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SUBPOLYTOPES OF CYCLIC POLYTOPES N

TI1BOR BIszTRiCZKY! and GYuLA KAROLYI?

ABSTRACT

A remarkable result of I. Shemer [7] states that the combinato-
rial structure of a neighbourly 2m-polytope determines the combi-
natorial structure of each of its subpolytopes. From this, it follows
that every subpolytope of a cyclic 2m-polytope is cyclic. In this note,
we present a direct proof of this consequence that also yields that
certain subpolytopes of a cyclic (2m + 1)-polytope are cyclic.

1. Introduction. Let P be a (convex) d-polytope in [E®. The combinatorial structure,
or face lattice, of P is the collection of all faces of P ordered by inclusion. We recall
that the face lattice of P is completely determined by the set of facets of P, and that
two polytopes are combinatorially equivalent if their face lattices are isomorphic. Next,
a facet system of P is a pair (F,X) where X is a finite set, 7 C 2% and there is a
bijection f : X — vert(P) such that

{conv({f(v) |ve X'}) | X' € F}

is the set of facets of P. A subpolytope of P is the convex hull of a subset of its vertex
set. For other elementary properties of P, we refer to [4].

A d-polytope P is neighbourly if every [d/2] vertices of P determine a face of P.
A well known family of neighbourly d-polytopes are the cyclic d-polytopes.

Let C(n,d) denote the convex hull of n points on the moment curve z(t) =
(t,22,...,t%) in E¢ say,

C(n,d) =conv({z(t;) | t1 <ta<...<t, inE',n>d+1}).
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A polytope that is combinatorally equivalent to some C(n,d) is called a cyclic d-
polytope. Cyclic polytopes, and simplicial neighbourly polytopes, in general, play an
important role in the combinatorial theory of convex polytopes. They are the solutions
to extremum problems (see for example the Upper Bound Theorem of McMullen [6])
and serve as bases for various constructions, from triangulations of size Q(n(%/2) with
n vertices in IE% to bimatrix games with many equilibria ([11]).

Let C be a cyclic d-polytope with the vertex set V = {v1,vs,...,v,}. From the
combinatorial equivalence to C(n,d), we obtain (see [3]) that C is simplicial and that
there is a total ordering of V, say, v1 < v < ... < v, and called a vertex array,
that satisfies Gale’s Evenness Condition (GEC): a d element subset Y of V determines
a facet of C if and only if any two vertices of V \ Y are separated in the vertex
array by an even number of elements of Y. We note that if d is even (odd) then
V; < Uig1 < .o < Up <y <ol < Vimg (Un < Upg < ... < 1) also satisfies GEC for
any 2 <t < n.

For the sake of simplicity, we say that C is cyclic with v; < vo < ... < v, if
that vertex array of C satisfies GEC. Let C' = conv(V’), V' C V, be a subpolytope
of C. We say that C’ is cyclic with v; < v < ... < v, if that vertex array induces
one of C' that satisfies GEC. Finally, we say that v; and v;,, are successive vertices in
VvV < vy < ... < VUp.

As noted above, we wish to present a direct proof of the following result.

Theorem 1.1. Let C be a cyclic d-polytope with the vertex array vy < v < ... < Vp,

n>d+12>4. Ifd is even (odd) then every subpolytope of C (that contains vy and v, )
15 cyclic with v1 < vy < ... < vp,.

Note that there is a difference between even and odd dimensions. Indeed, the
statement cannot be improved when the dimension is odd (see Section 3). As far as we
know, the ‘odd’ part of the Theorem is a new result. However, it can also be derived
from a result of Cordovil and Duchet (see Theorem 3.3) coupled with the ‘even’ part
of the Theorem, as we will indicate it in the final section of this note. In fact, in
their paper (2], which is unfortunately still unpublished, Cordovil and Duchet give a
systematic account on an oriented matroid approach to cyclic polytopes, continued by
Sturmfels in [10], and surveyed in [1], Section 9.4. Nevertheless, our aim here is to give
direct and elementary proofs to Theorem 1.1 and Theorem 3.1, which concerns certain
deformations of cyclic polytopes. We refer to [8] for some related results.

The following consequence of Theorem 1.1 is of particular interest in the light of
a result of B. Sturmfels [9] that states that if every subpolytope of a cyclic d-polytope
C' is cyclic with respect to the original vertex array then there is an arc of order d in
IE¢ that contains the vertices of C.



Corollary 1.2. Let d > 3 be odd and let C be a cyclic d-polytope with vertex array
v <V < < ... <vp,n>d+ 1. If for every 1 <i < j < n, conv({vs, vit1,...,V5})
18 cyclic with vi < ve < ... < v, then every subpolytope of C is cyclic with v; < vy <
< Uy,

2. The proof. We note first that if every subpolytope of C that has at least d + 1
vertices (and contains vy and v,, when d is odd) is a cyclic d-polytope then for 0 < k < d,
every k-subpolytope of C' (that contains v; and v, when d is odd) is a k-simplex, and
hence cyclic. Accordingly; we may asume that n > d + 2, and we need only to verify
that the d-subpolytope C; = conv({v1,...,vi—1,Vi41,...,Un}), with 1 < i < n for d
odd and vy = vy, vp41 = v1 for d even, is cyclic with v; < vy < ... < v,,.

We recall the following elementary fact from [5] or [12], Ex. 2.8.

Proposition 2.1. If (F,X) and (F', X) are facet systems of convex d-polytopes then
F C F' implies F = F'.

Let V = {v1,v2,...,vn}, and Z C V \ {v;} be a d element set that satisfies
the evenness part of GEC with v; < ... < v;_; < v;41 < ... < v,. In view of the
Proposition, we need only to show that conv(Z) is a facet of C;. Since this is immediate
if conv(Z) is a facet of C, we assume that it is not a facet of C.

Since v; ¢ Z and Z satisfies the evenness part of GEC with v; < ... < v;_1 <
Vit1 < ... < vy but not with v; < ... < v, < wv; < vi41 < ... < vy, it is easy to
check that {v; 1,vi31} C Z and that both (Z\ {viy1}) U{v;} and (Z \ {v;_1}) U {v;}
satisfy the evenness part of GEC with v; < ... <wv;_; < v; <11 < ... < vp.

Let W = Z\ {vi_1,vi41}, Yicr = WU {vi_1} and Y;y; = W U {v;41}. Since C
is simplicial and F; = conv(Y; U {v;}), j € {i — 1,7 + 1}, is a facet of C, we obtain
that aff(W) is a (d — 3)-flat and aff(Y;) is a (d — 2)-flat of IE%. Thus, H = aff(Z) is a
hyperplane of IE%.

The central notion of the proof is the following lemma.

Lemma 2.2. Let F = conv(WU{vk, ui}) be a facet of C such that FN{v;_1,v;,vi41} =
0. Then H N conv({vg, v }) = 0.

Proof. By way of contradiction, we suppose that there is a point p € HNconv({vk, v }).
Since W is a (d — 3)-flat and aff(F) is a (d — 1)-flat, we conclude that p ¢ W.

We note that aff(Y;) = H N aff(F;) and that aff(F}) is a supporting hyperplane of
C for j € {i—1,i+1}. Thus, it follows that HNC is contained in a closed quarterspace
S of H bounded by aff(Y;_;) and aff(Y;;1). Then p € S and either the (d — 2)-flat
aff(W U {p}) strictly separates v;_; and v;4+1 in H or p € aff(Y;_;) U aff(Yj;). Since
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the former yields that aff(F) strictly separates v;_; and v;,1, and so F is not a facet
of C, it follows that p € aff(Y;_1), say. But then v;_; € aff(W U {p}) C aff(F) and
v;_1 € F, a contradiction.

Returning to the Theorem, we assume first that d is even. Next, because of the
cyclic nature of the vertex array, we assume without loss of generality that i = n.
Then Z = U7, Z; C {v1,...,vn—1} where m > 2 and each Z; is a maximal set of
successive vertices of C' in Z. With vg < v; for vi € Z, v; € Z; and k < [, we note
that |Z,| and |Z,,| are odd, and |Z;| is even for 1 < j < m. As vy € Zy, vn_1 € Zp,
and W = Z \ {v1,vn_1}, it is clear that conv(W U {vg,vi11}) is a facet of C whenever
W N {vk,vk41} = 0. Next, if Z; = {v € V | vy < v < v} for some 1 < j < m then
it is also clear that conv(W U {vg,v;}) is a facet of C. A repeated application of the
Lemma now yields that {vy,...,v,_1} is contained in one of the closed half-spaces of
IE* bounded by H. Thus, H supports C,, and conv(Z) is indeed a facet of C.

We argue similarly when d is odd.

3. Remarks. Let d > 3beodd andlet n > d+3. Let I C {1,2,...,n}, {1,n} ¢ I and
[I| > d + 2. Then there exists a cyclic d-polytope with vertex array v; < vy < ... < v,
such that for V! = {v; | ¢ € I}, conv(V') is a non-cyclic d-polytope. Such polytopes
are easy to construct.

A slightly different argument can be used to show that certain deformations of
cyclic polytopes do not affect the cyclic property. In fact, Theorem 1.1 can be regarded
as a ‘limit version’ of the following result, when u tends to v; ;.

Theorem 3.1. Suppose that the verter array vy < va < ... < v, satisfies GEC in [E¢,
d > 3. If u is an inner point of conv({v;,vi41}) for some1<i<n (2<i<n whend

15 odd) then the vertex array vy < ...v;—1 < u < V41 < ... < v, also satisfies GEC in
IE

Proof (sketch). Let V = {v,...,v,}, V! = V\ {v;} U {u}, and C' = conv(V') C
conv(V) = C. Let Z C V' be a d element set that satisfies the evenness part of GEC
with v; < ... <w;_1 <u <41 <...<v,. Asin the previous proof, we need only to
show that conv(Z) is a facet of C’. Since this is immediate if conv(Z) is a facet of C,
we assume that u € Z.

Let Z' = Z\ {u} U {v;}. Then F;_; = conv(Z’) is a facet of C. If v;;; € Z
then aff(Z) = aff(Z’) and conv(Z) is indeed a facet of C'. Suppose therefore that
Viv1 € Z. Then v;_1 € Z, with vg = v, when d is even. To utilize the notation
of the previous proof, let W = Z \ {v;_1,u}, Vi1 = WU {vi_1}, Yiy1 = WU {u},
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Fitr = conv({W U {v;,v;41}) and H = aff(Z). Then the affine subspaces aff(W),
aff(Y;) (j € {i —1,i+ 1}) and H have, again, dimension d — 3, d — 2 and d — 1,
respectively.

Now we are ready to state the following counterpart of Lemma 2.2.

Lemma 3.2. Let F = conv(W U {vg, v1}) be a facet of C such that F N {v;—1,v;} = 0.
Then H N conv({vg,v}) = 0.

The proof of Lemma 3.2 is literally the same as that of Lemma 2.2, if we substitute
vi+1 by u throughout the proof. A difference emerges only when p € aff(Y;;;). But
then aff(W U {p}) = aff(Yiy1) C aff(F) N aff(F;;1) and either aff(F') = aff(F;;,) or
aff(F") strictly separates v; and v;41, a contradiction in either case.

The remaining part of the proof follows as for Theorem 1.1, and we leave the

details to the reader. We note only that the statement is not true when d is odd and
i = 1.

In order to explore some connections, we close this paper with an alternative proof
of the odd part of Theorem 1.1 via the following characterization of odd-dimensional
cyclic polytopes.

Theorem 3.3 ([2]). Let V' be the vertex set of a convex d-polytope C, |V|=n > d+1,
d > 3 odd. Then C s a cyclic polytope if and only if there exist uy,u, € V such that
every hyperplane spanned by points of V '\ {u1,u,} separates u; and u,, and the vertex
figure C/uy is a cyclic (d —1)-polytope. (The vertez figure P/v of a d-polytope P at its
verter v is any (d — 1)-polytope obtained by cutting P by a hyperplane that separates v
from the rest of the vertices of P. Its combinatorial type is independent of the choice

of the cutting hyperplane.)

Suppose that d > 3 is odd and let C be as in Theorem 1.1. Then there exist
u1, U, € V = {v1,vs,...,v,} as in Theorem 3.3. In fact, it is inherent in the proof
of Theorem 3.3 that we may choose u; = v; and u, = v,. Let C' = conv(V'),
{vi,v,} C V' C V, be asubpolytope of C. It is straightforward, that every hyperplane
spanned by points of V' \ {u1,u,} separates v; from v,. Moreover, the vertex figure
C' /vy is a subpolytope of the cyclic (d— 1)-polytope C/v;, hence cyclic (note that d—1
is even). Thus, C’ is cyclic by the ‘if’ part of Theorem 3.3. To see that C’ is cyclic
with vertex array v; < vs < ... < v, would, however, require additional work.
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