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Abstract. LetY be aconvex set iR defined by polynomial inequalities and equations of
degree at most > 2 with integer coefficients of binary length at mbstVe show that if the

set of optimal solutions of the integer programming problem{miny = (y1, ..., k) €

Y NZ¥} is not empty, then the problem has an optimal soluyibe Y NZ¥ of binary length
1d°« For fixedk, our bound implies a polynomial-time algorithm for computing an
optimal integral solutiory*. In particular, we extend Lenstra’s theorem on the polynomial-
time solvability of linear integer programming in fixed dimension to semidefinite integer
programming.

1. Introduction

Let F(y) be a first-order formula over the reals, i.e., an expression of the form

(QuxH e R™) ... (Qux[ e R™) P(y, x™M, ... xlh, (1)
where:
e V= (Y1,..., Y € RKis the vector of free variables;
e eachQ;,i =1,..., w, is one of the quantifier3 or v;
e P(y,xlH ... x[“l)is a Boolean function ofm atomic predicates; (y, x1, ...,
x“ly A; 0,1 =1, ..., m, inwhichA; € {>, <, =}, and theg;’s are polynomials

of degree at most > 2 with integer coefficients of binary size at mbst

* The first author was supported in part by NSF Grant CCR-9618796 and ONR Grant N00014-J-1375,
and the second author was supported in part by NSF Grant CCR-9618796, EU ESPRIT LTR Project 20244
(ALCOM-IT), and a DIMACS Graduate Student Fellowship.
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We calld andl thedegreeandbit lengthof F (y).
LetY = {y € R* | F(y)trugl be the solution set of (1). Consider the integer
programming problem

Yo =min{yk |y = (Y1, ..., Yk) € Y NZ). 2

Note that for the formuléyx,1 = O)AF(ya, ..., Yk), the(k+1)-dimensional problem
(2) is equivalent to computing an integral point (yi, ..., V) € Y.
Our aim in this paper is to prove the following two results.

Theorem 1.1. Suppose that Y is convdk the set of optimal solutions @R) is not
emptythen problen(2) has an optimal solution’y= (yi, ..., y§) € Y N ZX such that

logmax|y;]. ... lygl} = 1d OO M=0M), &)

(We assume thayn...,n, > 1,T1°_; =1, andlog0 = —o0c.)

Theorem 1.2. Foranyinputformula Ky) whose solution setis conyéixe integer opti-
mization probleng2) can be solved ind® (md) OO time with(md) ©® T, 0M)
evaluations of the Boolean function: Rtrue, falsg™ — {true false. In particular, if
the number k+ Y, n; of free and quantified variables is fixgoroblem(2) can be
solved inpoly, (I, m, d) time withpoly,(m, d) evaluations of Pwherepoly; andpoly,
are some polynomials

Theorem 1.2 is a generalization of the well-known result of Lenstra [14] on the
polynomial-time solvability of linear integer programming in fixed dimension. We men-
tion three other special cases of Theorem 1.2.

Computing Integral Points in Algebraic PolyhedralLenstra’s theorem states that, for
each fixed, there exists a polynomial-time algorithm that, given a rational polyhedron

k
Y= yeR"IZaajyjsaao,i=l,...,m}, 4
=1

either finds an integral point € Y, or determines that no such point exists. Theorem 1.2
can be used to extend Lenstra’s result to algebraic polyhedra. Specifically, suppose that
each ofthe input coefficients, i =1,...,m; j =0,...,K, isarealalgebraic number
defined by some quantifier-free univariate formGig(t):

aj = {t e R| Gjj (1) trug}.

For instance, ify; is a root of a given univariate polynomigj; (t) € Z[t], anda; is
separated from all other real rootsgf(t) by a given rational intervaby; , gij), we have

Gij(t) = (@M =0 A (ij <t < Bij).
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Another way to characteriz®; is to use the Thom encoding

deggij)—1
Gih=@m=0 A (@020, Ase(> < =),
s=1

which definesy; by specifying the signs of all derivatives@f (t) ata;j (see Section 2.2).
Consider the formula

m k k
VXERK-H':/\([ Gij(Xj)]=>Zijj§Xo)}.
j=0 j=1

i=1

This formula contains R+ 1 free and quantified variables, and its solution set is the
polyhedron (4). Hence we conclude that Lenstra’s theorem holds for arbitrary algebraic
polyhedra in bounded dimension.

Convex and Quasi-Convex Polynomial Programniir®], [3],[2]. Letgi(y1, ..., ) €
Zly1,...,¥], 1 =0,..., m, be given convex quadratic, convex polynomial, or quasi-
convex polynomial functions. Theorem 1.2 implies that, for each fieithe integer
programming problem

min{Go(Ya, .- Yi) 1 G (Y. ..., Y <0, i =1,....m, (yi,..., ) € Z")

can be solved in polynomial time.

Semidefinite Integer ProgrammingTheorem 1.2 applies to a wider class of semialge-
braic sets than those defined by systems of quasi-convex polynomial inequalities. As an
illustration, consider the formula

m
Vx eRH/\(m Ly < bi)} A [(detly — x1) # 0) v (X 20)]},
i=1

wherey e RKKk+D/2 js g real symmetrik x k matrix, as, ..., an are given integer
symmetric matricedy,, ..., by, are given integerd, is the identity matrix, and -y =
tracgay) is the Frobenius inner product on the space of symmetric matrices. The convex
solution set of this formula consists of all symmetric positive semidefinite matyices
such thatg; -y < by, i = 1,..., m. Hence the following generalization of Lenstra’s
theorem to integer semidefinite programming:

Corollary 1.3. For each fixed kthere exists a polynomial-time algorithm which finds
an integer symmetric positive semidefinite Ik matrix y satisfying a given system of
linearinequalitiesa-y < by,i = 1, ..., m, or decides that no such matrix exis@&ven

a symmetric matrix @e Z***+9/2, this polynomial-time algorithm can also solve the
integer semidefinite programming problem

minfag-yla -y<bi=1...,m, ye zk+D/2 positive semidefinite
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Note that Corollary 1.3 also holds for systems of strict/amehonstrict linear inequalities
with algebraic coefficients and for positive definite aodsemidefinite matriceg.

Finally, we mention that Barvinok [4] gives a polynomial-time algorithm for counting
integral points in a polytope of fixed dimension. This result should be contrasted with the
observation that computing the numidéga, b) of integral points in the two-dimensional
convex region{(y;,¥2) | 1 < y1 <a,1=<y, <b vy, > b}is at least as hard as
factoring (becaus@l(a, b) — N(a, b 4+ 1) + a = the number of integer divisors bfin
the interval [1 a]).

The paper is organized as follows. Section 2 reviews some results related to decision
methods for the first-order theory of the reals and Kronecker’s theorem on simultaneous
Diophantine approximation. Section 3 contains the proof of Theorem 1.1. First, in The-
orem 3.1, we consider an arbitrary formula with one existential quantifier and convex
full-dimensional solution set < RX. We show by induction ok that eithery contains
a small integral interior point, oY can be “sandwiched” between two parallel hyper-
planes defined by linear equations with small integral coefficien¥.i¢fbounded, the
statement follows from the bound on real solutions of first-order formulae due to Basu
etal. [6]. Assuming thaY is unbounded, we construct algebraic vecfis . ., s € RX
of low degree and small height such tiat . . ., 8s belong to the recession coeof
Y and generate the linear subspace spannedl. fjhen we apply Kronecker’s theorem
to {B1. ..., Bs). In particular, if the only integral point in lin.hylBy, ..., Bs}* isu =0,
the size of an interior integral point i can be bounded by a quantitative version of
Kronecker's theorem developed in Section 2. Otherwise, we use a unimodular trans-
formation and projection oY to finish the proof of Theorem 3.1 by induction on the
dimension of the lattic&* N lin.hull{1, . .., Bs}*. Next, we generalize Theorem 3.1 to
formulae whose convex solution séts not necessarily full-dimensional and argue that
eitherY has a small integral solution, @ N Y is contained between two parallel hyper-
planes defined by small integral coefficients. This easily implies Theorem 1.1. Finally,
in Section 4 we derive the complexity bounds of Theorem 1.2 by using the bound of
Theorem 1.1 along with a straightforward adaptation of Lenstra’s integer programming
algorithm for convex semialgebaic sets.

2. Preliminaries

2.1. Notation

Throughout the paper all vectors are row vectors, unless specified otherwise. For a real
vectoré = (&1, ..., &), we denote by

« 1/2
&1 = max(lél. ... &), Mh=(§ﬁﬁ
i=1

thel . andl,-norms oft, respectively. The,,-distance frong to the latticeZX is denoted
by

€]l = min{|§ — x|: x € Z¥}.
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In particular, if¢ is a real number, thefé|| = min{]§ — x|: x = 0,+1,£2,...}
is the distance fron§ to the nearest integer. H(y1, ..., Yk) = > &, Vi - V& €
Z[y1, ..., Y« is a polynomial with integral coefficients, théin| = max|a;,..;, | denotes
the height oth.

2.2. Computing Algebraic Solutions for First-Order Formulae

It is well known that over the reals, any first-order formiay) is equivalent to a
quantifier-free formula

I J
\ Aty 4 0. QP
i=1j=1

wherehij (y) € Z[y, ..., ¥] are polynomials with integer coefficients and; e

{<, =}. The following bounds on the degrees and binary lengths of the polynomials
hij (y) are due to Basu et al. [6].

Proposition 2.1(see Theorem 1 of [6]). Each formula(1) can be transformed into an
equivalent quantifier-free formul@F) such that

| < mEHDIL 0D g kDT 00 J < mlan+D g, om)

deghyj (y) < d™=0™ loglhyj| < 1d*DLOm),

The above transformation requiresfh iz (i +D gk+DIZ, 0M) grithmetic operations
and evaluations of the Boolean function P and it can be carried out oV Idi= 0.
bit numbers

Proposition 2.2 below is implicit in [6].

Proposition 2.2. Let Y be the solution set of a syst¢r\1ﬂ=1(hj (y) Aj 0) of J poly-
nomial equations and inequalitiegrhere h(y) € Z[y1,.... W], j = 1,...,J, are
polynomials of degree at most B 2 with coefficients of binary length at most In
J1DO® grithmetic operations over L B%-bit numbers one can determine whether
Y # ¢, and, if so, find a nontrivial polynomial Gt) € Z[t], avectoro € {0, £1}9¢9®)~1,
and k+ 1 polynomials Qt), Pi(t), ..., P«(t) € Z[t] such that

max{deg G), deg Q), deg Py), ..., deg P} = O(D)¥,

logmax(|Gl,|Ql, [Py, ..., P} = LDO®,
and
(B B0y
Q) " Q) ’

whered is a real algebraic number satisfying the conditions

G®) =0, (sign(G'(9)), . .., sign(G¥®I®-Dg)) = . (5)
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Note that conditions (5) characterizeThese conditions, known as Thom’s encoding
of 6, defined even if G(t) is a reducible polynomial. On the other hand, sii&g)
can be factored in polynomial time [13], and the sign of any of its factofiscain also
be determined in polynomial time, the minimal polynomigit) € Z[t] for 6 can be
computed in time polynomial in dé@) and logG|. Furthermore, it is well known that
log|g| < log|G| + O(degG)) (see, e.g., [15]). Since the polynomi@i-i(t) modg(t)
can be computed in polynomial time, and the binary length of its rational coefficients
can be bounded via subresultants ®ydeg g Q) log(|g|| Q| deggQ))) bits (see, e.g.,
[9] and [7]), Propositions 2.1 and 2.2 readily imply the following result.

Corollary 2.3. There is an algorithm thatgiven a first-order formula Ey), either
determines that Fy) has no real solutioyor finds an irreducible polynomial@) € Z[t],
an integer g# 0, and k polynomials ft), ..., pk(t) € Z[t] such that

1
y= a(pl(Q), c (@) €, 9 =0, (6)

degpy), ..., deg po) < degg) = dOWM=OM)
logmax(|gl, 1q], |pal, - - ., | pk|} = 1d COM=LOM)

where Y is the solution set of(§). The algorithm runs in ?® (md)CRMLOM) time
and requiregmd)°®TZ.0M) evaluations of P

Remark 2.4. Suppose that the solution setlefy) is homogeneous, i.ery € Y for
ally € Y andx > 0. Then in Corollary 2.3 we can chooge= 1, and assume without
loss of generality that is an algebraic integer: lead.coefft) = 1.
2.3. Inscribing a Box into a Full-Dimensional Semialgebraic Set
Proposition 2.5 below is a restatement of Theorems 5 and 6 of [6].
Proposition 2.5. LetY # ¢ be the solution set of a system of strict polynomial inequal-
ities /\f:l (hj(y) < 0), where h(y) € Z[ys, ..., %], j =1,...,J, are polynomials
of degree at most D- 2 with coefficients of binary length at most Then Y contains a
box{y € RX: |y — «| < 1/R} such thatie| < R andlogR = L D®®,

This result along with Proposition 2.1 leads to the following bound.
Corollary 2.6. Ifthe solution setY of a formula(fy) is full-dimensionglthen there is
aboxB = {y € R: ly—a| < 1/R} C Y suchthate| < R andlog R = 1d 90T, 0M)

2.4. Kronecker’'s Theorem on Simultaneous Diophantine Approximations

Letps, ..., Bs be given vectors ilR¥. The classical Kronecker theorem on simultaneous
Diophantine approximations asserts tfuatevery real vector: € R¥ the following two
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statements are equivalent

(i) Foranye > Othereisan x= (Xg, ..., Xs) € Z° such thaﬂ|a+zis=1 XBil <e.
(i) Foreveryu= (uy,...,u)" € ZXif |fwul = - -- = ||Bsul| = Othen|au| = 0.

(See, e.g., [8].) The fact that (i) implies (ii) is trivial. Proposition 2.7 below can be
regarded as a quantitative version of the reverse implication.

Proposition 2.7[8, Chapter V, Theorem XVII, Part B]. Letar € R¥ be a given vector
and let X anck be given positive number& sufficient condition that

S
at Y xpi|<e XX @)
i=1
holds for some x ZS is that
loull <y maxe|ul, X]||Bull, ..., X]IBsull} 8

forallu e ZX with y = 21/[(k 4 s)!]2.

Since|jau|| < % for all @ andu, from Proposition 2.7 it follows that (7) can be
satisfied for any provided that the right-hand side of (8) is at IeésSince this is so
for |u| > 1/(y¢), we conclude that for every € R¥ there is arx e Z® that satisfies (7)
with

1
X =

whereB;,,, = {u € 7ZX | 0 < |ul < 1/(ye)} (assuming the finiteness of). On

replacingX anda by 2X anda + X Y5, Bi, respectively, it follows that the conditions

o +inﬂi
i=1

<e, O<x <X, i=1...,s

2
X=— -
min{max ||Bjull 1 u € Bl/yg}

9)
can be satisfied by some integraprovided that the expression f&rin (9) is finite.

Corollary 2.8. Suppose that the only integral solution of the homogeneous system of

linear equationg8iu = --- = Bsu = 0is u = 0. Then for anyx € R* and anys > 0
there is a real vectok = (A4, ..., As) such that
S
06+Z)»i/3i <e, O<x <A, i=1...5
i=1
where
2

(10

~ min{max|Bjul : u € Bl
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Proof.  First, A is finite because the s& ,, contains finitely many integral vectors
u # 0 for each of which(B1u, ..., Bsu) € R%\{0}. Next, letA = X, wherex € Z° and
t > 0is a fixed positive parameter. Then finding a solutiofjdot+ Y>>, AiBill < ¢
is equivalent to solvinda + t >_;_, Xi B || < ¢ for integralx. For z sufficiently small,

[zgiull = r|Biul foralli =1,...,sandu € B;,,. Hencella + T XiBill <e
can be solved by an integralsuch that O< x; < A/t (see (9) and (10)). This implies
O<ii=tXx <Aforali=1,...,s. O

In what follows we will be dealing with algebraic vectgss, . . ., Bs.

Corollary 2.9. Letps, ..., Bs € R* satisfy the assumption of Corollag/8. Suppose
that the components @4, . . ., Bs are algebraic integers represented in the fof):

p1 D-1
( : ) =Y 0B,  9@©) =0, 11
j=0

Bs

where gt) = tP+g;tP~14...4+gp € Z[t]isanirreducible polynomial of degree,Bnd
Bo, ..., Bp_; areintegral sx k matrices such thabg max|g|, |Bol, ..., |Bp-1|} < L.
Then the parametes in Corollary 2.8 can be bounded as follows

logA = O (D[L +log(D/¢) + klogk]) .

Proof. Sincethe powers ®, ..., P! are linearly independent over the rationals, and
the matricesB; are integral, each linear equatigru = 0, u € ZX, is equivalent to the
system ofD Diophantine equation8g[iJu = --- = Bp_4[iJu = 0, u € ZX, where
B;[i] is theith row of the matrixB;. This means that the assumption of Corollary 2.8
holds for a subsystem ¢, . . ., Bs consisting of at mosk vectors. We can thus assume
thats < k, and therefore log/y) = log([(k + 9)!]?/2<1) = O(klogk). Letv =
min{max|Biul : u € By, }; thenv = |g-u*| for somei* € {1,...,s}andu* € By ..

By (11), v = v(@), wherewv(t) € Z[t] is a polynomial of heightv| < k2'/(ye).
Consider the univariate polynomidl(t) = ]’[J-D:l(t —v(6)), whereb, = 0,65, ...,0p

are the conjugates . It is easy to see that the coefficientsloft) are integral, and
that

D D D-1
U < 2° ] max. [u(@)]} < (2D|v])° ( max(1, |ei|}) .
i= i=1

=1 i=

Sinced., ..., Op are the roots of the polynomiglt), by Landau’s inequality [15] we
have[ T2, max(1, 6]} < (1+ |l + - + |gp[H)Y2 < (D + 1)¥?g]. HencelU| <
(191|v|D)°® . However,y = v(0) is a positive root otJ (t) € Z[t], which implies that
v>1/(1+|U]J) (see, e.g., [15]). Consequently, lag= log(2/v) = O(D[L +log D +
log(k/(ye))]). O
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3. Proof of Theorem 1.1
We start with the following result.

Theorem 3.1. Let®(y) = Ix € R"P(y, x) be a formula with one existential quan-
tifier, where Ry, X) is a Boolean function of m polynomial predicategyg x) A; 0 of
degree d> 2 with integral coefficients of binary length $uppose that the solution set
Y C R¥ of ®(y) is convex and full-dimensional

(i) FZXNintY # @, then Y contains an interior integral poigtsuch that
logly| < 1de€™ 0, (12

where c¢> 0is an absolute constant
(i) If ZXNintY = @, then there is an integral vector & (ay, ..., a)" # 0and
integers h, b, such that

Y C{yeR"|b; < ya< by, 13
logmax{al, |by], [b|} < 1K O+, (14)

Proof of Theoren3.1. We prove the theorem by induction o= dimY.

The One-Dimensional Cadeork = 1the sel isaninterval. IfY = R, we have nothing
to prove. Otherwis¢’ has a finite endpoint. From Proposition 2.1 it follows that
satisfies a nontrivial polynomial equatitity) = 0 with integral coefficients of binary
lengthld ©™, Since the absolute value of any roothdf/) = 0 does not exceed-£ |h|,
we have logx| = Id°™_ IfintY NZ # @, then|y — «| < 1 for somey € intY N Z,
which gives (12). Otherwise the length¥fis at most 1, which implies (13) and (14).

For convenience, we separately consider another special case of Theorem 3.1.
The Bounded Cas&uppose that is bounded, and consider the formula

k

V(y.x) e RMI=Px.y) v A&y <0
j=1

The solution set of this formula is the intervat [ +00), wherer* = sup{|y| : y € Y} <
+o00. By Proposition 2.1r* satisfies a univariate polynomial equation with integral
coefficients of binary lengttd ©&*"  Hence

logly| = IdOk+m forall yeY, (15)

which implies the theorem.

We assume henceforth that divh= k > 2, and that the convex full-dimensional set
Y is unbounded.

Constructing a Spanning Set for the Recession Cone@byisider the recession cone of
Y,i.e.,these€C = {y e R* |« + 1y € Y for all A > 0}, whereu is an arbitrary interior
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point of Y. (It is well known that this definition is invariant with respectdos intY.)
Let £ = lin.hull C ands = dim L. SinceY is unboundeds € {1, ..., k}. A set ofs
vectorsfy, ..., Bs € C is called aspanning set for Gf lin.hull {84, ..., Bs} = L.

Lemma 3.2. The recession cone C has an algebraic integer spanningset ., s
of the form

P D-1
=3¢, g6 =0 (16)
Bs =0

where gt) =tP 4+ g;t°~1 + ... + gp € Z[t] is an irreducible polynomial of degree

D= dO(sk(n+Iogs))’ (17)
and By, ..., Bp_; are integral sx k matrices such that
logmax|gl, [Bol, . ... |Bp_1[} = Id OknHoas), (18)

Proof of Lemm&3.2. By Corollary 2.6, the full-dimensional s¥tcontains a rational
interior pointp/q = (p1/4, ..., Pk/q) such thatpy, ..., px andq > 1 are integers of
binary lengtnd ™. The recession cor@ is the solution set of the formula

VAeR{(A<0) Vv O(p/q+ry)}. (19

The change of variableg — p/q + Ay transforms each of then atomic polyno-
mial predicateggi(y, X) A;j O into the polynomial relatiorG; (1, y, X) A; 0, where
Gi(h, Y, X) =q%G (p/g+1ry, X) € Z[r, y, X]is a polynomial with integral coefficients
of binary lengthid ©&™ _ In particular, (19) can be written as

VA eR)@xeRH{(A <0) Vv P(A,Y, X}, (20

whereP, (1, y, X) is obtained fromP(y, x) by the substitutiom; (y, X) — Gi (%, Y, X).
By Proposition 2.1, (20) can be transformed into an equivalent quantifier-free formula
C(y) of degreed®™ and bit lengtdd O™,

Givens vectorsgy, ..., Bs € R¥, denote byG(B1, . . ., Bs) their Gram matrixGi; =
Bi ﬂjT. By definition, {81, ..., Bs} IS a spanning set for the recession cdahef and
only if C(B1) A --- AC(Bs) A (det G(B1,...,Bs) # 0). This quantifier-free for-
mula hassk variables and consists of polynomial relations of degree{af3®, 2s} =
dC+ogs) with integral coefficients of binary lengtid ©*™ . Since the set of all span-
ning vectors{g, ..., Bs} is homogeneous, the lemma follows from Corollary 2.3 and
Remark 2.4. O

We continue with the proof of Theorem 3.1.

Let M = £+ = {u e R¥| iu = --- = Bsu = O} be the orthogonal complement of
L, i.e., the set of all linear forms that vanish orC. Denote byM, = ZX N M the set
of all integral points inM. By Lemma 3.2M; = {ue ZX | fyu = --- = Bsu = O} is

a lattice of the form
M, ={ueZ| Mu=0}, (21)
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whereM is an integralk — p) x k matrix of full row rank such that
log|M| = |d ©Skn+logs) (22)

Note thatp, the dimension ofM,, is bounded by dimM = k — s. Hencep €
{0,1, ...,k —1}. We now split the proof into two casep:= 0 andp > 1.

The Kronecker Cas&uppose thgy = 0. Then the only integral solutiongiu = - - . =
Bsu = 0 isu = 0. Hence the recession directiofig ..., Bs satisfy the assumption
of Corollary 2.9 withD = dO®kn+ogs) gnd L = |dOskin+logs) By Corollary 2.6,
Y contains an open bo® = {y € R : |y — «| < 1/R} such thatja| < R and
logR = Id°k" SinceB C intY,andBy, ..., Bs € C,we have3+ > > A C Y for
all nonnegativei1, . .., As. Applying Corollary 2.9 withe = (2R)~! we conclude that
there are nonnegative scalars . . ., A% for which the conditions

S
Zkﬂ<B+ZATﬂi>7&®, O<A <A, i=1...5
i=1

can be satisfied with A such that
logA = O (D[L + log(D/¢) + klogk]) = | g O(skin+logs))

Lety be an (interior) integral pointifi+>_>_, A*g;. Since the polynomia(t) in (16) has
integral coefficients of binary lengtt ©Sk+109s) e have logd| = 1d Ok +109s) The
latter bound along with (17) and (18) shows thatlog fhax, . . . , |Bs|} = |d OSkntlogs)
Consequently, log| = [dOGkn+ods) Sinces < k, it follows that logy| =
|dOK*(n+ogk)  This means that, fop = 0, ®(y) has an interior integral solution that
satisfies (12).

Induction Let p = dimM, > 1. Thenp € {1, ...,k — s}, wheres = dimC > 1.
By (21), M, = {u € Z* | Mu = 0} for some integralk — p) x k matrix M of full
row rank. The latticeM, is invariant under all transformatiodd — V M, whereV is
a nondegenerate rational matrix of ortter p. Next, for any unimodular matrik) of
orderk, the change of variables

y=yu (23)

transforms® (y) into the formula®’(y’) = 3Ix € R"P(y'U, x) with the solution set
Y’ = YU~ By unimodularity,Y’ N Z¥ = (Y N Z¥)U ~1, that is, (23) gives a one-to-one
correspondence between the sets of integral solutiors(gj and ®'(y’). Note that
C'=CUtand M| = {u € ZX | VMU~1u = 0}, whereC' is the recession cone of
Y’ and M is the lattice of integral forms vanishing @1. By reducing the matrixv

to the Smith normal form, we can compute a nondegenerate rational vaaind a
unimodular matrixJ such thatM’ = VMU~ = (0, I), wherel is the identity matrix

of orderk — p. Moreover, since the binary length of each elemend afan be bounded
by O(klog(k|M])) bits (see, e.g., Chapter 5 of [17]), from (22) it follows that we may
assume without loss of generality that

Iog|U| — |d0(sk(n+logs)). (24)
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Consequentlyp’(y') has bit lengthid ©SK+0ds) For simplicity of notation, we assume
henceforth that

O ... 010 ---0
0O .- 00 1 ---0

M=1. o : (25
O ... 000 --- 1

for the original formula ®(y), and that the bit length ob(y) has been increased to
|dOskintlogs) By (25), M, = (ZP, 0) and hence

Bi=@©0p8), i=1..s5 (26)
where the vectorg; € R<"P satisfy the assumption of Corollary 2.9:
UeZP U= =psu=0}= {0 27)

Consider the partitioy = (y!4, yi2l), whereyl = (y1, ..., yp) andy®? = (ypi1, ...,
vi). Let

oMyt = 3y, x) e R™ PPy, x),

and letY™ be the solution set oM (yit). SinceY™ is a projection ofY, the set
Y[ c RP is convex and full-dimensional.

Lemma 3.3. A pointy™ belongs taZP nint YU if and only if there is a poingl?
ZX=P such that(yitl, y@) e ZXNintY.

Proof of Lemm&.3. The fact thagy™™, y©?!) e Z* nintY impliesy™ e ZP nint Y
follows directly from the definition ofy!. Suppose thay!! € ZP N int Y[, Since
yi is an interior point ofy!!, the setY! is a projection ofY, andY is convex and
full-dimensional, there exists a real vectoe R¥—P such thaty!l, £) € intY. Hence
there is a positivee such that the open bog = {(yt, y) : |yl — ylll| < ¢
Iyl — £ < ¢} belongs toY. In view of (27), Kronecker’s theorem guarantees the
existence of nonnegative scalars . .., As such that|é + Zf’zl AiBill < e. Since the
vectorsf, ..., Bs in (26) are recession directions ¥f, it follows that the set3 +
Zle Ai Bi belongs toY and contains an interior integer point. O

Now we are ready to prove parts (i) and (ii) of Theorem 3.1 by induction.

(i) Suppose thaZX NintY # @. Then® (yi) has an interior integral solutiogi!!
whose binary length can be bounded by applying the induction hypothesis (1) in
dimensions:

Iogl)’/[” | = |dcp3(n+k)+0(sk(n+logs))’

where the multiplicative constant hidden in the te@sk(n + logs)) does not depend
onc. Substitutey! into ®(y) and consider the resulting formula

oPlyl) = oy, yi2).
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The solution setv?l ¢ R*=P of &(y®?) is the intersection of with the subspace
{y e R | yiI = gy}, Sincey™ e intY[, it follows that Y[? is convex and
full-dimensional. By Lemma 3.3 P nint Y = ¢. Hence we can use the induc-
tion hypothesis (12) irk — p dimensions to bound the binary length of an interior
integral solution y of ®P(yl?), We can thus assume that |og, y?)| is
bounded by

Id cp*(n+k)+c(k— p)3(n+k—p)+O(sk(n+logs))

where, as before, the constant in the t&diisk(n + logs)) does not depend an (Note

that this bound remains true after the transformation (23).) It is easy to see that the
inclusionsyll e intYll i = 1,2, guarantee thaty!™, y¥?!) e intY. To obtain the
required bound (12) ik dimensions it remains to show thakif> 2, then

cp’(n+ k) + c(k — p)3(n + k — p) + sk(n + logs) < ck®(n + k)

for c sufficiently large. (We have scaled the multiplicative constant in the @¢sk(n +
logs)) to 1.) Since 1< p < k — 1 ands < k, we have

cp’(n+ k) + c(k — p)°(n+ k — p) + sk(n + logs)
< c[p®+ (k— p)3(n+ k) + k3%(n + logk)
<[etk — D3+ c+ K (n+ k).

Hence the required inequality holds foe 3.

(ii) Suppose thaZk NintY = @. By Lemma 3.3ZP N int Y[ = ¢. Inductively
applying part (i) of the theorem té(y2l) we conclude thay < {ylll ¢ RP |
by < yWalll < by}, wherea e 7P\ {0}, and logmaxialyl|, |by|, |by|} =

|deP(n+o+O(skin+logs) ‘Hence we obtain (13) with
[1]
_p-1(@
a=U < 0 ) .

logmax{al, |by], [ba} = Id P H+OKNTHoGS),

By (24),

Scaling the constant in the ter@(sk(n + logs)) to 1, lettingc = 1, and taking into
account the inequalitg < k — p, we can bound the exponentafs follows:

p“(n + k) + skin +10gs)) < pk(n +k) + (k — p)k(n + log(k — p))
< KIp(h+Kk) + (k= p)(n +k — p)] < K*(n +K).
This shows (14) and completes the proof of Theorem 3.1. O

Theorem 3.4. Let P(y) be a quantifier-free formula composed of polynomial predi-
cates g(y) A 0, where g(y) € Z[va, ..., Y] are polynomials of degree ¢ 2 with
coefficients of binary length Buppose that the set¥ {y € R¥ | P(y) trug} is convex
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Then Y satisfies at least one of the following two conditions

() Y contains an integral point y such thag|y| = Id°".
(i) There is an integral vector & 0 and integers b, b, such that

YNZKC{yeZ b < ya<hby), (28)

log max|al, |by|, [bal} = 1d . (29)

Proof of Theoren3.4. Any quantifier-free formulaP(y) can be written asix €
RP(y), wherex is a dummy variable. I¥ is full-dimensional, Theorem 3.4 is thus a
special case of Theorem 3.1 for= 1. Suppose thaY is not full-dimensional. Since
Y c RXis convex, there exist a vectar= (uy, ..., ux)" € R¥Kand a scalar € R such
thatu # 0 andyu = v for all y € Y. The set of all vectorgu, v) € R¥*! that satisfy
these two conditions is the solution set of the formula

H(u, v) = Vy € R{[uTu > 0] A [=P(y) V (Yyu = v)]}.

Since the solution set dfi (u, v) is homogeneous, from Corollary 2.3 and Remark 2.4
it follows thatH (u, v) has a solution of the form

=X (d).
<U ) ; Yj
wheref is an algebraic integer of degr&e= do®k

(giﬁ)ezkﬂ, j=0,...,D-1  and
i

|Og max{|u?<|, |v]*| : j =0,...,D-1 =|d0(k2).

Forintegraly, the linear equatiogu* = v* is equivalent to the system &f Diophantine

linear equationyuy = v§, ..., yuy_; = vj_;. Sinceu* = j'igleiu;ﬂ # 0, we have
up # 0 for at least one of th® integral vectorsug, ..., uj_,. Hence we obtain (28)
and (29) witha = uf andb; = by, = vj*. O

Corollary 3.5. Let P(y) satisfy the assumptions of Theor@&#, and let Y be the
solution set of Ry).

(i) fY NZK # @ then Y contains an integral point y such thag|y| < ldeK,
where ¢> 0is a constant
(i) fy; =min{yk | Y= (Y1, ..., Y&) € Y NZX} is finite thenlog|y;| < ldeK’,

Proof of Corollary3.5. (i) We prove the statement by induction logrthe number of

free variables. The cade= 1 is trivial. Suppose thdt > 2. By Theorem 3.4 we can
assume without loss of generality that there exists an integral v&@etod and an integer
b such that

YN{yeZX|ya=h}+0, (30)
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and log maxlal, |b|} = IdO®) The general integral solution of the equatipa = b
has the formy = t 4+ y'T, wherey’ runs throughZ*~%, and T andt are an integral
(k — 1) x k matrix andk-vector such that

logmax(|T|, [t]} = 1d°®). (31)

(See, e.g., Chapter 5 of [17].) Substituting y'T for y into the original formulaP (y),
we obtain a new quantifier-free formuR{(y’) = P(t + Ty) whose set of solutions
is still convex. It is easy to see that the degdéebit lengthl’, and the numbek’ of
free variables foP’(y’) can be bounded as followd! < d, |’ = 1d°®), k' < k — 1.
Moreover, by (30)P’(y’) has an integer solutioyi. By the induction hypothesis, 1oy |
can be bounded hbiy(d’)*<*. Hence logy’| = |dk-D"+0&") where the constant in the
term O(k®) does not depend an However, thery =t + y'T is an integral solution for
P(y) for which (31) yields logy| = 1d°&-D*+0& This inductively proves (i).

(ii) We again use induction dawith the trivial basé = 1. If y; > 0, then (ii) follows
from part (i) above. Assume thgf < 0 and letf} = inf{& | £ = (§1,..., &) € Y}.
If £ > —oo, then logl€;| = Id°® by Proposition 2.1 and we are done. Suppose that
g = —oo. ThenZ¥ NintY = ¢, for otherwise from Minkowski's theorem it would
follow that Y contains a sequence of points= (y1, ..., Yk) € Z*NintY with y, —
—o0, which would contradict our assumption thgitis finite. If Y is full-dimensional,
Theorem 3.1 guarantees that the integer programming problefyyriity € Y N Z¥}
has an optimal solutiog* satisfying a linear equatiopa = b with integral coefficients
a=(a....,a)" # 0andb of binary lengthd © " If Y is not full-dimensional then
such an equation can be found for the entire¥s¢see the proof of Theorem 3.4). As
before, the general integral solutionyd = b can be written in the forny =t + y'T,
wherey’ € Z¥1andT e Z&DxK t ¢ 7K satisfy (31). After an appropriate unimodular
transformatiory’ — y’'U, we can assume without loss of generality that = Tox =
<o = Tk = 0andTe_1x > 0. If iy = 0, thenyy = t, and (i) follows from
(31). Otherwiseyi = tk + Yy _; Tk—1.k With Ty_1x > 0. This reduces the original integer

programming problem tg;* ; = min{y,_, | Y = (¥, ..., %) € Y'N 71}, where
Y’ c R*!is the solution set oP’(y’) = P(t + y'T), and completes the inductive
proof. O

Corollary 3.6. Let P(y) be a quantifier-free formula whose solution set Y is convex
If the set of optimal solutions of the integer optimization problgm=ymin{yy | y =

(Y1, ..., Y&) € Y NZX} is nonemptythen the problem has an optimal solutioh such
that

logly*| = 1d°%, (32
where d> 2 and | are the degree and bit length of Y3, respectively
Proof of Corollary3.6.  Any integral solution of the formuR*(y) = (yk < V) AP(Y)
solves the optimization problem. By part (ii) of Corollary 3.5, the bit lengtRPtfy) is

1dOkY . Hence by part (i) of the same corollaR; (y) has an integral solutiop* in the
box (32). O
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Proof of Theoreni.1. By Proposition 2.1, any input formuk(y) with » > 1 quan-
tifiers can be transformed into an equivalent quantifier-free formula (QF) of degree
dor = d™=0M) and bit lengthor = Id «FDTO0M) | Sybstitutingdor andl o for d and
I in (32) results in the required bound (3) fB(Y). O

4. Proof of Theorem 1.2

Before proceeding to the proof of Theorem 1.2 we pause to make a few observations.
First, due to Proposition 2.1, it suffices to prove that the integer optimization problem
(2) can be solved iP@mO*k)dO&") time for any convex set defined by a quantifier-

free formulaP(y) of form (QF) withm polynomial predicates of degreleand integral
coefficients of binary length Secondly, we can use binary search along with the bound
of Theorem 1.1 to reduce the integer optimization problem (Apf¥<" feasibility
subproblems of the following form: Given a fixed paramdter 7, find an integral
solutiony = (y1, ..., Yk) for (yk < t) A P(y), or prove that no such solution exists.
Since(ykx < t) A P(y) is also a formula of the form (QF), to prove Theorem 1.2 we only
need to show the following result:

There is an algorithm of running tiM@®®mO*)dok" that, given a
qguantifier-free formulaP(y) of form (QF) with convex solution set
Y < R¥ andm polynomial predicates of degrekand bit lengthl,
either determines that N Z¥ = @ or finds a pointy € Y N ZX.

(33

Observe that (33) trivially holds fdk = 1 (even without the convexity assumption).
Finally, we can assume without loss of generality tha full-dimensional, for otherwise
by using the argument presented in the proof of Theorem 3.4 the number of variables in
P(y) can be reduced iP® (md)°*" time.

Let Y be a bounded convex full-dimensional seRf An affine transformation

y—>a+VyA

p-roundsYif U; € a+Y AC U,,whereJ; = {y € R¥: |ly|l» < 1}andU, = {y € R¥:
lyll2 < p} are the open and closed Euclidean balls of radii L@mdspectively, centered
at the origin. Denote b@ F(k, m, d, I) the class of bounded convidimensional sets
Y c RX defined by quantifier-free formulae (QF) composedngiolynomial relations
of degreed and bit lengtH.

Lemma4.1. Given a set Ye QF(k,m,d,l), a rational (k + 1)-rounding affine
transformation for Y can be computed R (md)°«*) time In particular, for fixed k
such a transformation can be found in time polynomial,im)and d

Proof. It is well known that any bounded convex full-dimensional seRincan be
k-rounded [11]. Suppose th¥tis defined by a quantifier-free formuR(y). Then the
nonempty set of ak-rounding affine transformations f&t can be characterized by the
the formula

R@ A = (vy e R {[(la+ yAl2 > D) v PW] Al(la+ yAlz <k) v =PW]}.
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Let ¢ be a positive number, and considersaapproximatesolution of R(a, A), i.e., a
rational matrix(@’, A") suchthaf|(@’, A') — (a, A)||> < ¢ for some exact solutioa, A)
of R(a, A). Since the Hausdorff distance

inf{§ | a+ Y AC Euclidears-neighborhood o’ + Y A,
anda’ + Y A C Euclideans-neighborhood oé + AY}

between the setw + Y A anda + Y Ais at mostj|la’ — a|2 + r*||A" — Al2, where
r* = sugllyll2 : y € Y}, it follows thatU; 4«41y € @ + YA € Ukieqera. By
(15), logr* = 1d°®_ HenceY can be(k + 1)-rounded by computing astapproximate
solution for R(a, A) with —loge = Id°®. Note that by Corollary 2.6Y contains a
Euclidean balfy € R¥ : ||y — «|» < 1/R} such thatjx|, < R and logR = 1d°®,
This implies that log(a, A)|» = Id°® for any solution(a, A) of R(a, A).
Itis known [16, Theorem 1.2] that anapproximate solution for an arbitrary formula

F (y) can be computed i (md)C®MmO0M) |og log(3+r /¢)-time, where is an upper
bound on the Euclidean norm of an exact solution. Applying this resi®(#g A), the
lemma follows. O

Let K be a class of bounded convex full-dimensional seRirConsider the problem:

P« Givenasel € K, determine whetheY N Z¥ # ¢, and, if so,
find a pointy € Y N ZX.

Suppose that each séte K can bep-rounded by an appropriate rational affine trans-
formation. Then for g-rounded seY Lenstra’s algorithm can either solve probléin

in polynomial time, or reduce it tp2°® subproblemsP_1, each of which calls for
computing an integral vectgrin the intersection o with a given rational hyperplane
{y e R¥| agy; +- - - +agyk = b} ([1]; see also [14], [10], and [17]). By Lemma 4.1, this
implies that for any set i@ F(k, m, d, 1) problem P, can be solved ih®® (md)°
time, or reduced to2® similarly structuredk — 1)-dimensional problems. Hence one
can conclude by induction dathat problemP, can be solved it°® (md)°* time for
any input sety € Q(k, m, d, I). This proves (33) foboundedsetsY. Finally, suppose
that the solution seY of a quantifier-free formul@ (y) is convex but not necessarily
bounded. By Theorem 1.1, computing an integral solutionHgy) is equivalent to
computing an integral solution faty| < r) A P(y), wherer is a positive integer of
binary sizeld °& . This proves (33) and hence Theorem 1.2 for an arbitrary convex
semialgebraic set. O

We mention in closing that applying the shallow-cut ellipsoid method [10], [17] for
rounding semialgebraic sets @(k, m, d, ), along with Theorem 1 of [5], the run-
ning time of the integer programming algorithm in Theorem 1.2 can be improved to
| O gOKHITIZ, Om) ORI, OM) ot likely, the bound of Theorem 1.1 can also be
improved in terms of its dependence kbnWe also expect that Corollary 1.3 can be
strengthened by developing an algorithm for semidefinite integer optimization in fixed
dimension whose running time is lineax
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