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In this paper we are concerned with the following conjecture.

Conjecture. For any positive integers n and k satisfying k < n, and any sequence a1, a2, . . . , ak
of not necessarily distinct elements of Zn, there exists a permutation π ∈ Sk such that the

elements aπ(i) + i are all distinct modulo n.

We prove this conjecture when 2k 6 n+ 1. We then apply this result to tree embeddings.

Specifically, we show that, if T is a tree with n edges and radius r, then T decomposes Kt
for some t 6 32(2r + 4)n2 + 1.

1. Introduction

In this paper we are concerned with the following conjecture, which is a reformulation of

Conjecture 4 in the paper by Snevily [10].

Conjecture 1.1. For any positive integers n and k satisfying k < n, and any sequence

a1, a2, . . . , ak of not necessarily distinct elements of Zn, there exists a permutation π ∈ Sk
such that the elements aπ(i) + i are all distinct modulo n.

If true, Conjecture 1.1 would be sharp because, as is well known, the Cayley table Z2m

has no latin transversal, so the desired permutation may not exist when k = n. In fact

Hall [4] resolved the k = n case in abelian groups by showing that, for any sequence

a1, . . . , an of not necessarily distinct elements of an abelian group G of order n satisfying

the obvious necessary condition that
∑n

i=1 ai = 0, there are two permutations π and σ of

the elements of G = {g1, . . . , gn} such that π(gi)− σ(gi) = ai, for all i = 1, . . . , n.
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Hall’s result also establishes the k = n−1 case of Conjecture 1.1 since, given a1, . . . , an−1,

one can set an = −∑n−1
i=1 ai and apply Hall’s theorem to obtain a permutation π such that

a1 + π(1), . . . , an + π(n) are all distinct modulo n. Now, increasing all π(i)’s by the same

constant, one can guarantee that π(n) = 0.

Conjecture 1.1 is related to several well-studied problems: latin transversals, cyclic

neofields, combinatorial designs, and permutation groups. The k = n−1 case is particularly

intriguing as it is closely related to N-permutations, which in turn are related to cyclic

neofields. Constructions of the latter two objects have been accomplished using both

number-theoretic and combinatorial methods. For more information on these topics, the

reader is referred to the book by Hsu [5].

Alon [2] proved a result more general than Conjecture 1.1 when n is a prime, using

polynomial methods. Using similar methods we prove the conjecture for all n when

2k 6 n+ 1. We then apply this result to tree embeddings.

A decomposition of a graph G = (V , E) is a partition of E into pairwise edge-disjoint

subgraphs. If these edge-disjoint subgraphs are all isomorphic to the same graph H , then

we say that H decomposes G. One of the most famous conjectures about decomposing

graphs is Ringel’s conjecture [7], which states that every tree on n edges decomposes

the complete graph on 2n + 1 vertices, K2n+1. Ringel’s conjecture remains open. We can

view the conjecture as an extremal problem by defining, for any tree T , a value h(T )

that equals the smallest positive integer m such that T decomposes Km. The existence of

h(T ) follows from a general theorem due to Wilson [13] that applies to all graphs. As a

consequence of recent work by Yuster [12], h(T ) = O(n10), for any tree T with n edges.

If one defines the function g(n) = max{h(T ) : T is a tree with n edges}, then Ringel’s

conjecture, if true, would show that g(n) 6 2n + 1. In this paper we apply the proof of

Conjecture 1.1 when 2k 6 n + 1 to prove that, if T is a tree with n edges and radius r,

then h(T ) 6 32(2r + 4)n2 + 1. It follows that g(n) = O(n3).

2. Distinct sums modulo n

In this section we prove a theorem that is the foundation of our tree embedding technique

appearing in the next section. First we introduce some notation.

Suppose n is a positive integer. We use [n] as an abbreviation for the set {1, . . . , n}. The

set of permutations of [n] is denoted by Sn. A permutation π ∈ Sn is viewed as the linear

arrangement π(1), π(2), . . . , π(n). We call this sequence the sequence representation of π. We

shall omit commas from this sequence when doing so produces no ambiguity. For i, j ∈ [n]

and π ∈ Sn, define the distance from i to j in π to be dπ(i, j) := π−1(j) − π−1(i). Clearly

dπ(i, j) = −dπ(j, i) and −(n − 1) 6 dπ(i, j) 6 n − 1. For example, if π is the permutation

532687941, then dπ(5, 6) = 3, whereas dπ(1, 8) = −4.

A basic problem we address in this section is the following. Suppose that k is a positive

integer and that we are given, for every unordered pair of elements {i, j} from [k], a

number fij that represents a ‘forbidden distance’ between i and j. Is there a permutation

π ∈ Sk that avoids all of these forbidden distances? The answer is ‘yes’, as Lemma 2.2

shows. To prove this we make use of the following result.
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Theorem 2.1 (Alon [1]). Let F be an arbitrary field, and let f = f(x1, . . . , xn) be a poly-

nomial in F[x1, . . . , xn]. Suppose the degree of f is
∑n

i=1 ti, where each ti is a nonnegative

integer. If the coefficient of
∏n

i=1 x
ti
i in f is nonzero, then, for any subsets S1, S2, . . . , Sn of F

satisfying |Si| > ti, there are elements s1 ∈ S1, s2 ∈ S2, . . . , sn ∈ Sn such that

f(s1, s2, . . . , sn) 6= 0.

Our first lemma is a direct application of Theorem 2.1. We first proved Lemma 2.2

using the Alon–Tarsi lemma (see [3]) and multilinear polynomials. We then realized that

our argument could be simplified if we used Theorem 2.1; this resulted in our proofs

being very similar to those given in [2].

Lemma 2.2. For any positive integer k and any assignment of forbidden distances fij to

the unordered pairs from [k], there exists a permutation π ∈ Sk such that

dπ(i, j) 6= fij , for all 1 6 i < j 6 k. (2.1)

Proof. Introduce k variables xi for 1 6 i 6 k, where xi represents the position that

element i occupies in the sequence representation of a permutation of [k]. Now consider

the following polynomial with k variables over the reals:

P (x1, . . . , xk) =
∏

16i<j6k

(xi − xj)
∏

16i<j6k

((xi − xj)− fij). (2.2)

There is a permutation π ∈ Sk satisfying (2.1) if and only if P (x1, . . . , xk) 6= 0 for some

(x1, . . . , xk) ∈ {1, . . . , k}k .
The coefficient of the monomial

∏k
i=1 x

k−1
i in P is the same as the coefficient of this

monomial in the polynomial∏
16i<j6k

(xi − xj)
∏

16i<j6k

(xi − xj)

because the total degree of P is k(k − 1). Applying the Vandermonde identity∏
16i<j6k

(xi − xj) =
∑
π∈Sk

(−1)sign(π)
k∏
i=1

xk−iπ(i) ,

one finds that this coefficient is (−1)(
k
2)k!.

Applying Theorem 2.1 to P with S1 = S2 = · · · = Sk = [k], it follows that there is some

(x1, . . . , xk) ∈ [k]k such that P (x1, x2, . . . , xk) 6= 0, which implies the existence of the desired

permutation.

Lemma 2.2 is sharp in the sense that, if fij = 1 for all 1 6 i < j 6 k, then a

unique permutation π satisfies (2.1), namely the permutation with sequence representation

k(k − 1) · · · 21.

Lemma 2.2 can be viewed as a generalization of Redei’s theorem. Recall that a tourna-

ment is a complete graph whose edges have all been given an orientation. Redei’s theorem

states that every tournament contains a directed path visiting each vertex exactly once. If
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one considers the directed edge uv in the tournament as equivalent to forbidding the dis-

tance fvu = 1, then Redei’s theorem can be derived from Lemma 2.2. Essentially, Redei’s

theorem is equivalent to Lemma 2.2 in which the forbidden distances are restricted to

values from the set {−1, 0, 1}. Despite the fact that Redei’s theorem has relatively straight-

forward combinatorial proofs, we have not found a combinatorial proof of Lemma 2.2,

even in the case in which the forbidden distances are restricted to values from the set

{−2,−1, 0, 1, 2}.
A strengthening of Lemma 2.2 is possible using an observation that Alon [2] made, that

the coefficient (−1)(
k
2)k! of the monomial

∏k
i=1 x

k−1
i in the expansion of (2.2) is nonzero

modulo a prime p. We include the argument here for completeness. Let Zn denote the

group of integers modulo n under addition. A function f : [k]× [k]→ Zn is alternating if

f(i, j) ≡ −f(j, i) (mod n), for all i, j ∈ [k].

Lemma 2.3. For any positive integers k and p satisfying k < p, p a prime, and any alter-

nating function f : [k]× [k]→ Zp, there exists a permutation π ∈ Sk such that

dπ(i, j) 6≡ f(i, j) (mod p), for all distinct i, j ∈ [k]. (2.3)

Proof. As in the previous proof, introduce k variables xi for 1 6 i 6 k, where xi represents

the position that element i occupies in the sequence representation of a permutation of

[k]. Now consider the following polynomial over the field Zp:

P (x1, . . . , xk) =
∏

16i<j6k

(xi − xj)
∏

16i<j6k

((xi − xj)− f(i, j)). (2.4)

There is a permutation π ∈ Sk satisfying (2.3) if and only if

P (x1, . . . , xk) 6≡ 0 (mod p),

for some (x1, . . . , xk) ∈ {1, . . . , k}k .
Now P 6≡ 0 because the coefficient of the monomial

∏k
i=1 x

k−1
i in P1 is (−1)(

k
2)k! which is

not zero modulo p. It follows from Theorem 2.1 that there is some (x1, . . . , xk) ∈ {1, . . . , k}k
such that P (x1, . . . , xk) 6≡ 0 (mod p).

We conjecture the following strengthening of Lemma 2.3.

Conjecture 2.4. For any positive integers k and n satisfying k < n, and any alternating

function f : [k]× [k]→ Zn, there exists a permutation π ∈ Sk such that

dπ(i, j) 6≡ f(i, j) (mod n), for all distinct i, j ∈ [k].

Conjecture 2.4, if true, would imply Conjecture 1.1 (by appropriately modifying the

proof of Theorem 2.5). The following is the main tool used in the next section.

Theorem 2.5. Let n and k be positive integers satisfying 2k 6 n + 1. For any sequence

a1, a2, . . . , ak of not necessarily distinct elements of Zn, there exists a permutation π ∈ Sk
such that the elements aπ(i) + i are all distinct modulo n.
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Proof. It suffices to prove that there exists a permutation π ∈ Sk such that

ai − aj + π(i)− π(j) 6≡ 0 (mod n), for all i < j.

Because |π(i)− π(j)| < n/2 for all π ∈ Sk , there is a unique multiple nij of n such that, for

any π, if ai − aj + π(i) − π(j) is a multiple of n, then it is equal to nij . Lemma 2.2 now

guarantees the desired permutation.

We close this section with some conjectures. For a = (a1, . . . , ak) ∈ Zk
n , let Φ (n, a) denote

the number of permutations π ∈ Sk such that the sums aπ(i) + i are all distinct modulo n.

Define N (n, k) = mina∈Zk
n

Φ (n, a). Note that Conjecture 1.1 is equivalent to proving that

N (n, k) > 0, for all positive integers k and n satisfying k < n. We conjecture that N(n, k) is

monotone for fixed n; that is, N(n, k) 6 N(n, k+ 1) for all n and k satisfying 0 < k < n−1.

We also conjecture that N(n, k) is monotone for fixed k; that is, N(n, k) 6 N(n+ 1, k), for

all n and k satisfying 0 < k < n. In addition, we make these two conjectures about specific

values of N(n, k).

Conjecture 2.6. If n is sufficiently large with respect to k, then

N(n, k) =

{
( k

2
!)2, if k is even,

d k
2
e(b k

2
c!)2, if k is odd.

Note that, if true, Conjecture 2.6 would be sharp because the vector

(0, . . . , 0︸ ︷︷ ︸
b k2 c times

, n− 1, . . . , n− 1︸ ︷︷ ︸
d k2 e times

)

achieves the bound.

It is necessary to include the condition that n is sufficiently large with respect to k

because, when k is near n, the values of N(n, k) are smaller than those conjectured in

Conjecture 2.6 (see Table 1).

Table 1 Values of N(n, k) for 3 6 n 6 9

n\k 2 3 4 5 6 7 8

3 1 - - - - - -

4 1 2 - - - - -

5 1 2 3 - - - -

6 1 2 4 8 - - -

7 1 2 4 12 19 - -

8 1 2 4 12 32 64 -

9 1 2 4 12 36 144 225

In light of the apparent monotonicity of N(n, k), a particularly interesting case occurs

when k = n− 1.
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Conjecture 2.7. For n > 3, N(n, n − 1) is equal to the number of cyclic neofields of order

n+ 1.

We do not define cyclic neofields here, but refer the reader to the book by Hsu [5].

3. A decomposition

In this section we show how to decompose a ‘small’ complete graph into edge-disjoint

copies of a given tree. Our decomposition method relies heavily on Theorem 2.5.

Let G = (V , E) be a connected graph. The distance between the vertex u and the

vertex v in G, denoted dG(u, v), is the number of edges in a shortest path connecting u

and v. Recall that the eccentricity of the vertex v ∈ V (G), denoted e(v), is defined to be

max{dG(u, v) : u ∈ V }. The radius of G, r(G) is the minimum eccentricity of its vertices. A

vertex v is a central vertex of G if e(v) = r(G).

Theorem 3.1. If T is a tree with n edges and radius r, then T decomposes Kp, for some

p 6 32(2r + 4)n2 + 1.

Proof. Let T be a tree that has n edges and radius r. Let v be a central vertex of T and

x a vertex of T that is the maximum distance from v. Consider a new tree T ′ obtained

from two disjoint copies T1 and T2 of T by identifying x1 and v2. Note that T ′ has 2n

edges and the eccentricity of v1 in T ′ is 2r. Clearly T decomposes a given complete graph

if T ′ does. This initial tree-duplicating step is required to guarantee that we work with a

tree in which, for all k, the number of edges of the tree at distance k from v1 is at most

half the total number of edges.

Let C4s(t) denote the graph obtained from the cycle C4s by blowing up each vertex

to t vertices. Because C4s(t) is isomorphic to the weak tensor product of C4s and Kt,t, it

follows from work by Snevily [9] and Rosa [8] that C4s(t) decomposes the complete graph

K8st2+1. We are interested in C4s(2n), where s is the smallest positive integer satisfying

4s > 2r + 1. Because C4s(2n) decomposes the complete graph K32sn2+1, it suffices to show

that T ′ decomposes C4s(2n).

The vertices of C4s(2n) may be viewed as ordered pairs (i, j) (0 6 i < 2n, 0 6 j < 4s)

such that edges are pairs (i, j)(i′, j ′) satisfying |j− j ′| ≡ 1 (mod 4s). Edges can naturally be

thought of as having an angle. By an embedding of T into C4s(2n) we mean an injection

of V (T ) into V (C4s(2n) that preserves adjacency.

To show T ′ decomposes C4s(2n), it is enough to demonstrate that one can embed T ′
into C4s(2n) so that every edge has a different angle, since the 4s × 2n rotations of this

embedding then clearly decompose C4s(2n). The remainder of the proof demonstrates how

to perform this embedding of T ′.
We view the tree T ′ as being rooted at v1. Define the level sets Vi = {u ∈ V (T ′) :

d(u, v1) = i}, for i = 0, . . . , 2r. By definition, each Vi is nonempty and the Vis partition the

vertices of T ′. Because T ′ is a tree, each Vi induces an independent set. In particular,

edges of T ′ have endpoints in consecutive level sets. For i = 1, . . . , 2r, let Ei denote the set
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of edges in the graph induced by Vi−1 ∪ Vi, and set ei = |Ei|. Clearly ei > 0, for all i, and∑2r
i=1 ei = 2n. By construction, we have ei 6 n, for all i.

For i = 1, . . . , 2r, define the label set Li to be the set of ei consecutive elements of

Z2n beginning at mi :=
∑i−1

j=1 ej (where m1 = 0); so L1 = {0, . . . , e1 − 1} and Li :=

{mi, . . . , mi + ei − 1}. By definition the Lis form a partition of {0, . . . , 2n − 1}. For any

f : V (T ′)→ Z2n, define f(Ei) = {f(b)− f(a) mod 2n : ab ∈ Ei, a ∈ Vi−1, b ∈ Vi}.
The desired embedding of T ′ will follow from a labelling f : V (T ′)→ Z2n satisfying all

of the following:

(a) f(v1) = 0,

(b) f(Ei) = Li, for all i = 1, . . . , 2r,

(c) f|Vi is one-to-one, for all i = 1, . . . , 2r.

We construct f by induction on i. Initially f(v1) = 0. Now suppose that f has been defined

on all level sets V0, . . . , Vi−1, for some 1 6 i < 2r, so that (a), (b) and (c) are all satisfied

on the current domain of f. We must now show how to extend f to Vi. For convenience

set k = ei 6 n. Consider the edges Ei = {xjyj}kj=1. The sequence f(x1), . . . , f(xk) consists

of not necessarily distinct values of Z2n. Because k 6 n, Theorem 2.5 guarantees a

permutation π ∈ Sk such that f(xπ(i)) + i are all distinct modulo 2n. It follows that there

exists a permutation b1, . . . , bk of Li such that f(xj) + bj are all distinct modulo 2n. Define

f(yj) = f(xj) + bj , for j = 1, . . . , k. It is clear that f now satisfies (a), (b) and (c) on the

level sets V0, . . . , Vi This completes the definition of f.

The desired embedding of T ′ can be described by defining g : V (T ′) → V (C4s(2n))

according to the rule g(u) := (f(u), dT ′(u, v1)). Observe that property (c) and 4s > 2r + 1

guarantee that g is one-to-one, property (a) implies that g(v1) = (0, 0), and property (b)

implies that the labels on the edges connecting the vertices {g(u)}u∈Vi−1
and {g(u)}u∈Vi are

precisely the labels in Li, for i = 1, . . . , 2r, so all edges have distinct angles.

The bounds in Theorem 3.1 can be improved by a multiplicative constant using an

unpublished result of Häggkvist [6] that obviates the initial tree duplicating step of the

proof.
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