polytopes do not affect the cyclic property. In fact, our Theorem can be regarded

as a ‘limit version’ of the following result, when u tends to v;y1.

Theorem’. Suppose that the vertez array vy < vy < ... < v, satisfies GEC in IEd, d>3.
If u s an inner point of conv({v;,vi41}) for some 1 < i< n (2 <1< n when d is odd)
then the vertez array vy < ...v;—1 < U < Vig1 < ... < v, also satisfies GEC in IE¢.

Proof (sketch). Let V = {v1,...,vs}, V' = V \ {vi} U {u}, and C' = conv(V') C
conv(V) = C. Let Z C V' be a d element set that satisfies the evenness part of GEC with
v < ... < V-1 < U< Vg1 < ... < U,. As in the previous proof, we need only to show
that conv(Z) is a facet of C'. Since this is immediate if conv(Z) is a facet of C, we assume

that v € Z.



