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Abstract. We survey some recent results on the complexity of computing
the volume of convex n- d1mcnsxonal polytopes.

1. Jumps of derivatives.

Let P be a bounded full-dimensional polyhedron in IR™, and let a € IR™ be a fixed nonzero
vector. Consider the “moving halfspace” H (t)={z €R" | < a,z><t}, sweeping P

over the time interval ¢ € (—o0,+00). Our goa.l is to describe the behavior of the function
V(t) = vol,.[P 0 H(t)].

Let u be a vertex of P. We say that at the moment T =< a,u > the halfspace H(?)
crosses u and call T a critical ‘m;mcnt for V(t). Denote by 19 < 71 < --- < 7 the critical

set of V(t) i.e., the set of all instants at which H(t) crosses at least one of the vertices
"of P. It is wcll known ftom the theory of mixed volumes (sec, for example [17], Thcorcm
15.4) that in any time interval ¢ € [rx,7k41] containing no critical moments as interior
points, V(t) is a polynomial function of time V(t) = pkat™ + -+ pro, tE€ [Tk,r;,+1],
whose degree does not exceed n. Intuitively, we expect that in general position V(t) is not

} ?nalytxc at any critical moment 1. To begin with consider the most simple case where
P is an n—dimensional simplex S, = conv.hull {uq,u;,---,u,} defined by n + 1 affine

independent vertices. Suppose that H(t) and P = S, are in general position i.e.,
P has no edges parallel to the boundary of H(t). | - (1)

In this case V(t) = va(t) = vol 2[H(t) N S,] has exactly n + 1 critical moments 1, < <
+ < Tn. Let us show that undcr the a.s.sumptzon (1.1) the ﬁrst n — 1 derivatives of v,(t)

are continuous, and the jumps

d"vn('rk + 0) d"v,,(‘rk —-0)
dtn dtr
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of the nth derivative have alternating signs:

(-1)*Ta(m) >0, k=0,1,.--,n. - (1.2)

Indeed, assume without loss of generality that H(£) crosses the kth vertex of S, at the kth
critical moment, and write for ¢ > 7 the n-yolume va(t) of H{{) N S, as

va(t) = %Zh(u;, Fy) vol_1[Fi. (1.3)

Here the sum s taken over the facets Fy of H(t)NS, and i(uq, Fy) is the height of the vertex
ug with respect to af f.htll Fy. Clearly, only two heights in this sum are nonzero, see Fig.
1. The first one is a positive constant b, = n vol,[Sa] / voln_1[Sn—1] 2nd corresponds to
the facet H(t)N Sp—1, where Sp—3 = conv.hull {uy,---,u,}. By induction we may assume °
that the (n — 1)-volume of this facet Vn-1(t) = vola_1[H(t) N Sp_1] has n — 2 continuous
derivatives, and the jump

Ao a(re +0)  d"lva_s(r —0)
d¢n-1 d¢n—1

Jn1 (Tk) =

of the (n — 1)th derivative of vn_;(t) is positive at the first critical moment 73, negative
at the second =, and so on: .

S g e mm e e —— en

(-1)*Jaz1(m) <0, k—12--- n. - (1.4)

Next, the second nonzero height in (1.3) is equal to (¢ — To) /llall and corresponds to the
facet S, N{z € R" | < a,z >=1}, the section of S, by the boundary of the moving
half‘spacc H(t). Clearly, the (n — 1)-volume of that facet is equal to ||a||dv.(t)/dt, see Fig.

1, and therefore (1.3) can be written as

nva(t) = hnva-1(t) + (t — Tg)dv"(t) .

This recurrence implies that the first n — 1 derivatives of v,(t) are continuous, and

hn

T —

Jn('rk) = — Jn—l(Tk)’ k= 1,2,"',71.
o :

Obviously J,(1) > 0 and from (1.4) we obtain (1.2). -

Thus, if P is en-n-dimensional simplez in general posztwn with H(t), and u is a vertez of
P, then the jump J(u) of the nth derivative of V(t) at the critical moment r =< a,u > has
the sign (—1)°(*), where e(u) s ‘the number of edgesuv of P such that< a,v > < < a,u >
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In fact, one can also obtain the following czphczt ezpression [16] for the jump of thc nth
derivative of V(t) at a vertez u :

(-1
[7iy -+ i detlaiy,--yai]l

J(u) = (1.5)

Here a; ,---,a;, € R" are the normal vectorg of the active facets at w and v;,,---,7;. €R

are the (unique) coefficients in the representation a = Yi @iy, + -+ vinai, -

Note that (1.5) is obvious for the critical moment g, and can be proved for 7y,---,7, by

- induction on n.

Now let P be an arbitrary simple polyhcdroﬁ, and let H(t) be in general position with
respect to P, see (1.1). Suppose that at a given instant r the halfspace H(t) crosses r
vertices ul,.--,u" of P. Since exactly n facets intersect at each vertex of P, we can cut
out from the polyhedron r small simpliccé S1,...,8" with vertices at the points ul,.--, u"
and represent P as the disjoint union of the above r simplices and some polyhedron P' =
P\(S'U...u8") containix;g no vertices in the ~.bounda.'ry of H(r). This implies that the
jump of the nth derivative of the function V(&) = vol,[H(t) N P],_is equal to the sum of

the corresponding jumps over the critical vertices:

TV F0) ATV (F=0) - —1)<(v)
(Tn+ ) V(Tn ) z ( ) . . (1-6)

dt dt (G,u>=1‘ I‘T"l i .7"u _det[ail 1°°% a{-]l
Ezample 1. Let P = Cj be the unit 3-dimensional cube and a = (1,1,-2). At the moment
T =0 the halfspace H(t) ={z € R® | z, +z2 — 2z3 < t} crosses two vertices v = (0,0,0)
and v = (1,1,1) of the cube, see Fig. 2. However, J(v) = —J(v) = —1/2 and V(¢) is

analytic at the critical moment v = 0.

Ezample 2. Let C,, be the unit n-cube and suppose that all the coordinates of the vector
a € R"™ are positive. Then for any vertex u € {0 1}" of C, one has e(u) = |u| = the

number of 1’s 1n u.

Since in general position the first n —1 derivatives of V(t) are continuous, integrating (1.6)
we get the following formula [16] for the volume of the intersection of a simple polyhedron
P with a halfspace H(t) |

(max(0, 1 < ayu >))"
|7‘1 7':'; det[dif) R ain” ’ -

V(t)~— —Z( ~1)°() - . @
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where the sum is taken over all the vertices u of P.

In particular, the polynomial

1 (t— < a,u >)"
= -1 e(u) -
a1 2.1) ey -+ ia detlaiy, -y 0 ]|

does not depend on t and is equal to the volume of P.

2. Exact volume computation is hard.

Consider the following well-known knapsack problem: given (a,7) € Z}%? determine the
solvability of the equation < a,u >= 7 in Boolean variables v € {0,1}"™. This problem can
be reformulated as follows: does the moving halfspace H(t) = {z € R | <a,z ><t}

cross a vertex of the unit n-cube C,, at the moment t =1 ?

Since the knapsack problem remains N P-complete under the additional assumption
"we{0,1}" & <aqu>=1 = [u|= const, (2.1)

from (1.6) and Ezample 2 it is easy to see that computing the volume of the intersection
of the unit n-dimensional cube with a rational halfspace is NP-hard [13). Indeed, if it were
possible to compute the function V(t)-=vol.[CrA{z-|- < @,z >< t}] for rational ¢ in
polynomial time, then by means of interpolation one could check the condition d"V(r +
0)/dt™ — d™"V(r — 0)/dt™ # 0 in polynomial time as well. The latter condition, however,
is cquival?nt to the solvability of the knapsack problem with the property (2.1).

LY i .
In fact, it'can be shown [4] that the problem of computing the volume of the intersection

of the unit n-cube with a rational halfspace is #P-hard, also see [14].

It 1s essential for the validity of the last statement that the coefficients (a,7) € Z_’;*’l of
the halfspace H(7) are “large”, since it is known [15] that the volume of the intersection
of the unit cube with an arbitrary fixed number of rational halfspaces can be computed
in pseudopolynomial time. However, it was observed in [13] that if Q = {1‘, ---,n;<}isa

partially ordered set and

-

P(Q ={z€R™|0<z;<1, i=1,---,n; z:<z; ifi<jinQ}

is the order polyhedron of Q, then it is N P-hard to determine the volume of the intersec-
tion of P(Q) with a rational halfspacé deﬁfed—hy ‘.‘.‘_SI‘ISI%}:C, polynomial in n, coefficients




(a,7) € ZE*!. Recently a much stronger result has been obtained in [3] as a direct corol-
lary of the following important theorem : the problem of computing the number of linear
eztensions of a given poset is #P -complete (this theorem was conjectured in [18]). Since
it is well-known, see, for example [22], that the number of linear extensions of a poset Q
is equal to n! vol,[P(Q)], the latter result implies that determining the volume of order
polyhedra P(Q) is #P-hard. Thus, iR |

computing the volume of rational polyhedra is strongly #P — hard.

The following question wa.s posed in [4]: can the volume of a rational polyhedron P =
{z € R™ | Az < b} be always written as a reduced fraction whose denominator (hence,
numerator) has the binary length bounded by a polynomial in the binary length of A and
b? In other words, can the volume of a rational polyhedron be written in polynomial space?
The answer to this question is negative [16]. This is shown by the example P = To(C,),
where Cy, is the unit n-cube, @ = (272,272,...,2™"), and T, is the projective mapping
z =+ z/(1+ < e,z >). Clearly, for a positive a the image T,(C},) of the unit cube is defined
by the 2n inequalities k

g e e T2 0,_za,+-_<_a,z_>_$1,,_u,£_=.1,- ceamy T
and it is easy to see that the jump (1.5) of the nth derivative of the function
1 V() = volu [T.(Ca) A {z | <z >< 1))

. l

at a vertex T,(u), u € {0,1}", is given by

J(Ta(u)) = (_1)[u| 1+ < a,u >)n—1 '

1°°+Qn

Now it follows from (1.7) that

1 , . ' e <a,u>
V) = ey DM < ayu ) max(0, 8 — ==

))n, ‘

where the sum is taken over the vertices u € {0,1}"® of C,.. In particular, the volume of

T2(Cr) can be written as

- . _1)lel
V()= 1 v (=1)

1+ <aqu>’
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Substituting a = (271,272,... 27™") we get
(v +3)/2 T 2T (_p)et) -1

W= )

where e(IN) is the number of 1’s in the binary expansion of N. Obviously the binary length

of the denominator of the latter expression is not polynomial in n.
1 .

We now turn to the complexity of computiné the volume of a polytope P C IR" given as
the convex hull of a set of integer points P = conv.hull {uy,---,um}, u1,--,um € 2™
Can the volume of P be computed in polynomial time? [19], [3]. The foliowing ncgative
result [4], [14] considers the problem which is “polar” to determining the volume of the

intersection of a cube and a halfspace:

Let ey,---,eq be the standard basis vectors in R™, and let a € Z™ be a given integer vector.

Computing the volume of O(a) = conv.hull {+e1,—ey,+++,+€n,—€n,a} is #P-hard.

Indeed, O(a) = conv.hull {O,a}, where O = {z € R™ | |z1|+ -+ + |za] < 1} is the unit

n-octahedron. Hence the n-volume of O(a) can be wﬁttcn as
vol O(a) = vol 0o + Zvol conv.hull {S,a} = — + —Zma.x(ﬂ <a,b>-1),
where the ﬁrst sum is ta.kcn over the fa.ccts S of O that are vxsxblc from a, and the sccond
sum is ta.kcn over the vectors § € {—1,1}". Therefore
n! {vol O(a + e1) +vol O(a —é;) =2 val O(a)} = #{§€ {-1,1}* | <a,6§>=1}.

But the problem: of determining the number of solutions § € {-1,1}" to the equation
<a,§>=1is well-known to be # P-complete.

It would be interesting to show that the problem of computing vol,, conv.hull {uy,---,um}
is strongly #P-hard. Another interesting problem is to prove # P-completeness for linear

extension count for posets of height 2 [3] One more question is: is it hard to compute the

volume of a zonotope? [8]

Clearly, the problem of determining the volume of a rational polytopé in facial or ver-
tex descriptions remains #P-hard if it is required to approximate the volume to a given
absolute accuracy , say |u — vol, PII < L. In the next section we address the problem of

apprbxima.ting—thc volume to a given relative accuracy:

1 <e.

vol pP_"‘'==- =
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3. Volume approximation.

A convex body P C RR" is said to be p -rounded if B C P C pB, where B = {z €
R"™ | [zl <1} is the unit Euclidean ball. If T': z — Az + b is an affine transformation

such that the above inclusions hold for the image T((P), we say that the transformation

p-rounds P.
t

It is well-known [10] that for an arbitrary cox;vcx body P C R" there exists an n-rounding
affine transformation T' and, in general, p = n is the best possible value. Moreover,
if P C R" is a rational polytope in. facial or vertex description, then for an arbitrary
p > n one can find a rational p-rounding affine transformation T in time polynomial in
log(1/(p — n)) and in the binary lcﬁgth of input data. In fact, one can “polynomially
round” P in a more general case where P is given by a separation oracle (such an oracle
can answer the question “z € P?" for an arbitrary rational vector z and, if z ¢ P it gives a
hyperplane that separates z from P). In this case it is still possible to find an n3/ 2_rounding
transformation T' = Az + b in O(n*log p) arithmetic operations and in O(n? log p) calls to
the oracle, provided that originally P is p-rounded, see [9]. Since vol P = vol T(P) [|det A,

we assume henceforth that P itself is n3/ z-roundcd

BCPCn¥?B.

In particular, one can trivially approximate the n-volume of convex bodxcs to relative -
Inf4

accuracy € =n

1. If P is given by a separation ora.clc, this exponential bound is close
to the best possible in the class of deterministic methods with polynomial informational
complexity [6],(2]. Namely, for any deterministic method whick estimates the volume of

convez bodies P C R" in polynomial in n number of calls to a separation oracle,

)n/z -1

for some P, see (2].

However, Dyer, Frieze and Kannan [5] have recently shown that in the class of randomized
algorithms thcbvolume of convex bodies can be approximated in polynomial time to an
arbitrary fixed relative accuracy, say € = 0.01. More precisely, their remarkable theorem
states that there czists a randomized algorithm which for any given € > Q andrﬂ > 0 finds .
an epprozimation u to the valumc of a convez body P C IR™ to relative accuracy € with

probability of error less than £

) P"Ob{-lgﬁ—llée}zl—ﬂ

n B




in polynomial in n, 1/e, and log(1/8) number of arithmetic operations and membership
tests “z € PI”

We informally outline the main ideas of the algorithm. First the problem of appfoximating
vol, P to relative accuracy € can be reduced to k = O(nlog n) subproblems of estimating

the ratios £; = vol,, P;fvol, P;_y, t =1,--+,k, where
" B=PyC---CPyCPC---CP.=PCn’?B

is the "tower of convex bodies” P; =1 + 1/n)'B N P. Clearly, vol,, P = ¢; ---{vol, B,
where B is the unit Euclidean ball, and therefore it suffices to estimate each of ¢;'s to
relative accuracy €1 = O(e/nlog n) with probability of error ; = O(8/nlog n). Since

each ratio ¢; in the tower is bounded from above
1< & =voln Pifvol wP;my <(14+1/n)" <e,

if it were possible to sample z uniformly from within P;, then in O(ey? log(1/8,)) inde-
pendent trials “z € P;_;?"we could estimate §; as required. Tq generate z € P; nearly
uniformly, Dyer, Frieze and Kannan consider a discrete approximation CP; to P; made up

of cubic “pixels”
x

C(m):{zelR_"- I m;ﬂSz;S(rﬁ;-{-l)& i=1,"°-,ﬂ}, mez"

of a sufficiently small s‘izc §. For the time .bcing the reader may assume that CP; consists
of the cubes C(m) tha? intersect P;. Since diam C(m) = §n1/2 and P; contains the unit
ball, we have CP; \ P; C (1 + 6n1/2)P; \ (1 — 6n1/2)P;. This implies

| & — M;/M;_; | = O((1 4 =1/ — (1 _ §n1/2)m) = 0(5,,_3/2')’

where M; is the number of cubes C(m) in CP,-.i Hence, with § = O(e;n~%/2) the problem
of estimating £; can be replaced by the problem of approximating the ratio M;/M;_; to
relative accuracy O(e;) with probability of error 8;. To pick fandomly a cube C(m) in

C P;, Dyer, Frieze and Kannan consider a very simple random walk ovet the cubes C(m)

in CP;, which converges to the uniform distribution. At the {th step of the random walk,

t =0,1,..., we chose with probability 1/(2n) a facet of the present cube C(m) and move
to the cube C(m') across the chosen facet mey; = m' if we: dq not leave C P;; otherwise
we stay in the present cube: myy; = m¢. The convexity of-P; implies-that the Matkov

-
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chain of this random walk is connected i.c., for any two cubes C(m) and C(m') in CP;

() ' 1s positive for some £. In fact ) 'S 0 for all

' Poamns

sufficiently large ¢, because some of the cubes C(m) have self-loops with positive 1-step

the t step transition probability p,

transition probabilities ppm. In other words, our diffusion Markov chain is ergodic and
consequently, it has a unique stationary final distribution. Since the chain is symmetric
Pmm! = Pm'm, the latter is easily seen to be uniform: pg)m, — p(o0) = 1/M;, t — oo.
Thus, for a sufficiently large ¢ we can use the {th cube in the random walk to sample nearly
uniformly from CP;. To bound ¢ from above, Dyer, Frieze and Kannan use the followiné

consequence of a recent result of Sinclair and Jerrum [21] on rapidly mixing Markov chain:

[ P9 — p(o0) | < (1 — 0.58%), (3.1)

where @ is the conductance of the chain. The latter quantity is defined as $ = min $(4, B),
where the minimum is taken over all the partitions (A,B) of the states of the chain, and

(for symmetric chains )

Y Pmmt i € .‘{,m' €B
wal LB -

Intuitively, & measures the minimum relative connection strength between subsets of the

states. In ous case (4, B) admits-a simple gcométric—interpr;‘.tation:-----

8 vola_s[8C(4) N 3C(B)] (3.2)\

¥(4,B) = 5 min{vol, C(A),vol C(B)}’ -
where C(A) = umeAC(m’? and O(B) = UpepC(m').
We now need the followin!g isoperimetric inequality [20],[12]:
| s(u,v) diam Q > min{x, v}, | (3.3)

where s(u,v) is the (n — 1)-volume of the minimal surface partitioning a convez body

Q C R" into two n-volumes u and v.

Sketch of proof [12]. For any € > 0 there exists a convex body‘ Qe C Q with a regular
boundary, such that vol,(Q \ Q¢) < €. If (3.3) holds for Q. and e — 0, we get (3.&) for

Therefore we may assume that the boundary of Q is regular ‘

Suppose at first that there exists a regular surface s of least area, partitioning Q into two

given volumes v and v (i.e s solucs the extremal Plateat’s problem for Qs 'L?Ea.buse the




see (3.5). Recalling that kA > 0 and all the interior points of u are visible from s at distance

< diam @, we obtain
diam Q diem Q
u < /[/ ez:p(-——rh)dr] ds: < // dr ds; = s(u,v) diam Q. (3.8)
s 0 sJ0

In general, the extremal partitioning surface s possibly may have a closed singular set.

However, it is known that any point on s, closest to a point not on s, is regulair, see [1].

Therefore we again obtain (3.8) O

. Consider the definition (3.2). Since C’(A) uC(B) = CP; is “close” to the convex body P;,
and the latter is contained in the ball of diameter D = 2n%/2, it would be fine if we could
apply the isoperimetric inequality (3.3) to bound the conductance $(4, B) from below

6 1 > §n~3/2

HAB) 3 o= » (39)

for any partition (A4,B). In view of the inequality of Sinclair and Jerrum this would
immediately prove the polynomiality of the algorithm. Unfortunately, we can easily obtain

(3.9) from (3.3) only for thc case where min{vol, C(A),vol, C(B)} suﬁicxcntly exceeds
vol,[CP; \ P, or - |

mm{l“ﬂ |Bl} _ min{|4],|B[} /2

= ——t—2 >’ (3.10

: (4] + |B] I - (344

So we do not know how to prove that & = min <§(A, B) can be polynomially bounded

away from zero. A possible way around is to replace P; by its Euclidean a-néighborhood

Pi(a) with & = O(§n3/2). Such a rcplaccn%cnt is within the tolerance of estimating ¢£; and
smoothes the boundary of P;. At the same time it allows to show that the conductance
of the random walk on C P;(«) is polynomially bounded away from zero, see [5]. Another
approach was suggcstéd by Lovasz and Simonovits [20]. They proved a generalization of
the inéquality of Sinclair and Jerrum, which allows to ignore very asymmetric partitions
(A,B) in the definition of conductance and instead of pointwise convergence guarantees
convergence for “big” subscvt.s'of states, provided that the initial distribution is sufficiently :
spread out. In particular, as a corollary for Markov chains with the uniform final distri-
bution Lovdsz and Simonovits obtained the folléwing result: suppose that for every set‘of
states C with at most M elements we have |Prob{m, € C’} p()IC] | € v fort = 0.

Then for anyset of states D

|[Prob{m, € D} — p(c0)|D| | < v +(1— 0.583%,) [p(c0)]7/2 for all t.

(3?_13%;

g .wi- .
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Here $pr 1s the M-conductance of the chain, defined as the Idrgest number such that

{Z Pmm! + Pm'm .

- m € 4,m' € B} > @ (min{|4],|B[} - M)

for any partition (A, B).

!

Since the latter definition actually ignores the partitions with min{|4|, |B|} < M, we know
that $pr > 6n5/2 for M = O(8n*/2 M;), see (3.9) and (3.10). Suppose that we use as a
starting distribution for the random walk 6ver CP; such a distribution over CP;_; that

| Prob{mo € D} — |D|/M;_; | €vi_y for any set D in CPi_, (3.12)
Then for every set C in CP; with at most M = O(6n3/ 2M;) elements we have

| Prob{m, € C} —

3/2
M;_, / )

We know that &ar >, §n=5/2 and therefore the second tc1:m in (3.11) is exponentially small
for t, polynomial in n and 1/§. Hence we conclude that after a’polynomial number of
random moves on CP; we can start the random walk on C Py, ‘with vi = vy +0(6n3/?),
see (3.12). Since we can easily obtain a 80_951_§,t_§-,r_t.128-él._S.t_r.l_b.l_l_.t_lg_rl_o_r_l_t_hs:_d_l_s_czc_ts:__a..ppr.on-
mation C P, t:; the unit ball P = B, andi < k = = O(nlog n) , the latter recurrence irﬁplics

: = O(6n®/?log n) for all i. Recalling that the ratios M;/M;_, must be estimated to
relative accuracy €; and therefore it suffices to have v; = 0(51.) = O(e/nlog n), we finally
find § ~ £/n"/*log? n and obtain the following crude lower bound on the conductance:
Pum > efn’ log? n. We do not go into further analysis, since tl'xe polynomiality of the
problem is already clear. We also skip another technical detail connected to the fact that

the question “C(m) N P; # 07" (or equivalently “is a given cube C(m) in CP;?") can be.

answered in polynomial time for explicitly givcn rational polytopes P, but not for convex
bodies given by a membership oracle. In genera.l CP; consists of the cubes C’(m) that
weakly intersect P;, see [5],[20]. '

Unfortunately, the Complexity bound of the algorithm turns out to be eitfemely high: the

algorithm requires O(e~*n'® log® nlog(n/e)log(n/B)) calls to a membership oracle for P,
see [20]. Furthermore, it is clear that since the algorithm generates a random point in P
by means of a diffusion process whose step distribution is centra.lly symmetnc and local,

it takes at least (diam P/§)? steps to ‘achieve reasonable mixing on P. éo for radical

12
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improvements in the complexity we need more rapidly mixing “long-range” random walks
on convex bodies. Sometimes we can also use a “method of finite elements” to simplify the
problem of uniform generation for P. For example, if P is the order polyhedron of a poset
Q@ ={1,---,n; <}, and Q has M linear extensions m : m(l) Xm(2) <-.. < m(n), we can
decompose P into M simplices S(m) = {z G R" | 0< zpm(1) STimz) -+ < Zm(n) < 1}
and use the triangulation P = US (m) mstca.d of cubic approximations to P. This gives us
a simple random walk over the set of linear extensions of Q, which converges to the uniform
distribution:| Prob{m, = m}—1/M | < (1—0.5%?)*. Since the triangulation P = US(m) is
exact, vol,_1[05(m)]/vol,[S(m)] = n? and diam P = nl/ 2, the isoperimetric inequality
immediately gives us the bound & >, n~2% on the conductance of this random walk.
In fact, we believe that the latter bound can be improved and & > n~2, The above
“almost uniform generator of linear extensions can be used for determining well-balanced

comparisons [7],[11] in posets with encouraging computational results, for more details see
[12]. '
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