Distinct Sums Modulo n and Tree Embeddings

ANDRÉ E. KÉZDY ${ }^{1}$ and HUNTER S. SNEVILY ${ }^{2}$
${ }^{1}$ Department of Mathematics, University of Louisville, Louisville, KY 40292, USA
(e-mail: kezdy@louisville.edu)
${ }^{2}$ Department of Mathematics, University of Idaho, Moscow, ID 83844, USA
(e-mail: snevily@uidaho.edu)

Received 11 July 2000; revised 6 March 2001

In this paper we are concerned with the following conjecture.
Conjecture. For any positive integers n and k satisfying $k<n$, and any sequence $a_{1}, a_{2}, \ldots, a_{k}$ of not necessarily distinct elements of Z_{n}, there exists a permutation $\pi \in S_{k}$ such that the elements $a_{\pi(i)}+i$ are all distinct modulo n.

We prove this conjecture when $2 k \leqslant n+1$. We then apply this result to tree embeddings. Specifically, we show that, if T is a tree with n edges and radius r, then T decomposes K_{t} for some $t \leqslant 32(2 r+4) n^{2}+1$.

1. Introduction

In this paper we are concerned with the following conjecture, which is a reformulation of Conjecture 4 in the paper by Snevily [10].

Conjecture 1.1. For any positive integers n and k satisfying $k<n$, and any sequence $a_{1}, a_{2}, \ldots, a_{k}$ of not necessarily distinct elements of Z_{n}, there exists a permutation $\pi \in S_{k}$ such that the elements $a_{\pi(i)}+i$ are all distinct modulo n.

If true, Conjecture 1.1 would be sharp because, as is well known, the Cayley table $Z_{2 m}$ has no latin transversal, so the desired permutation may not exist when $k=n$. In fact Hall [4] resolved the $k=n$ case in abelian groups by showing that, for any sequence a_{1}, \ldots, a_{n} of not necessarily distinct elements of an abelian group G of order n satisfying the obvious necessary condition that $\sum_{i=1}^{n} a_{i}=0$, there are two permutations π and σ of the elements of $G=\left\{g_{1}, \ldots, g_{n}\right\}$ such that $\pi\left(g_{i}\right)-\sigma\left(g_{i}\right)=a_{i}$, for all $i=1, \ldots, n$.

Hall's result also establishes the $k=n-1$ case of Conjecture 1.1 since, given a_{1}, \ldots, a_{n-1}, one can set $a_{n}=-\sum_{i=1}^{n-1} a_{i}$ and apply Hall's theorem to obtain a permutation π such that $a_{1}+\pi(1), \ldots, a_{n}+\pi(n)$ are all distinct modulo n. Now, increasing all $\pi(i)$'s by the same constant, one can guarantee that $\pi(n)=0$.

Conjecture 1.1 is related to several well-studied problems: latin transversals, cyclic neofields, combinatorial designs, and permutation groups. The $k=n-1$ case is particularly intriguing as it is closely related to N-permutations, which in turn are related to cyclic neofields. Constructions of the latter two objects have been accomplished using both number-theoretic and combinatorial methods. For more information on these topics, the reader is referred to the book by Hsu [5].

Alon [2] proved a result more general than Conjecture 1.1 when n is a prime, using polynomial methods. Using similar methods we prove the conjecture for all n when $2 k \leqslant n+1$. We then apply this result to tree embeddings.

A decomposition of a graph $G=(V, E)$ is a partition of E into pairwise edge-disjoint subgraphs. If these edge-disjoint subgraphs are all isomorphic to the same graph H, then we say that H decomposes G. One of the most famous conjectures about decomposing graphs is Ringel's conjecture [7], which states that every tree on n edges decomposes the complete graph on $2 n+1$ vertices, $K_{2 n+1}$. Ringel's conjecture remains open. We can view the conjecture as an extremal problem by defining, for any tree T, a value $h(T)$ that equals the smallest positive integer m such that T decomposes K_{m}. The existence of $h(T)$ follows from a general theorem due to Wilson [13] that applies to all graphs. As a consequence of recent work by Yuster [12], $h(T)=O\left(n^{10}\right)$, for any tree T with n edges. If one defines the function $g(n)=\max \{h(T): T$ is a tree with n edges $\}$, then Ringel's conjecture, if true, would show that $g(n) \leqslant 2 n+1$. In this paper we apply the proof of Conjecture 1.1 when $2 k \leqslant n+1$ to prove that, if T is a tree with n edges and radius r, then $h(T) \leqslant 32(2 r+4) n^{2}+1$. It follows that $g(n)=O\left(n^{3}\right)$.

2. Distinct sums modulo n

In this section we prove a theorem that is the foundation of our tree embedding technique appearing in the next section. First we introduce some notation.

Suppose n is a positive integer. We use $[n]$ as an abbreviation for the set $\{1, \ldots, n\}$. The set of permutations of [n] is denoted by S_{n}. A permutation $\pi \in S_{n}$ is viewed as the linear arrangement $\pi(1), \pi(2), \ldots, \pi(n)$. We call this sequence the sequence representation of π. We shall omit commas from this sequence when doing so produces no ambiguity. For $i, j \in[n]$ and $\pi \in S_{n}$, define the distance from i to j in π to be $d_{\pi}(i, j):=\pi^{-1}(j)-\pi^{-1}(i)$. Clearly $d_{\pi}(i, j)=-d_{\pi}(j, i)$ and $-(n-1) \leqslant d_{\pi}(i, j) \leqslant n-1$. For example, if π is the permutation 532687941, then $d_{\pi}(5,6)=3$, whereas $d_{\pi}(1,8)=-4$.

A basic problem we address in this section is the following. Suppose that k is a positive integer and that we are given, for every unordered pair of elements $\{i, j\}$ from $[k]$, a number $f_{i j}$ that represents a 'forbidden distance' between i and j. Is there a permutation $\pi \in S_{k}$ that avoids all of these forbidden distances? The answer is 'yes', as Lemma 2.2 shows. To prove this we make use of the following result.

Theorem 2.1 (Alon [1]). Let F be an arbitrary field, and let $f=f\left(x_{1}, \ldots, x_{n}\right)$ be a polynomial in $F\left[x_{1}, \ldots, x_{n}\right]$. Suppose the degree of f is $\sum_{i=1}^{n} t_{i}$, where each t_{i} is a nonnegative integer. If the coefficient of $\prod_{i=1}^{n} x_{i}^{t_{i}}$ in f is nonzero, then, for any subsets $S_{1}, S_{2}, \ldots, S_{n}$ of F satisfying $\left|S_{i}\right|>t_{i}$, there are elements $s_{1} \in S_{1}, s_{2} \in S_{2}, \ldots, s_{n} \in S_{n}$ such that

$$
f\left(s_{1}, s_{2}, \ldots, s_{n}\right) \neq 0
$$

Our first lemma is a direct application of Theorem 2.1. We first proved Lemma 2.2 using the Alon-Tarsi lemma (see [3]) and multilinear polynomials. We then realized that our argument could be simplified if we used Theorem 2.1; this resulted in our proofs being very similar to those given in [2].

Lemma 2.2. For any positive integer k and any assignment of forbidden distances $f_{i j}$ to the unordered pairs from $[k]$, there exists a permutation $\pi \in S_{k}$ such that

$$
\begin{equation*}
d_{\pi}(i, j) \neq f_{i j}, \quad \text { for all } 1 \leqslant i<j \leqslant k \tag{2.1}
\end{equation*}
$$

Proof. Introduce k variables x_{i} for $1 \leqslant i \leqslant k$, where x_{i} represents the position that element i occupies in the sequence representation of a permutation of $[k]$. Now consider the following polynomial with k variables over the reals:

$$
\begin{equation*}
P\left(x_{1}, \ldots, x_{k}\right)=\prod_{1 \leqslant i<j \leqslant k}\left(x_{i}-x_{j}\right) \prod_{1 \leqslant i<j \leqslant k}\left(\left(x_{i}-x_{j}\right)-f_{i j}\right) . \tag{2.2}
\end{equation*}
$$

There is a permutation $\pi \in S_{k}$ satisfying (2.1) if and only if $P\left(x_{1}, \ldots, x_{k}\right) \neq 0$ for some $\left(x_{1}, \ldots, x_{k}\right) \in\{1, \ldots, k\}^{k}$.

The coefficient of the monomial $\prod_{i=1}^{k} x_{i}^{k-1}$ in P is the same as the coefficient of this monomial in the polynomial

$$
\prod_{1 \leqslant i<j \leqslant k}\left(x_{i}-x_{j}\right) \prod_{1 \leqslant i<j \leqslant k}\left(x_{i}-x_{j}\right)
$$

because the total degree of P is $k(k-1)$. Applying the Vandermonde identity

$$
\prod_{1 \leqslant i<j \leqslant k}\left(x_{i}-x_{j}\right)=\sum_{\pi \in S_{k}}(-1)^{\operatorname{sign}(\pi)} \prod_{i=1}^{k} x_{\pi(i)}^{k-i},
$$

one finds that this coefficient is $(-1)^{\binom{k}{2}} k$!.
Applying Theorem 2.1 to P with $S_{1}=S_{2}=\cdots=S_{k}=[k]$, it follows that there is some $\left(x_{1}, \ldots, x_{k}\right) \in[k]^{k}$ such that $P\left(x_{1}, x_{2}, \ldots, x_{k}\right) \neq 0$, which implies the existence of the desired permutation.

Lemma 2.2 is sharp in the sense that, if $f_{i j}=1$ for all $1 \leqslant i<j \leqslant k$, then a unique permutation π satisfies (2.1), namely the permutation with sequence representation $k(k-1) \cdots 21$.

Lemma 2.2 can be viewed as a generalization of Redei's theorem. Recall that a tournament is a complete graph whose edges have all been given an orientation. Redei's theorem states that every tournament contains a directed path visiting each vertex exactly once. If
one considers the directed edge $u v$ in the tournament as equivalent to forbidding the distance $f_{v u}=1$, then Redei's theorem can be derived from Lemma 2.2. Essentially, Redei's theorem is equivalent to Lemma 2.2 in which the forbidden distances are restricted to values from the set $\{-1,0,1\}$. Despite the fact that Redei's theorem has relatively straightforward combinatorial proofs, we have not found a combinatorial proof of Lemma 2.2, even in the case in which the forbidden distances are restricted to values from the set $\{-2,-1,0,1,2\}$.

A strengthening of Lemma 2.2 is possible using an observation that Alon [2] made, that the coefficient $(-1)^{\binom{k}{2}} k$! of the monomial $\prod_{i=1}^{k} x_{i}^{k-1}$ in the expansion of (2.2) is nonzero modulo a prime p. We include the argument here for completeness. Let Z_{n} denote the group of integers modulo n under addition. A function $f:[k] \times[k] \rightarrow Z_{n}$ is alternating if $f(i, j) \equiv-f(j, i)(\bmod n)$, for all $i, j \in[k]$.

Lemma 2.3. For any positive integers k and p satisfying $k<p, p$ a prime, and any alternating function $f:[k] \times[k] \rightarrow Z_{p}$, there exists a permutation $\pi \in S_{k}$ such that

$$
\begin{equation*}
d_{\pi}(i, j) \not \equiv f(i, j)(\bmod p), \quad \text { for all distinct } i, j \in[k] . \tag{2.3}
\end{equation*}
$$

Proof. As in the previous proof, introduce k variables x_{i} for $1 \leqslant i \leqslant k$, where x_{i} represents the position that element i occupies in the sequence representation of a permutation of [k]. Now consider the following polynomial over the field Z_{p} :

$$
\begin{equation*}
P\left(x_{1}, \ldots, x_{k}\right)=\prod_{1 \leqslant i<j \leqslant k}\left(x_{i}-x_{j}\right) \prod_{1 \leqslant i<j \leqslant k}\left(\left(x_{i}-x_{j}\right)-f(i, j)\right) . \tag{2.4}
\end{equation*}
$$

There is a permutation $\pi \in S_{k}$ satisfying (2.3) if and only if

$$
P\left(x_{1}, \ldots, x_{k}\right) \not \equiv 0(\bmod p)
$$

for some $\left(x_{1}, \ldots, x_{k}\right) \in\{1, \ldots, k\}^{k}$.
Now $P \not \equiv 0$ because the coefficient of the monomial $\prod_{i=1}^{k} x_{i}^{k-1}$ in P_{1} is $(-1)^{\binom{k}{2}} k$! which is not zero modulo p. It follows from Theorem 2.1 that there is some $\left(x_{1}, \ldots, x_{k}\right) \in\{1, \ldots, k\}^{k}$ such that $P\left(x_{1}, \ldots, x_{k}\right) \not \equiv 0(\bmod p)$.

We conjecture the following strengthening of Lemma 2.3.
Conjecture 2.4. For any positive integers k and n satisfying $k<n$, and any alternating function $f:[k] \times[k] \rightarrow Z_{n}$, there exists a permutation $\pi \in S_{k}$ such that

$$
d_{\pi}(i, j) \not \equiv f(i, j)(\bmod n), \quad \text { for all distinct } i, j \in[k] .
$$

Conjecture 2.4 , if true, would imply Conjecture 1.1 (by appropriately modifying the proof of Theorem 2.5). The following is the main tool used in the next section.

Theorem 2.5. Let n and k be positive integers satisfying $2 k \leqslant n+1$. For any sequence $a_{1}, a_{2}, \ldots, a_{k}$ of not necessarily distinct elements of Z_{n}, there exists a permutation $\pi \in S_{k}$ such that the elements $a_{\pi(i)}+i$ are all distinct modulo n.

Proof. It suffices to prove that there exists a permutation $\pi \in S_{k}$ such that

$$
a_{i}-a_{j}+\pi(i)-\pi(j) \not \equiv 0(\bmod n), \quad \text { for all } i<j
$$

Because $|\pi(i)-\pi(j)|<n / 2$ for all $\pi \in S_{k}$, there is a unique multiple $n_{i j}$ of n such that, for any π, if $a_{i}-a_{j}+\pi(i)-\pi(j)$ is a multiple of n, then it is equal to $n_{i j}$. Lemma 2.2 now guarantees the desired permutation.

We close this section with some conjectures. For $\mathbf{a}=\left(a_{1}, \ldots, a_{k}\right) \in Z_{n}^{k}$, let $\Phi(n, \mathbf{a})$ denote the number of permutations $\pi \in S_{k}$ such that the sums $a_{\pi(i)}+i$ are all distinct modulo n. Define $N(n, k)=\min _{\mathbf{a} \in Z_{n}^{k}} \Phi(n, \mathbf{a})$. Note that Conjecture 1.1 is equivalent to proving that $N(n, k)>0$, for all positive integers k and n satisfying $k<n$. We conjecture that $N(n, k)$ is monotone for fixed n; that is, $N(n, k) \leqslant N(n, k+1)$ for all n and k satisfying $0<k<n-1$. We also conjecture that $N(n, k)$ is monotone for fixed k; that is, $N(n, k) \leqslant N(n+1, k)$, for all n and k satisfying $0<k<n$. In addition, we make these two conjectures about specific values of $N(n, k)$.

Conjecture 2.6. If n is sufficiently large with respect to k, then

$$
N(n, k)= \begin{cases}\left(\frac{k}{2}!\right)^{2}, & \text { if } k \text { is even }, \\ \left\lceil\frac{k}{2}\right\rceil\left(\left\lfloor\frac{k}{2}\right\rfloor!\right)^{2}, & \text { if } k \text { is odd } .\end{cases}
$$

Note that, if true, Conjecture 2.6 would be sharp because the vector

$$
(\underbrace{0, \ldots, 0}_{\left\lfloor\frac{k}{2}\right\rfloor \text { times }}, \underbrace{n-1, \ldots, n-1}_{\left\lceil\frac{k}{2}\right\rceil \text { times }})
$$

achieves the bound.
It is necessary to include the condition that n is sufficiently large with respect to k because, when k is near n, the values of $N(n, k)$ are smaller than those conjectured in Conjecture 2.6 (see Table 1).

Table 1							Values of $N(n, k)$ for $3 \leqslant n \leqslant 9$				
$n \backslash k$	2	3	4	5	6	7	8				
3	1	-	-	-	-	-	-				
4	1	2	-	-	-	-	-				
5	1	2	3	-	-	-	-				
6	1	2	4	8	-	-	-				
7	1	2	4	12	19	-	-				
8	1	2	4	12	32	64	-				
9	1	2	4	12	36	144	225				

In light of the apparent monotonicity of $N(n, k)$, a particularly interesting case occurs when $k=n-1$.

Conjecture 2.7. For $n \geqslant 3, N(n, n-1)$ is equal to the number of cyclic neofields of order $n+1$.

We do not define cyclic neofields here, but refer the reader to the book by Hsu [5].

3. A decomposition

In this section we show how to decompose a 'small' complete graph into edge-disjoint copies of a given tree. Our decomposition method relies heavily on Theorem 2.5.

Let $G=(V, E)$ be a connected graph. The distance between the vertex u and the vertex v in G, denoted $d_{G}(u, v)$, is the number of edges in a shortest path connecting u and v. Recall that the eccentricity of the vertex $v \in V(G)$, denoted $e(v)$, is defined to be $\max \left\{d_{G}(u, v): u \in V\right\}$. The radius of $G, r(G)$ is the minimum eccentricity of its vertices. A vertex v is a central vertex of G if $e(v)=r(G)$.

Theorem 3.1. If T is a tree with n edges and radius r, then T decomposes K_{p}, for some $p \leqslant 32(2 r+4) n^{2}+1$.

Proof. Let T be a tree that has n edges and radius r. Let v be a central vertex of T and x a vertex of T that is the maximum distance from v. Consider a new tree T^{\prime} obtained from two disjoint copies T_{1} and T_{2} of T by identifying x_{1} and v_{2}. Note that T^{\prime} has $2 n$ edges and the eccentricity of v_{1} in T^{\prime} is $2 r$. Clearly T decomposes a given complete graph if T^{\prime} does. This initial tree-duplicating step is required to guarantee that we work with a tree in which, for all k, the number of edges of the tree at distance k from v_{1} is at most half the total number of edges.
Let $C_{4 s}(t)$ denote the graph obtained from the cycle $C_{4 s}$ by blowing up each vertex to t vertices. Because $C_{4 s}(t)$ is isomorphic to the weak tensor product of $C_{4 s}$ and $K_{t, t}$, it follows from work by Snevily [9] and Rosa [8] that $C_{4 s}(t)$ decomposes the complete graph $K_{8 s t^{2}+1}$. We are interested in $C_{4 s}(2 n)$, where s is the smallest positive integer satisfying $4 s \geqslant 2 r+1$. Because $C_{4 s}(2 n)$ decomposes the complete graph $K_{32 s n^{2}+1}$, it suffices to show that T^{\prime} decomposes $C_{4 s}(2 n)$.
The vertices of $C_{4 s}(2 n)$ may be viewed as ordered pairs $(i, j)(0 \leqslant i<2 n, 0 \leqslant j<4 s)$ such that edges are pairs $(i, j)\left(i^{\prime}, j^{\prime}\right)$ satisfying $\left|j-j^{\prime}\right| \equiv 1(\bmod 4 s)$. Edges can naturally be thought of as having an angle. By an embedding of T into $C_{4 s}(2 n)$ we mean an injection of $V(T)$ into $V\left(C_{4 s}(2 n)\right.$ that preserves adjacency.

To show T^{\prime} decomposes $C_{4 s}(2 n)$, it is enough to demonstrate that one can embed T^{\prime} into $C_{4 s}(2 n)$ so that every edge has a different angle, since the $4 s \times 2 n$ rotations of this embedding then clearly decompose $C_{4 s}(2 n)$. The remainder of the proof demonstrates how to perform this embedding of T^{\prime}.
We view the tree T^{\prime} as being rooted at v_{1}. Define the level sets $V_{i}=\left\{u \in V\left(T^{\prime}\right)\right.$: $\left.d\left(u, v_{1}\right)=i\right\}$, for $i=0, \ldots, 2 r$. By definition, each V_{i} is nonempty and the V_{i} s partition the vertices of T^{\prime}. Because T^{\prime} is a tree, each V_{i} induces an independent set. In particular, edges of T^{\prime} have endpoints in consecutive level sets. For $i=1, \ldots, 2 r$, let E_{i} denote the set
of edges in the graph induced by $V_{i-1} \cup V_{i}$, and set $e_{i}=\left|E_{i}\right|$. Clearly $e_{i}>0$, for all i, and $\sum_{i=1}^{2 r} e_{i}=2 n$. By construction, we have $e_{i} \leqslant n$, for all i.

For $i=1, \ldots, 2 r$, define the label set L_{i} to be the set of e_{i} consecutive elements of $Z_{2 n}$ beginning at $m_{i}:=\sum_{j=1}^{i-1} e_{j}$ (where $m_{1}=0$); so $L_{1}=\left\{0, \ldots, e_{1}-1\right\}$ and $L_{i}:=$ $\left\{m_{i}, \ldots, m_{i}+e_{i}-1\right\}$. By definition the L_{i} s form a partition of $\{0, \ldots, 2 n-1\}$. For any $f: V\left(T^{\prime}\right) \rightarrow Z_{2 n}$, define $f\left(E_{i}\right)=\left\{f(b)-f(a) \bmod 2 n: a b \in E_{i}, a \in V_{i-1}, b \in V_{i}\right\}$.

The desired embedding of T^{\prime} will follow from a labelling $f: V\left(T^{\prime}\right) \rightarrow Z_{2 n}$ satisfying all of the following:
(a) $f\left(v_{1}\right)=0$,
(b) $f\left(E_{i}\right)=L_{i}$, for all $i=1, \ldots, 2 r$,
(c) $f \mid V_{i}$ is one-to-one, for all $i=1, \ldots, 2 r$.

We construct f by induction on i. Initially $f\left(v_{1}\right)=0$. Now suppose that f has been defined on all level sets V_{0}, \ldots, V_{i-1}, for some $1 \leqslant i<2 r$, so that (a), (b) and (c) are all satisfied on the current domain of f. We must now show how to extend f to V_{i}. For convenience set $k=e_{i} \leqslant n$. Consider the edges $E_{i}=\left\{x_{j} y_{j}\right\}_{j=1}^{k}$. The sequence $f\left(x_{1}\right), \ldots, f\left(x_{k}\right)$ consists of not necessarily distinct values of $Z_{2 n}$. Because $k \leqslant n$, Theorem 2.5 guarantees a permutation $\pi \in S_{k}$ such that $f\left(x_{\pi(i)}\right)+i$ are all distinct modulo $2 n$. It follows that there exists a permutation b_{1}, \ldots, b_{k} of L_{i} such that $f\left(x_{j}\right)+b_{j}$ are all distinct modulo $2 n$. Define $f\left(y_{j}\right)=f\left(x_{j}\right)+b_{j}$, for $j=1, \ldots, k$. It is clear that f now satisfies (a), (b) and (c) on the level sets V_{0}, \ldots, V_{i} This completes the definition of f.

The desired embedding of T^{\prime} can be described by defining $g: V\left(T^{\prime}\right) \rightarrow V\left(C_{4 s}(2 n)\right)$ according to the rule $g(u):=\left(f(u), d_{T^{\prime}}\left(u, v_{1}\right)\right)$. Observe that property (c) and $4 s \geqslant 2 r+1$ guarantee that g is one-to-one, property (a) implies that $g\left(v_{1}\right)=(0,0)$, and property (b) implies that the labels on the edges connecting the vertices $\{g(u)\}_{u \in V_{i-1}}$ and $\{g(u)\}_{u \in V_{i}}$ are precisely the labels in L_{i}, for $i=1, \ldots, 2 r$, so all edges have distinct angles.

The bounds in Theorem 3.1 can be improved by a multiplicative constant using an unpublished result of Häggkvist [6] that obviates the initial tree duplicating step of the proof.

Acknowledgement

The authors thank an anonymous referee for valuable suggestions that greatly improved the presentation of this paper.

References

[1] Alon, N. (1999) Combinatorial Nullstellensatz. Combin. Probab. Comput. 8 7-29.
[2] Alon, N. (2000) Additive latin transversals. Israel J. Math. 117 125-130.
[3] Alon, N. and Tarsi, M. (1992) Colorings and orientations of graphs. Combinatorica 12 125-134.
[4] Hall, M. (1952) A combinatorial problem on abelian groups. Proc. Amer. Math. Soc. 3 584-587.
[5] Hsu, F. (1980) Cyclic Neofields and Combinatorial Designs, Vol. 824 of Lecture Notes in Mathematics, Springer, Berlin/New York.
[6] Häggkvist, R. (1989) Decompositions of complete bipartite graphs. In Surveys in Combinatorics, Vol. 141 of London Math. Soc. Lecture Note Ser., pp. 115-147.
[7] Ringel, G. (1964) Problem 25. In Theory of Graphs and its Applications (Proc. Symp. Smolence, 1963), Czech. Acad. Sci., p. 162.
[8] Rosa, A. (1967) On certain valuations of the vertices of a graph. In Theory of Graphs (Internat. Sympos. Rome, 1966), pp. 349-355.
[9] Snevily, H. (1997) New families of graphs that have α-labelings. Discrete Math. 170 185-194.
[10] Snevily, H. (1999) The Cayley Addition Table of Z_{n}. Amer. Math Monthly 106 (6) 584-585.
[11] Snevily, H. (1997) A polynomial approach to the graceful tree conjecture. Manuscript.
[12] Yuster, R. (2000) Packing and decomposition of graphs with trees. J. Combin. Theory Ser. B 78 123-140.
[13] Wilson, R. M. (1976) Decompositions of complete graphs into subgraphs isomorphic to a given graph. In Proc. Fifth British Combinatorial Conference (Univ. Aberdeen, Aberdeen, 1975), pp. 647-659. Congressus Numerantium XV, Utilitas Math., Winnipeg, Man.

